SG6859A — Low Cost, Green-Mode PWM Controller for Flyback Converters

This product is not to be shipped into the United States. It is under court injunction. See <u>http://www.fairchildsemi.com/about-fairchild/media-center/litigation/</u>

January 2015

SG6859A Low-Cost, Green-Mode PWM Controller for Flyback Converters

Features

- Green-Mode PWM
- Supports the "Blue Angel" Standard
- Low Startup Current: 9 µA
- Low Operating Current: 3 mA
- 300 mA Driving Capability
- Leading-Edge Blanking
- Constant Output Power Limit
- Universal Input
- Built-in Synchronized Slope Compensation
- Current-Mode Operation
- Cycle-by-cycle Current Limiting
- Under-Voltage Lockout (UVLO)
- Programmable PWM Frequency with Frequency Hopping
- V_{DD} Over-Voltage Protection (Auto Restart)
- Gate Output Voltage Clamped at 17 V
- Low Cost
- Few External Components Required
- Small SOT23-6L Package

Applications

General-purpose switching mode power supplies and flyback power converters, such as:

- Battery chargers for cellular phones, cordless phones, PDAs, digital cameras, and power tools
- Power adapters for ink jet printers, video game consoles, and portable audio players
- Open-frame SMPS for TV/DVD standby and auxiliary supplies, home appliances, and consumer electronics
- Replacements for linear transformers and RCC SMPS
- PC 5 V standby power

Description

This highly integrated PWM controller provides several enhancements designed to meet the low standby-power needs of low-power SMPS. To minimize standby power consumption, the proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load conditions. This green-mode function enables the power supply to meet even the strictest power conservation requirements.

The BiCMOS fabrication process enables reducing the startup current to $9 \ \mu$ A and the operating current to $3 \ m$ A. To further improve power conservation, a large startup resistance can be used. Built-in synchronized slope compensation ensures the stability of peak current mode control. Proprietary internal compensation provides a constant output power limit over a universal AC input range ($90 \ V_{AC}$ to $264 \ V_{AC}$). Pulse-by-pulse current limiting ensures safe operation during short-circuits.

To protect the external power MOSFET from damage by supply over voltage, the SG6859A's output driver is clamped at 17 V. SG6859A controllers can be used to improve the performance and reduce the production cost of power supplies. The best choice for replacing linear and RCC-mode power adapters, the SG6859A is available in 8-pin DIP and 6-pin SOT23-6L packages.

Ordering Information					
Part Number	Operating Temperature Range	Package	Packing Method		
SG6859ATZ		SOT23-6L			
SG6859ATY	-40 to +105°C	SOT23-6L	Tape & Reel		
SG6859ADZ			Tuba		
SG6859ADY		DIP-8	Tube		

Application Diagram

Figure 1. Typical Application

SG6859A — Low-Cost, Green-Mode PWM Controller for Flyback Converters

Pin Configurations

Figure 5. DIP-8 Pin Configuration

Pin Definitions

DIP Pin #	SOT Pin #	Name	Description	
1	6	GATE	The totem-pole output driver for driving the power MOSFET.	
2	5	VDD	Power supply	
3		NC	No connection	
4	4	SENSE	Current sense. This pin senses the voltage across a resistor. When the voltage reaches the internal threshold, PWM output is disabled. This activates over-current protection. This pin also provides current amplitude information for current-mode control.	
5	3	RI	A resistor connected from the RI pin to ground generates a constant current source used to charge an internal capacitor and determine the switching frequency. Increasing the resistance reduces the amplitude of the current source and the switching frequency. A 95 k Ω resistor R _I results in a 50 μ A constant current I _I and a 70 kHz switching frequency.	
6		NC	No connection	
7	2	FB	Feedback. The FB pin provides the output voltage regulation signal. It provides feedback to the internal PWM comparator, so that the PWM comparator can control the duty cycle.	
8	1	GND	Ground	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V_{VDD}	DC Supply Voltage ^(1, 2)			30	V
V _{FB}	Input Voltage to FB Pin		-0.3	7.0	V
V _{SENSE}	Input Voltage to Sense Pin		-0.3	7.0	V
TJ	Operating Junction Temperature			150	°C
		OT23-6L		273	°C/W
Θ_{JA}	A Thermal Resistance (Junction-to-Air) DIP			113	°C/W
T _{STG}	Storage Temperature Range		-55	+150	°C
ΤL	Lead Temperature (Wave Soldering or IR, 10 Seconds)			+260	°C
_	Electrostatic Discharge Capability, Human Body Model JESD22-A114			3.5	kV
ESD	Electrostatic Discharge Capability, Charged Device Model JESD22-C101 1.5 kV			kV	
	Electrostatic Discharge Capability, Machine Model, JESD22-A115			200	V

Notes:

1. All voltage values, except differential voltages, are given with respect to GND pin.

2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

Electrical Characteristics

Unless otherwise noted, V_{DD} =15 V and T_A =25°C.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
V _{DD} Sectior	1					1	
V _{DD-OP}	Continuously Ope	eration Voltage				22	V
V _{DD-ON}	Turn-on Threshol	d Voltage		15.5	16.5	17.5	V
$V_{\text{DD-OFF}}$	Turn-off Threshol	d Voltage		8.5	9.5	10.5	V
I _{DD-ST}	Startup Current		V _{DD} =V _{DD-ON} – 0.1 V		9	15	μA
I _{DD-OP}	Operating Supply	Current	V _{DD} =15 V, C _L =1 nF		3.0	3.5	mA
V _{DD-OVP}	V _{DD} Over-Voltage	Protection Level	Auto Restart	24	25	26	V
t _{D-VDDOVP}	V _{DD} Over-Voltage	Protection Debounce	Auto Restart		125		μs
$V_{\text{DD-G OFF}}$	V _{DD} Low-Thresho Green-off Mode	ld Voltage to Exit			V _{DD-} OFF + 1		V
Feedback I	nput Section						
Z _{FB}	Input Impedance				5		kΩ
V _{FB-OPEN}	FB Output High V	oltage		5			V
V _{FB-OL}	FB Open-loop Tri	gger Level		4.3	4.6	4.9	V
t _{D-OLP}	Delay of FB Pin C	pen-loop Protection			56		ms
V _{FB-N}	Green-Mode Entr	y FB Voltage		2.60	2.85	3.10	V
V_{FB-G}	Green-Mode End	ing FB Voltage			2.2		V
S _G	Green-Mode Mod	ulation Slope	R _I =95 kΩ	40	75	100	Hz/m
Current-Se	nse Section						
ZSENSE	Input Impedance			10			kΩ
t _{PD}	Delay to Output			40	55	100	ns
V _{STHFL}	Flat Threshold Vo	oltage for Current Limit	9		1		V
VSTHVA	Valley Threshold	Voltage for Current Limit	1	0.75	0.80	0.85	V
t _{LEB}	Leading-Edge Bla	anking Time		270	320	370	ns
DCY _{SAW}	Duty Cycle of SA	W Limit		1	40		%
Oscillator S	Section						
		Center Frequency		65	70	75	kHz
fosc	Frequency	Hopping Range	R _I =95 kΩ		±4.9		
T _{HOP}	Hopping Period		R _I =95 kΩ		3.7	/	ms
fosc-g	Green-Mode Free	quency	R _I =95 kΩ		20		kHz
f _{DV}	Frequency Variation vs. V _{DD} Deviation		V _{DD} =13.5 to 22 V	0	0.02	2.00	%
f _{DT}	Frequency Variat	ion vs. Temp. Deviation	T _A =-20 to 85°C			2	%
Output Sec	tion			/	1		
DCY _{MAX}	Maximum Duty C	ycle		62	67	72	%
V _{GATE-L}	Output Voltage L	-	V _{DD} =15 V, I _O =20 mA			1.4	V
V _{GATE-H}	Output Voltage H		V _{DD} =13.5 V, I _O =20 mA	8	1		V
tr	Rising Time	-	V _{DD} =15 V, C _L =1 nF		150		ns
t _f	Falling Time		V _{DD} =15 V, C _L =1 nF	1	55		ns
V _{GATE} -CLAMP	Ũ	ltage	V _{DD} =22 V	16	17	18	V

Operation Description

SG6859A devices integrate many useful designs into one controller for low-power, switch-mode power supplies. The following descriptions highlight some of the features of the SG6859A series.

Startup Current

The startup current is only 9 μ A. Low startup current allows a startup resistor with high resistance and low-wattage to supply the startup power for the controller. A 1.5 M Ω , 0.25 W, startup resistor and a 10 μ F/25V V_{DD} hold-up capacitor are sufficient for an AC-to-DC power adapter with a wide input range (100 V_{AC} to 240 V_{AC}).

Operating Current

The operating current has been reduced to 3 mA. The low operating current results in higher efficiency and reduces the V_{DD} hold-up capacitance requirement.

Green-Mode Operation

The proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load conditions. On-time is limited to provide stronger protection against brownouts and other abnormal conditions. The feedback current, which is sampled from the voltage feedback loop, is taken as the reference. Once the feedback current exceeds the threshold current, the switching frequency starts to decrease. This green-mode function dramatically reduces power consumption under light-load and zeroload conditions. Power supplies using the SG6859A can meet even the strictest regulations regarding standby power consumption.

Oscillator Operation

A resistor connected from the RI pin to ground generates a constant current source used to charge an internal capacitor. The charge time determines the internal clock speed and the switching frequency. Increasing the resistance reduces the amplitude of the input current and the switching frequency. A 95 k Ω R_I resistor results in a 50 µA constant current, I_I, and a 70 kHz switching frequency. The relationship between R_I and the switching frequency is:

$f_{PWM} = \frac{6650}{R_1(k\Omega)} (kHz)$	(1)
11(1122)	

The recommended f_{PWM} is from 50kHz to 80kHz.

Leading-Edge Blanking

Each time the power MOSFET is switched on, a turn-on spike occurs at the sense-resistor. To avoid premature termination of the switching pulse, a 320 ns leadingedge blanking time is built in. Conventional RC filtering can be omitted. During this blanking period, the currentlimit comparator is disabled and cannot switch off the gate driver.

Constant Output Power Limit

When the SENSE voltage across the sense resistor, $R_{S},$ reaches the threshold voltage (around 1 V), the

output GATE drive is turned off following a short propagation delay, $t_{\text{PD}}.$ This propagation delay introduces an additional current proportional to t_{PD}V_{IN}/L_P. The propagation delay is nearly constant, regardless of the input line voltage V_{IN}. Higher input line voltages result in larger additional currents. At high input line voltages, the output power limit is higher than at low input line voltages. To compensate for this output power limit variation across a wide AC input range, the threshold voltage is adjusted by adding a positive ramp. This ramp signal rises from 0.8 V to 1 V, then flattens out at 1 V. A smaller threshold voltage forces the output GATE drive to terminate earlier, which reduces the total PWM turn-on time and makes the output power equal to that of low line input. This proprietary internal compensation ensures a constant output power limit for a wide AC input voltage range (90 V_{AC} to 264 V_{AC}).

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16.5 V and 9.5 V. During startup, the hold-up capacitor must be charged to 16.5V through the startup resistor to enable the SG6859A. The hold-up capacitor continues to supply VDD until power can be delivered from the auxiliary winding of the main transformer. V_{DD} must not drop below 9.5 V during this startup process. This UVLO hysteresis window ensures that hold-up capacitor is adequate to supply V_{DD} during startup.

Gate Output

The BiCMOS output stage is a fast totem pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 17 V Zener diode to protect power MOSFET transistors against undesired over-voltage gate signals.

Built-in Slope Compensation

The sensed voltage across the current-sense resistor is used for current-mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillations due to peak-current mode control. The SG6859A has a synchronized, positively-sloped ramp built-in at each switching cycle. The slope of the ramp is:

Duty (max.)

(2)

Noise Immunity

Noise from the current sense or the control signal can cause significant pulse-width jitter, particularly in continuous-conduction mode (CCM). While slope compensation helps alleviate these problems, further precautions should still be taken. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the SG6859A, and increasing power MOS gate resistance improve performance.

Figure 16. Reference Circuit

Bill of Materials (BOM)

Reference	Component	Reference	Component
BD1	BD 1 A/500 V	L2	10 µH 6 mm
CX1 (Optional)	XC 0.1 µF	Q1	MOSFET 1 A/600 V
CY1 (Optional)	YC 1nF/400 V (Y1)	R1,R2	R 750 KΩ 1206
C1	CC 10 nF/500 V	R3,R4	R 47 KΩ 1206
C2	EC 10 µF/400 V 105°C	R5	R 47 Ω 1206
C3	CC 1 nF/500 V	R6	R 4.7 Ω 1206
C4	EC 10 μF/50 V	R7	R 100 Ω 0805
C6	CC 4.7 nF 0805	R8	R 10 Ω 1206
C7 (Optional)	CC 1 nF/100 V 1206	R9	R 100 KΩ 0805
C8	EC 470 µF/10 V 105°C	R10 (Optional)	R 10 Ω 1206
C9	EC 220 µF/10 V 105°C	R11	R 100 Ω 1/8W
C10	CC 2.2 nF 0805	R12	R 33 KΩ 0805
C11	N.C.	R13	R 33 KΩ 1/8W
D1	Diode FRI07	R14	R 4.7 KΩ 0805
D2	Diode FR102	R15	R 0 Ω 0805
D4	Diode SB360	T1	EE-16
D5 (Optional)	ZD 6.8 V 0.5 W	U1	IC SG6859A
F1	R 1 Ω/0.5 W	U2	PC817
L1	20 mH 6•8 mm	U3	TL431

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 175

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: SG6859ATZ