
Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the
user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits

or expense resulting from such use.

Future Technology Devices International Limited (FTDI)
Unit 1, 2 Seaward Place, Glasgow G41 1HH, United Kingdom
Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

Web Site: http://ftdichip.com
Copyright © 2011 Future Technology Devices International Limited

Application Note

AN_177

User Guide For libMPSSE – I2C

Document Reference No.: FT_000466
Version 1.4

Issue Date: 2012-02-13

This application note is a guide to using the libMPSSE-I2C – a library which
simplifies the design of firmware for interfacing to the FTDI MPSSE configured

as an I2C interface. The library is available for Windows and for Linux

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 1

 Copyright © 2011 Future Technology Devices International Limited

Table of Contents

1 Introduction .. 2

2 System Overview... 4

3 Application Programming Interface (API) ... 5

3.1 Functions ... 5

3.1.1 I2C_GetNumChannels ... 5

3.1.2 I2C_GetChannelInfo .. 5

3.1.3 I2C_OpenChannel ... 6

3.1.4 I2C_InitChannel ... 7

3.1.5 I2C_CloseChannel ... 7

3.1.6 I2C_DeviceRead .. 8

3.1.7 I2C_DeviceWrite ... 10

3.2 GPIO functions .. 12

3.2.1 FT_WriteGPIO ... 12

3.2.2 FT_ReadGPIO .. 13

3.3 Library Infrastructure Functions ... 13

3.3.1 Init_libMPSSE .. 13

3.3.2 Cleanup_libMPSSE .. 14

3.4 Data types ... 14

3.4.1 ChannelConfig ... 14

3.4.2 I2C_CLOCKRATE .. 15

3.4.3 Typedefs .. 15

4 Example Circuit ... 16

5 Example Program .. 17

6 Contact Information .. 23

Appendix A – References .. 24

Document References ... 24

Acronyms and Abbreviations .. 24

Appendix C – Revision History .. 25

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 2

 Copyright © 2011 Future Technology Devices International Limited

1 Introduction

The Multi Protocol Synchronous Serial Engine (MPSSE) is a generic hardware found in

several FTDI chips that allows these chips to communicate with a synchronous serial

device such an I2C device, a SPI device or a JTAG device. The MPSSE is currently

available on the FT2232D, FT2232H, FT4232H and FT232H chips, which communicate

with a PC (or an application processor) over the USB interface. Applications on a PC or

on an embedded system communicate with the MPSSE in these chips using the D2XX

USB drivers.

The MPSSE takes different commands to send out data from the chips in the different

formats, namely I2C, SPI and JTAG. libMPSSE is a library that provides a user friendly

API to enable users to write applications to communicate with the I2C/SPI/JTAG devices

without needing to understand the MPSSE and its commands. However, if the user

wishes then he/she may try to understand the working of the MPSSE and use it from

their applications directly by calling D2XX functions.

Figure 1: The software and hardware stack through which legacy protocol data

flows

User Application

libMPSSE
(SPI/I2C/JTAG Library)

D2XX API

USB Bus driver

FTDI USB-to-Legacy
bridge chips

Legacy protocol slave
device

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 3

 Copyright © 2011 Future Technology Devices International Limited

As shown in the above figure, libMPSSE has three different APIs, one each for I2C, SPI

and JTAG. This application note only describes the I2C section.

The libMPSSE library (Linux or Windows versions), sample code, release notes and all

necessary files can be downloaded from the FTDI website at:

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE.htm

The sample source code contained in this application note is provided as an example and

is neither guaranteed nor supported by FTDI.

http://www.ftdichip.com/Support/SoftwareExamples/MPSSE.htm

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 4

 Copyright © 2011 Future Technology Devices International Limited

2 System Overview

Figure 2: System organisation

The above figure shows how the components of the system are typically organised. The

PC/Host may be desktop/laptop machine or an embedded system. The FTDI chip and the

I2C device would usually be on the same PCB. Though only one I2C device is shown in

the diagram above, many devices can actually be connected to the bus if each device

has a different I2C address. I2C devices that support configurable addresses will have

pins which can be hardwired to give a device an appropriate address; this information

may be found in the datasheet of the I2C device chip.

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 5

 Copyright © 2011 Future Technology Devices International Limited

3 Application Programming Interface (API)

The libMPSSE-I2C APIs can be divided into two broad sets. The first set consists of five

control APIs and the second set consists of two data transferring APIs. All the APIs return

an FT_STATUS. This is the same FT_STATUS that is defined in the D2XX driver.

3.1 I2C Functions

3.1.1 I2C_GetNumChannels

FT_STATUS I2C_GetNumChannels (uint32 *numChannels)

This function gets the number of I2C channels that are connected to the host

system. The number of ports available in each of these chips is different.

Parameters:

out *numChannels The number of channels connected to the host

Returns:

Returns status code of type FT_STATUS

Note:

FTDI’s USB-to-legacy bridge chips may have multiple channels in them but not all

these channels can be configured to work as I2C masters. This function returns

the total number of channels connected to the host system that has a MPSSE

attached to it so that they may be configured as I2C masters.

For example, if an FT2232D (1 MPSSE port), a FT232H (1 MPSSE port), a

FT2232H (2 MPSSE port) and a FT4232H (2 MPSSE ports) are connected to a PC,

then a call to I2C_GetNumChannels would return 6 in numChannels.

Warning:

This function should not be called from two applications or from two threads at

the same time.

3.1.2 I2C_GetChannelInfo

FT_STATUS I2C_GetChannelInfo (uint32 index,FT_DEVICE_LIST_INFO_NODE

*chanInfo)

This function takes a channel index (valid values are from 0 to the value returned by

I2C_GetNumChannels – 1) and provides information about the channel in the form of

a populated FT_DEVICE_LIST_INFO_NODE structure.

Parameters:

in index Index of the channel

out *chanInfo Pointer to FT_DEVICE_LIST_INFO_NODE structure

Returns:

Returns status code of type FT_STATUS

http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 6

 Copyright © 2011 Future Technology Devices International Limited

Note:

This API could be called only after calling I2C_GetNumChannels.

See also:

Structure definition of FT_DEVICE_LIST_INFO_NODE is in the D2XX

Programmer’s Guide.

Warning:

This function should not be called from two applications or from two threads at

the same time.

3.1.3 I2C_OpenChannel

FT_STATUS I2C_OpenChannel (uint32 index, FT_HANDLE *handle)

This function opens the indexed channel and provides a handle to it. Valid values for

the index of channel can be from 0 to the value obtained using I2C_GetNumChannels

– 1).

Parameters:

in index Index of the channel

out handle Pointer to the handle of type FT_HANDLE

Returns:

Returns status code of type FT_STATUS

Note:

Trying to open an already open channel returns an error code.

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 7

 Copyright © 2011 Future Technology Devices International Limited

3.1.4 I2C_InitChannel

FT_STATUS I2C_InitChannel (FT_HANDLE handle, ChannelConfig *config)

This function initializes the channel and the communication parameters associated

with it.

Parameters:

in handle Handle of the channel

in config Pointer to ChannelConfig structure. Members of

ChannelConfig structure contains the values for I2C

master clock, latency timer and Options

out none

Returns:

Returns status code of type FT_STATUS

See also:

Structure definition of ChannelConfig

Note:

This function internally performs what is required to get the channel operational such

as resetting and enabling the MPSSE.

3.1.5 I2C_CloseChannel

FT_STATUS I2C_CloseChannel (FT_HANDLE handle)

Closes a channel and frees all resources that were used by it

Parameters:

in handle Handle of the channel

out none

Returns:

Returns status code of type FT_STATUS

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 8

 Copyright © 2011 Future Technology Devices International Limited

3.1.6 I2C_DeviceRead

FT_STATUS I2C_DeviceRead(FT_HANDLE handle, uint32 deviceAddress, uint32

sizeToTransfer, uint8 *buffer, uint32 *sizeTransferred, uint32 options)

This function reads the specified number of bytes from an addressed I2C slave

Parameters:

in handle Handle of the channel

in deviceAddress Address of the I2C slave. This is a 7bit value and it

should not contain the data direction bit, i.e. the

decimal value passed should be always less than 128

In sizeToTransfer Number of bytes to be read

out buffer Pointer to the buffer where data is to be read

out sizeTransferred Pointer to variable containing the number of bytes

read

in options This parameter specifies data transfer options. The

bit positions defined for each of these options are:

BIT0: if set then a start condition is generated in the

I2C bus before the transfer begins. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_START_BIT

BIT1: if set then a stop condition is generated in the

I2C bus after the transfer ends. A bit mask is defined

for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_STOP_BIT

BIT2: reserved (only used in I2C_DeviceWrite)

BIT3: some I2C slaves require the I2C master to

generate a NAK for the last data byte read. Setting

this bit enables working with such I2C slaves. The bit

mask defined for this bit is

I2C_TRANSFER_OPTIONS_NACK_LAST_BYTE

BIT4: setting this bit will invoke a multi byte I2C

transfer without having delays between the START,

ADDRESS, DATA and STOP phases. Size of the

transfer in parameters sizeToTransfer and

sizeTransferred are in bytes. The bit mask defined

for this bit is

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES*

BIT5: setting this bit would invoke a multi bit

transfer without having delays between the START,

ADDRESS, DATA and STOP phases. Size of the

transfer in parameters sizeToTransfer and

sizeTransferred are in bytes. The bit mask defined

for this bit is

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS*

BIT6: the deviceAddress parameter is ignored if this

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 9

 Copyright © 2011 Future Technology Devices International Limited

bit is set. This feature may be useful in generating a

special I2C bus conditions that do not require any

address to be passed. Setting this bit is effective only

when either

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES

or I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS

is set. The bit mask defined for this bit is

I2C_TRANSFER_OPTIONS_NO_ADDRESS*

BIT7 – BIT31: reserved

*The I2C_DeviceRead and I2C_DeviceWrite functions send commands to the

MPSSE, reads the response and based on the response sends further commands.

Delays between START, ADDRESS, DATA and STOP conditions are seen on the

I2C bus as a result of waiting for command responses, and also because these

commands are sent over different USB transfers.

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES is introduced to minimize

these delays by sending multiple MPSSE commands and I2C data over fewer(or

possibly just one) USB transfers, without waiting for I2C ack bits to be read into

the PC/host. Also, sometimes some I2C devices may require a special non-I2C

frame to be sent to it over the I2C bus which may have not have an address

phase and may have either more or less than 8 bits in the frame.

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS and

I2C_TRANSFER_OPTIONS_NO_ADDRESS options are introduced to address such

needs. For example, some I2C EEPROM chips need a 9bit frame without address

to be sent to it to perform a software reset. These bits may be set to implement

such features.

I2C_TRANSFER_OPTIONS_START_BIT and I2C_TRANSFER_OPTIONS_STOP_BIT

have their usual meanings when used with

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES or

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS, however

I2C_TRANSFER_OPTIONS_BREAK_ON_NACK and

I2C_TRANSFER_OPTIONS_NACK_LAST_BYTE are not meant to be used with

them.

Returns:

Returns status code of type FT_STATUS

Following are the special meanings of the FT_STATUS code when returned from this
function:

Return code FT_DEVICE_NOT_FOUND would mean that the I2C slave didn’t

respond when it was addressed and so the function returned before even

beginning any data transfer. Typically this would mean that the address passed to

the function was incorrect, or the address of the I2C slave has been configured

incorrectly(i.e. if the slave allows it), or the I2C master and the I2C slave isn’t

connected properly.

Return code FT_INVALID_PARAMETER would mean that the deviceAddress that is

greater than 127.

Return code FT_IO_ERROR would mean that the transfer failed while actually

transferring data

Note:

This function internally performs the following operations:

 Write START bit (if BIT0 of options flag is set)

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 10

 Copyright © 2011 Future Technology Devices International Limited

 Write device address

 Get ACK from device

 LOOP until sizeToTransfer

o Read byte to buffer

o Give ACK

 Write STOP bit(if BIT1 of options flag is set)

Warning:

This is a blocking function and will not return until either the specified amount of

data is read or an error is encountered.

3.1.7 I2C_DeviceWrite

FT_STATUS I2C_DeviceWrite(FT_HANDLE handle, uint32 deviceAddress, uint32

sizeToTransfer, uint8 *buffer, uint32 *sizeTransferred, uint32 options)

This function writes the specified number of bytes to an addressed I2C slave.

Parameters:

in handle Handle of the channel

in deviceAddress Address of the I2C slave. This is a 7bit value and it

should not contain the data direction bit, i.e. the

decimal value passed should be always less than 128

in sizeToTransfer Number of bytes to be written

out buffer Pointer to the buffer from where data is to be written

out sizeTransferred Pointer to variable containing the number of bytes

written

in transferOptions This parameter specifies data transfer options. The bit

positions defined for each of these options are:

BIT0: if set then a start condition is generated in the

I2C bus before the transfer begins. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_START_BIT

BIT1: if set then a stop condition is generated in the

I2C bus after the transfer ends. A bit mask is defined

for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_STOP_BIT

BIT2: if set then the function will return when a device

nAcks after a byte has been transferred. If not set

then the function will continue transferring the stream

of bytes even if the device nAcks. A bit mask is

defined for this options in file ftdi_i2c.h as

I2C_TRANSFER_OPTIONS_BREAK_ON_NACK

BIT3: reserved (only used in I2C_DeviceRead)

BIT4: setting this bit will invoke a multi byte I2C

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 11

 Copyright © 2011 Future Technology Devices International Limited

transfer without having delays between the START,

ADDRESS, DATA and STOP phases. Size of the

transfer in parameters sizeToTransfer and

sizeTransfered are in bytes. The bit mask defined for

this bit is

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES*

BIT5: setting this bit would invoke a multi bit transfer

without having delays between the START, ADDRESS,

DATA and STOP phases. Size of the transfer in

parameters sizeToTransfer and sizeTransfered are in

bytes. The bit mask defined for this bit is

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS*

BIT6: the deviceAddress parameter is ignored if this

bit is set. This feature may be useful in generating a

special I2C bus conditions that do not require any

address to be passed.Setting this bit is effective only

when either

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES or

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS is

set. The bit mask defined for this bit is

I2C_TRANSFER_OPTIONS_NO_ADDRESS*

BIT7 – BIT31: reserved

*The I2C_DeviceRead and I2C_DeviceWrite functions send commands to the

MPSSE, reads the response and based on the response sends further commands.

Delays between START, ADDRESS, DATA and STOP conditions are seen on the

I2C bus as a result of waiting for command responses, and also because these

commands are sent over different USB transfers.

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES is introduced to minimize

these dalays by sending multiple MPSSE commands and I2C data over fewer(or

possibly just one) USB transfers, without waiting for I2C ack bits to be read into

the PC/host. Also, sometimes some I2C devices may require a special non-I2C

frame to be sent to it over the I2C bus which may have not have an address

phase and may have either more or less than 8 bits in the frame.

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS and

I2C_TRANSFER_OPTIONS_NO_ADDRESS options are introduced to address such

needs. For example, some I2C EEPROM chips need a 9bit frame without address

to be sent to it to perform a software reset. These bits may be set to implement

such features.

I2C_TRANSFER_OPTIONS_START_BIT and I2C_TRANSFER_OPTIONS_STOP_BIT

have their usual meanings when used with

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES or

I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS, however

I2C_TRANSFER_OPTIONS_BREAK_ON_NACK and

I2C_TRANSFER_OPTIONS_NACK_LAST_BYTE are not meant to be used with

them.

Returns:

Returns status code of type FT_STATUS

Following are the special meanings of the FT_STATUS code returned in the context of I2C:

Return code FT_DEVICE_NOT_FOUND would mean that the I2C slave didn’t

respond when it was addressed and so the function returned before beginning

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 12

 Copyright © 2011 Future Technology Devices International Limited

data transfer. Typically this would mean that the address passed to the function

was incorrect, or the device of the I2C slave has been configured incorrectly (i.e.

if the slave allows it), or the I2C master and the I2C slave isn’t connected

properly.

Return code FT_INVALID_PARAMETER would mean that the deviceAddress that is

greater than 127.

Return code FT_IO_ERROR would mean that the transfer failed while transferring

data

 Return code FT_FAILED_TO_WRITE_DEVICE would either mean that the I2C slave NAKed

Note:

This function internally performs the following operations:

 Write START bit (if BIT0 of options flag is set)

 Write device address

 Get ACK

 LOOP until sizeToTransfer (or until device NAK, if BIT2 in options is set)

o Write byte from buffer

o Get ACK

 Write STOP bit(if BIT1 of options flag is set)

Warning:

This is a blocking function and will not return until either the specified amount of

data are read or an error is encountered.

3.2 GPIO functions

Each MPSSE channel in the FTDI chips are provided with a general purpose I/O port

having 8 lines in addition to the port that is used for synchronous serial communication.

For example, the FT223H has only one MPSSE channel with two 8-bit busses, ADBUS

and ACBUS. Out of these, ADBUS is used for synchronous serial communications

(I2C/SPI/JTAG) and ACBUS is free to be used as GPIO. The two functions described

below have been provided to access these GPIO lines(also called the higher byte lines of

MPSSE) that are available in various FTDI chips with MPSSEs.

3.2.1 FT_WriteGPIO

FT_STATUS FT_WriteGPIO(FT_HANDLE handle, uint8 dir, uint8 value)

This function writes to the 8 GPIO lines associated with the high byte of the MPSSE

channel

Parameters:

in handle Handle of the channel

in dir Each bit of this byte represents the direction of the 8

respective GPIO lines. 0 for in and 1 for out

in value If the direction of a GPIO line is set to output, then

each bit of this byte represent the output logic state

of the 8 respective GPIO lines. 0 for logic low and 1

for logic high

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 13

 Copyright © 2011 Future Technology Devices International Limited

Returns:

Returns status code of type FT_STATUS

3.2.2 FT_ReadGPIO

FT_STATUS FT_ReadGPIO(FT_HANDLE handle,uint8 *value)

This function reads from the 8 GPIO lines associated with the high byte of the MPSSE

channel

Parameters:

in handle Handle of the channel

out *value If the direction of a GPIO line is set to input, then

each bit of this byte represent the input logic state of

the 8 respective GPIO lines. 0 for logic low and 1 for

logic high

Returns:

Returns status code of type FT_STATUS

Note:

The direction of the GPIO line must first be set using FT_WriteGPIO function before this
function is used.

3.3 Library Infrastructure Functions

The two functions described in this section typically do not need to be called from

the user applications as they are automatically called during entry/exit time.

However, these functions are not called automatically when linking the library

statically using Microsoft Visual C++. It is then that they need to be called

explicitly from the user applications. The static linking sample provided with this

manual uses a macro which checks if the code is compiled using Microsoft

toolchain, if so then it automatically calls these functions.

3.3.1 Init_libMPSSE

void Init_libMPSSE(void)

Initializes the library

Parameters:

in none

out none

Returns:

void

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 14

 Copyright © 2011 Future Technology Devices International Limited

3.3.2 Cleanup_libMPSSE

void Cleanup_libMPSSE(void)

Cleans up resources used by the library

Parameters:

in none

out none

Returns:

void

3.4 Data types

3.4.1 ChannelConfig

ChannelConfig is a structure that holds the parameters used for initializing a channel. The
following are members of the structure:

 I2C_CLOCKRATE ClockRate

Valid range for clock divisor is from 0 to 3400000

The user can pass either I2C_CLOCK_STANDARD_MODE, I2C_CLOCK_FAST_MODE,

I2C_CLOCK_FAST_MODE_PLUS or I2C_CLOCK_HIGH_SPEED_MODE for the standard

clock rates; alternatively a value for a non standard clock rate may be passed

directly.

 uint8 LatencyTimer

Required value, in milliseconds, of latency timer. Valid range is 0 – 255. However,

FTDI recommend the following ranges of values for the latency timer:

 Full speed devices (FT2232D) Range 2 – 255

 Hi-speed devices (FT232H, FT2232H, FT4232H) Range 1 - 255

 uint32 Options

 Bits of this member are used in the way described below:

Bit

number

Description Value Meaning of value Defined macro(if any)

BIT0 These bit

specify if 3-

phase-

clocking is

enabled or

disabled

0 3-phase-clocking

enabled*

1 3-phase-clocking

is disabled*

I2C_DISABLE_3PHASE_CLOCKING

BIT1

Setting this

bit will

enable

Drive-Only-

Zero feature

0 Enable Drive-

Only-Zero**

1 Disable Drive-

Only-Zero**

I2C_ENABLE_DRIVE_ONLY_ZERO

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 15

 Copyright © 2011 Future Technology Devices International Limited

BIT2 –

BIT31

Reserved

*Please note that 3-phase-clocking is available only on the hi-speed devices and not on the
FT2232D.

**Enabling Drive-Only-Zero ensures that the SDA line is driven by the I2C master only when it
is supposed to be driven LOW, and tristates it when it is supposed to be driven HIGH. This
feature is available only in FT232H chip. Trying to enable this feature using function I2C_Init

will have no effect on chips other than FT232H.

3.4.2 I2C_CLOCKRATE

I2C_CLOCKRATE is an enumerated data type that is defined as follows

 enum I2C_ClockRate_t { I2C_CLOCK_STANDARD_MODE = 100000,

 I2C_CLOCK_FAST_MODE = 400000,

 I2C_CLOCK_FAST_MODE_PLUS = 1000000,

 I2C_CLOCK_HIGH_SPEED_MODE = 3400000 }

3.4.3 Typedefs

Following are the typedefs that have been defined keeping cross platform portability in

view:

 typedef unsigned char uint8

 typedef unsigned short uint16

 typedef unsigned long uint32

 typedef signed char int8

 typedef signed short int16

 typedef signed long int32

 typedef unsigned char bool

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 16

 Copyright © 2011 Future Technology Devices International Limited

4 Example Circuit

This example demonstrates how to connect a MPSSE chip (FT2232H) to an I2C device (24LC024H
– EEPROM) and how to program it using libMPSSE-I2C library.

Figure 3: Schematic for connecting FT2232H to I2C EEPROM device (24LC024H)

The above schematic shows how to connect a FT2232H chip to an I2C EEPROM. Please

note that the FT2232 chip is also available as a module which contains all the

components shown in the above schematic (except the 24LC024H and its address line

pull-up resistors). This module is called FT2232H Mini Module and details about it can be

found in the device datasheet. The FT2232H chip acts as the I2C master here and is

connected to a PC using USB interface. For the example we connected lines A0, A1 and

A2 of 24LC024H chip to logic HIGH (using the 10K pull-up resistors), this gave the chip

an I2C device address of 0x57.

http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_FT2232H_Mini_Module.pdf

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 17

 Copyright © 2011 Future Technology Devices International Limited

5 Example Program

The required D2XX driver should be installed into the system depending on the OS that is

already installed in the PC/host. If a linux PC is used then the default drivers usbserial

and ftdi_sio must be removed (using rmmod command).

Once the hardware shown above is connected to a PC and the drivers are installed, the

user can place the following code (sample-win32-static.c), D2XX.h, libMPSSE_i2c.h and

libMPSSE.a into one folder, compile the sample and run it.

/*!
 * \file sample-static.c
 *
 * \author FTDI
 * \date 20110512
 *
 * Copyright © 2011 Future Technology Devices International Limited
 * Company Confidential
 *
 * Project: libMPSSE
 * Module: I2C Sample Application - Interfacing 24LC024H I2C EEPROM
 *
 * Rivision History:
 * 0.1 - 20110513 - initial version
 * 0.2 - 20110801 - Changed LatencyTimer to 255
 * Attempt to open channel only if available
 * Added & modified macros
 * Change I2C_GetChannelInfo & OpenChannel to start indexing from 0
 * 0.3 - 20111212 - Added comments
 */

/**/
/* Include files
 */
/**/
/* Standard C libraries */
#include<stdio.h>
#include<stdlib.h>
/* OS specific libraries */
#ifdef _WIN32
#include<windows.h>
#endif

/* Include D2XX header*/
#include "ftd2xx.h"

/* Include libMPSSE header */
#include "libMPSSE_i2c.h"

/**/

/* Macro and type defines
 */
/**/
/* Helper macros */

#define APP_CHECK_STATUS(exp) {if(exp!=FT_OK){printf("%s:%d:%s(): status(0x%x) \
!= FT_OK\n",__FILE__, __LINE__, __FUNCTION__,exp);exit(1);}else{;}};
#define CHECK_NULL(exp){if(exp==NULL){printf("%s:%d:%s(): NULL expression \
encountered \n",__FILE__, __LINE__, __FUNCTION__);exit(1);}else{;}};

/* Application specific macro definations */
#define I2C_DEVICE_ADDRESS_EEPROM 0x57
#define I2C_DEVICE_BUFFER_SIZE 256
#define I2C_WRITE_COMPLETION_RETRY 10

http://www.ftdichip.com/Drivers/D2XX.htm

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 18

 Copyright © 2011 Future Technology Devices International Limited

#define START_ADDRESS_EEPROM 0x00 /*read/write start address inside the EEPROM*/
#define END_ADDRESS_EEPROM 0x10

#define RETRY_COUNT_EEPROM 10 /* number of retries if read/write fails */
#define CHANNEL_TO_OPEN 1 /*0 for first available channel, 1 for next... */
#define DATA_OFFSET 1

/**/
/* Global variables
 */
/**/
uint32 channels;
FT_HANDLE ftHandle;
ChannelConfig channelConf;
FT_STATUS status;
uint8 buffer[I2C_DEVICE_BUFFER_SIZE];

/**/
/* Public function definitions
 */
/**/
/*!
 * \brief Writes to EEPROM
 *
 * This function writes a byte to a specified address within the 24LC024H EEPROM
 *

 * \param[in] slaveAddress Address of the I2C slave (EEPROM)
 * \param[in] registerAddress Address of the memory location inside the slave to where the byte
 * is to be written
 * \param[in] data The byte that is to be written
 * \return Returns status code of type FT_STATUS(see D2XX Programmer's Guide)
 * \sa Datasheet of 24LC024H http://ww1.microchip.com/downloads/en/devicedoc/22102a.pdf
 * \note
 * \warning
 */
FT_STATUS write_byte(uint8 slaveAddress, uint8 registerAddress, uint8 data)
{
 uint32 bytesToTransfer = 0;
 uint32 bytesTransfered;
 bool writeComplete=0;
 uint32 retry=0;

 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /* Byte addressed inside EEPROM */
 buffer[bytesToTransfer++]=data;
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer, buffer, \
&bytesTransfered, I2C_TRANSFER_OPTIONS_START_BIT|I2C_TRANSFER_OPTIONS_STOP_BIT);

 /* poll to check completition */
 while((writeComplete==0) && (retry<I2C_WRITE_COMPLETION_RETRY))
 {
 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /* Addressed inside EEPROM */
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer,\
 buffer, &bytesTransfered, \

 I2C_TRANSFER_OPTIONS_START_BIT|I2C_TRANSFER_OPTIONS_BREAK_ON_NACK);
 if((FT_OK == status) && (bytesToTransfer == bytesTransfered))
 {
 writeComplete=1;
 printf(" ... Write done\n");
 }
 retry++;

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 19

 Copyright © 2011 Future Technology Devices International Limited

 }
 return status;
}

/*!
 * \brief Reads from EEPROM
 *
 * This function reads a byte from a specified address within the 24LC024H EEPROM
 *
 * \param[in] slaveAddress Address of the I2C slave (EEPROM)
 * \param[in] registerAddress Address of the memory location inside the slave from where the
 * byte is to be read
 * \param[in] *data Address to where the byte is to be read
 * \return Returns status code of type FT_STATUS(see D2XX Programmer's Guide)
 * \sa Datasheet of 24LC024H http://ww1.microchip.com/downloads/en/devicedoc/22102a.pdf
 * \note
 * \warning
 */
FT_STATUS read_byte(uint8 slaveAddress, uint8 registerAddress, uint8 *data)
{
 FT_STATUS status;
 uint32 bytesToTransfer = 0;
 uint32 bytesTransfered;

 bytesToTransfer=0;
 bytesTransfered=0;
 buffer[bytesToTransfer++]=registerAddress; /*Byte addressed inside EEPROM */
 status = I2C_DeviceWrite(ftHandle, slaveAddress, bytesToTransfer, buffer, \
 &bytesTransfered, I2C_TRANSFER_OPTIONS_START_BIT);

 APP_CHECK_STATUS(status);
 bytesToTransfer=1;
 bytesTransfered=0;
 status |= I2C_DeviceRead(ftHandle, slaveAddress, bytesToTransfer, buffer, \
 &bytesTransfered, I2C_TRANSFER_OPTIONS_START_BIT);
 APP_CHECK_STATUS(status);
 *data = buffer[0];
 return status;
}

/*!
 * \brief Main function / Entry point to the sample application
 *
 * This function is the entry point to the sample application. It opens the channel, writes to the
 * EEPROM and reads back.
 *
 * \param[in] none
 * \return Returns 0 for success
 * \sa
 * \note
 * \warning
 */
int main()
{
 FT_STATUS status;
 FT_DEVICE_LIST_INFO_NODE devList;
 uint8 address;
 uint8 data;
 int i,j;

#ifdef _MSC_VER
 Init_libMPSSE();
#endif
 channelConf.ClockRate = I2C_CLOCK_FAST_MODE;/*i.e. 400000 KHz*/
 channelConf.LatencyTimer= 255;
 //channelConf.Options = I2C_DISABLE_3PHASE_CLOCKING;
 //channelConf.Options = I2C_ENABLE_DRIVE_ONLY_ZERO;

 status = I2C_GetNumChannels(&channels);

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 20

 Copyright © 2011 Future Technology Devices International Limited

 APP_CHECK_STATUS(status);
 printf("Number of available I2C channels = %d\n",channels);

 if(channels>0)
 {
 for(i=0;i<channels;i++)
 {
 status = I2C_GetChannelInfo(i,&devList);
 APP_CHECK_STATUS(status);
 printf("Information on channel number %d:\n",i);
 /*print the dev info*/
 printf(" Flags=0x%x\n",devList.Flags);
 printf(" Type=0x%x\n",devList.Type);
 printf(" ID=0x%x\n",devList.ID);
 printf(" LocId=0x%x\n",devList.LocId);
 printf(" SerialNumber=%s\n",devList.SerialNumber);
 printf(" Description=%s\n",devList.Description);
 printf(" ftHandle=0x%x\n",devList.ftHandle);/*is 0 unless open*/
 }

 /* Open the first available channel */
 status = I2C_OpenChannel(CHANNEL_TO_OPEN,&ftHandle);
 APP_CHECK_STATUS(status);
 printf("\nhandle=0x%x status=%d\n",ftHandle,status);
 status = I2C_InitChannel(ftHandle,&channelConf);
 APP_CHECK_STATUS(status);

 for(address=START_ADDRESS_EEPROM;address<END_ADDRESS_EEPROM;address++)
 {

 printf("writing address = %d data = %d", address, \
 address+DATA_OFFSET);
 status = write_byte(I2C_DEVICE_ADDRESS_EEPROM, address, \
 address+DATA_OFFSET);
 for(j=0; ((j<RETRY_COUNT_EEPROM) && (FT_OK !=status)); j++)
 {
 printf("---- writing again to address = %d, data =%d\n", \
 address, address+DATA_OFFSET);
 status = write_byte(I2C_DEVICE_ADDRESS_EEPROM, address, \
 address+DATA_OFFSET);
 }
 APP_CHECK_STATUS(status);
 }
 printf("\n");
 for(address=START_ADDRESS_EEPROM; address<END_ADDRESS_EEPROM; address++)
 {
 status = read_byte(I2C_DEVICE_ADDRESS_EEPROM,address, &data);
 for(j=0; ((j<RETRY_COUNT_EEPROM) && (FT_OK !=status)); j++)
 {
 printf("read error... retrying \n");
 status = read_byte(I2C_DEVICE_ADDRESS_EEPROM,address, &data);
 }
 printf("reading address %d data read=%d\n",address,data);
 }
 status = I2C_CloseChannel(ftHandle);
 }

#ifdef _MSC_VER
 Cleanup_libMPSSE();
#endif

 return 0;
}

The sample program shown above writes to address 0 through 15 in the EEPROM chip.

The value that is written is address+1, i.e. if the address is 5 then a value 6 is written to

that address. When this sample program is compiled and run, we should see an output

like the one shown below:

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 21

 Copyright © 2011 Future Technology Devices International Limited

Figure 4: Sample output on windows

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 22

 Copyright © 2011 Future Technology Devices International Limited

Figure 5: Sample output on linux

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 23

 Copyright © 2011 Future Technology Devices International Limited

6 Contact Information

Head Office – Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place, Centurion Business Park
Glasgow G41 1HH
United Kingdom
Tel: +44 (0) 141 429 2777
Fax: +44 (0) 141 429 2758

E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com

Branch Office – Taipei, Taiwan

Future Technology Devices International Limited
(Taiwan)
2F, No. 516, Sec. 1, NeiHu Road

Taipei 114
Taiwan , R.O.C.
Tel: +886 (0) 2 8791 3570
Fax: +886 (0) 2 8791 3576

E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com

Branch Office – Hillsboro, Oregon, USA

Future Technology Devices International Limited
(USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 547 0988
Fax: +1 (503) 547 0987

E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.support@ftdichip.com
E-Mail (General Enquiries) us.admin@ftdichip.com

Branch Office – Shanghai, China

Future Technology Devices International Limited
(China)
Room 408, 317 Xianxia Road,

Shanghai, 200051
China
Tel: +86 21 62351596
Fax: +86 21 62351595

E-mail (Sales) cn.sales@ftdichip.com
E-mail (Support) cn.support@ftdichip.com
E-mail (General Enquiries) cn.admin@ftdichip.com

Web Site

http://ftdichip.com

System and equipment manufacturers and designers are responsible to ensure that their systems, and any Future Technology

Devices International Ltd (FTDI) devices incorporated in their systems, meet all applicable safety, regulatory and system-level

performance requirements. All application-related information in this document (including application descriptions, suggested

FTDI devices and other materials) is provided for reference only. While FTDI has taken care to assure it is accurate, this

information is subject to customer confirmation, and FTDI disclaims all liability for system designs and for any applications
assistance provided by FTDI. Use of FTDI devices in life support and/or safety applications is entirely at the user’s risk, and the

user agrees to defend, indemnify and hold harmless FTDI from any and all damages, claims, suits or expense resulting from

such use. This document is subject to change without notice. No freedom to use patents or other intellectual property rights is

implied by the publication of this document. Neither the whole nor any part of the information contained in, or the product

described in this document, may be adapted or reproduced in any material or electronic form without the prior written consent

of the copyright holder. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park,

Glasgow G41 1HH, United Kingdom. Scotland Registered Company Number: SC136640

mailto:sales1@ftdichip.com
mailto:support1@ftdichip.com
mailto:admin1@ftdichip.com
mailto:tw.sales1@ftdichip.com
mailto:tw.support1@ftdichip.com
mailto:tw.admin1@ftdichip.com
mailto:us.sales@ftdichip.com
mailto:us.support@ftdichip.com
mailto:us.admin@ftdichip.com
mailto:cn.sales@ftdichip.com
mailto:cn.support@ftdichip.com
mailto:cn.admin@ftdichip.com
http://ftdichip.com/

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 24

 Copyright © 2011 Future Technology Devices International Limited

Appendix A – References

Document References

MPSSE Basics

Command Processor For MPSSE and MCU Host Bus Emulation Modes

D2XX Programmers Guide

D2XX Drivers

FT2232 – Dual Channel MPSSE IC

MPSSE cables

Acronyms and Abbreviations

Terms Description

GPIO General Purpose Input/Output

MPSSE Multi Protocol Synchronous Serial Engine

SPI Serial Peripheral Interconnect

USB Universal Serial Bus

http://www.ftdichip.com/Support/Documents/AppNotes/AN_135_MPSSE_Basics.pdf
http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Products/ICs/FT2232H.htm
http://www.ftdichip.com/Products/Cables/USBMPSSE.htm

 Application Note

 AN_177 User Guide For libMPSSE – I2C
 Version 1.4

 Document Reference No.: FT_000466 Clearance No.: FTDI# 210

 25

 Copyright © 2011 Future Technology Devices International Limited

Appendix C – Revision History

Document Title: AN_177 Programming Guide for libMPSSE - I2C

Document Reference No.: FT_000466

Clearance No.: FTDI# 210

Product Page: http://www.ftdichip.com/FTProducts.htm

Document Feedback: Send Feedback

Revision Changes Date

1.0 Initial Release 2011-05-23

1.1

Corrected section 3.1.2 : I2C_GetNumChannels -1

Corrected section 3.2.3 : wrong typedef uintT32

Corrected heading on sections 3.1.3 to 3.1.7 which had wrong
text

Corrected TOC

2011-05-25

1.2

Added section “Library Infrastructure Functions”

Updated sample application

Added linux specific guidelines and download files

2011-06-22

1.3

Added GPIO functions.

Added option to disable 3-phase-clocking.

Renamed I2C_Device_Read / I2C_Device_Write to
I2C_DeviceRead / I2C_DeviceWrite

Added note on latency timer value

Updated sample application

2011-08-01

1.4

Features added:

1) I2C_TRANSFER_OPTIONS_NACK_LAST_BYTE

2) I2C_TRANSFER_OPTIONS_BREAK_ON_NACK

3) I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BYTES

4) I2C_TRANSFER_OPTIONS_FAST_TRANSFER_BITS

5) I2C_TRANSFER_OPTIONS_NO_ADDRESS

6) I2C_ENABLE_DRIVE_ONLY_ZERO

Address provided should be less than 128

Returns FT_DEVICE_NOT_FOUND ff no slave respond when
addressed

2011-12-12

http://www.ftdichip.com/FTProducts.htm
mailto:docufeedback@ftdichip.com?subject=Document%20Feedback:%20AN_178%20Version%201.4

