ALTERAW

Altera Corporation
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

Introduction to
Quartus’ I

\"

QUARTUS"II

Introduction to Quartus II
Version 4.0 Revision 2
February 2004 P25-09235-01

Altera, the Altera logo, FastTrack, MAX, MAX+PLUS, MAX+PLUS II, MegaCore, MegaWizard, NativeLink, Nios, OpenCore, Quartus,
Quartus II, the Quartus II logo, and SignalTap are registered trademarks o?Altera Corporation in the United States and other countries.
ByteBlaster, ByteBlasterMV, Excalibur, HardCopy, IP MegaStore, Jam, LogicLock, MasterBlaster, MegaLAB, PowerFit, SignalProbe, and

SB-Blaster are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design elements
and mnemonics used by Altera Corporation are protected by copyright and/or trademark laws.

Altera Corporation acknowledges the trademarks and/or service marks of other organizations for their respective products or services
mentioned in this document, specifically: Mentor Graphics and ModelSim are registered trademarks, and ModelTechnology is a trademark
of Mentor Graphics Corporation.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera
advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied
upon by the customer is current. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty. Testing and other quality control techniques are used to the extent Altera deems such testing necessary to
support this warranty. Un{ess mandated by government requirements, specific testing of all parameters of each device is not necessaril
per ormed. In the absence of written agreement to the contrary, Altera assumes no lial ility for Altera applications assistance, customer’s
product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein.
Nor does Altera warrant or represent any patent right, copyright, or other intellectual property right of Altera covering or relating to any
combination, machine, or process in which such semicondrzlctor devices might be or are used.

Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of
the president of Altera Corporation. As used herein:

1. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain
life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury to the user.

2. A critical component is any component of a life supf}f)ort device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 4609986, 4617479, 4677318 4713792 4774421;
4785423; 4831573; 4864161; 4871930; 4899067; 4899070; 4903223, 4912342; 4930097; 4930098; 4930107; 4969121; 5045772; 5066873; 5091661;
5097208; 5111423; 5121006; 5128565; 5138576, 5144167; 5162680; 5166604; 5187392; 5200920; 5220214; 5220533; 5237219; 5241224; 5243233;
5247477, 5247478; 5258668; 5260610; 5260611; 5266037; 5268598; 5272368; 5274581; 5280203; 5285153; 5294975; 5301416; 5309046; 5315172;
5317210; 5329487; 5341044; 5341048; 5341308; 5349255; 5350954; 5352940; 5353248; 5359242; 5359243; 5369314; 5371422; 5376844; 5384499;
5399922; 5414312; 5432467; 5434514; 5436574; 5436575; 5438295, 5444394; 5463328; 5473266, 5477474; 5483178; 5485102; 5485103; 5486775;
5487143; 5488586; 5490266; 5493519; 5493526; 5495182; 5498975; 5517186; 5523247; 5523706; 5525827; 5525917; 5537057; 5537295; 5537341;
5541530; 5543730; 5543732; 5548228; 5548552; 5550782; 5550842; 5555214; 5557217; 5561757; 5563592; 5565793; 5567177; 5570040; 5572067;
5572148; 5572717; 5574893; 5581501; 5583749; 5590305; 5592102; 5592106; 5598108; 5598109; 5604453; 5606266; 5606276; 5608337; 5612642;
5614840; 5621312; 5631576; 5633830; 5642082; 5642262; 5649163; 5650734; 5659717; 5668771; 5670895; 5672985; 5680061; 5689195; 5691653;
5693540; 5694058; 5696455; 5699020; 5699312; 5705939; 5717901; 5729495; 5732020; 5740110; 5744383; 5744991; 5757070; 5757207; 5760624;
5761099; 5764079; 5764080; 5764569; 5764583; 5767734; 5768372; 5768562; 5771264; 5787009; 5790469; 5793246, 5796267; 5801541; 5802540;
5805516; 5809034; 5809281; 5812450; 5812479; 5815003; 5815024; 5815726, 5821771; 5821773; 5821787; 5825197; 5828229; 5834849; 5835998;
5838584; 5838628; 5844854; 5845385; 5847617; 5848005; 5850151; 5850152; 5850365; 5859542; 5859544; 5861760; 5869979; 5869980; 5870410;
5872463; 5872529; 5873113; 5875112, 5878250; 5880596, 5880597; 5880725, 5883526, 5883850; 5892683; 5893088; 5894228; 5898318; 5898628;
5898630; 5900743; 5904524; 5905675; 5909126; 5909375; 5909450; 5914509; 5914904; 5915017; 5915756; 5923567; 5925904; 5926036; 5936425;
5939790; 5940852; 5942914; 5943267, 5945870; 5949239; 5949250; 5949710; 5949991; 5953537; 5959891; 5963049; 5963051; 5963069; 5963565;
5966597; 5968161; 5969626, 5970255; 5977791; 5977793; 5978476, 5982195; 5983277; 5986465; 5986470; 5996039; 5998263; 5998295; 5999015;
5999016; 6002182; 6005379; 6005806; 6011406; 6011730; 6011744; 6014334; 6018476; 6018490; 6020758; 6020759; 6020760; 6023439; 6025737;
6026226; 6028787; 6028808; 6028809; 6029236; 6031391; 6031763; 6032159; 6034536; 6034540; 6034857; 6037829; 6038171; 6040712; 6043676;
6045252; 6049223; 6049225; 6052309; 6052327; 6052755; 6057707; 6058452; 6060903; 6064599; 6066960; 6069487; 6072332; 6072358; 6075380;
6076179; 6078521; 6080204; 6081449; 6084427; 6085317; 6091102; 6091258; 6094064; 6097211; 6102964; 6104208; 6107820; 6107822; 6107824;
6107825; 6107854; 6108239; 6110223; 6112020; 6114915; 6115312; 6118302; 6118720; 6120550; 6121790; 6122209; 6122720; 6127217; 6127844;
6127846; 6127865; 6128215; 6128692; 6130552; 6130555; 6134166; 6134173; 6134705; 6134707; 6137313; 6144573; 6147511; 6150840; 6151258;
6154055; 6154059; 6157208; 6157210; 6157212; 6160419; 6161211; 6163166, 6163195; 6166559; 6167364; 6169417; 6172900; 6173245; 6175952;
6177844; 6180425; 6181159; 6181160; 6181161; 6181162; 6182020, 6182247; 6184703, 6184705; 6184706; 6184707; 6184707; 6184710; 6185725;
6187634; 6191608; 6191611; 6191998; 6192445; 6195772, 6195788; 6198303; 6201404; 6202185; 6204688; 6205579; 6208162; 6212668; 6215326;
6218859; 6218860; 6218876; 6219284; 6219785; 6222382; 6225822; 6225823; 6226201; 6232893; 6236094; 6236231; 6236237; 6236260; 6236597;
6239612; 6239613; 6239615; 6242941; 6242946, 6243296, 6243304; 6246260; 6246270; 6247147; 6247155; 6249143; 6249149; 6252419; 6252422;
6255846; 6255850; 6259271; 6259272, 6259588; 6262595; 6262933, 6263400; 6263482; 6265746, 6265895; 6265926; 6268623; 6269020; 6271679;
6271680; 6271681; 6271729; 6275065; 6278288; 6278291; 6279145; 6281704; 6282122; 628521164145146286114; 6288970; 6292016; 6292017;
6292116; 6294928; 6295230; 6297565; 6298319; 6300792; 6300794; 6301694; 6311309; 6314550; 6317367; 6317771; 6317860; 6320411; 6321367;
6321369; 6323677; 6323680; 6326807; 6326812; 6335634; 6335635; 6335636; 6337578; 6340897; 6342792; 6342794; 6344755; 6344758; 6344989;
6346827; 6347061; 6351144; 6351152; 6353551; 6353552; 6356108; 6356110; 6359468; 6359469; 6362646; 6363505; 6365929; 6366119; 6366120;
6366121; 6366224; 6366498; 6367056; 6367058; 6369613; 6369624; 6373278; 6373280; 6377069; 6384625; 6384629; 6384630; 6389558; 6392438;
6392954; 6396304; 6400290; 6400598; 6400635; 6401230; 6404225; 6407450; 6407576; 6408432; 6411124; 6414518; 6417550; 6417692; 6417694;
6421812; 6423572; 6429681; 6433579; 6433585; 6437650; 6442073, 6448820; 6453382, 6459303; 6460148; 6462414; 6462577; 6462597; 6467017;
6469553; 6472272; 6472903; 6480025; 6480027; 6480028; 6480995; 6481000; 6483886, 6485843, 6486702; 6489817; 6490714; 6490717; 6492833;
6492834; 6507216; 6515507; 6515508; 6525564; 6525678; 6526461; 6531889; 6532170, 6535031; 6538469; 6538470; 6549032; 6549045; 6556044;
6556500; 6556502; 6563343; 6563367; 6566906; 6570404; 6573138, 6577157; 6577160; 6583646; 6586966; 6588004; 6590413; 6590419; 6593772;
6596618; 6599764; 6600337; 6601221; 6604228; 6605960; 6605962; 6614259; 6614261; 66178846621326; 6624467; 6624495; 6624524; 6625771;
6625796; 6627517; 6628140; 6629311; 6630842; 6630844; 6631510; 6633185; 6634009; 6636070; 6636936; 6642064; 6642758; 6646467; 6646919;
6650140; 6651155; 6653862; 6657456, 6658564; 6661253; 6664846, RE37060; RE35977; and certain foreign patents. Additional patents are
pending.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, nsal

and copyrights.
Copyright © 2004 Altera Corporation. All rights reserved.

LS. EN ISO 9001

Contents

PIOEACE ... s vii
Documentation CONVENIONS ... ix
Chapter 1: Design FIOWcoouvuvucerecnrucncnne 1
INErOAUCHON. ... 2
Graphical User Interface Design FIOWcccccccociiiiiiiiiiiiiiiiiiiiicccicccce 3
EDA Tool Design FIOWcccccviiiiiiiiiiiiiiiiiiiiiiiciicicssc s 10
Command-Line Design FIOW..........c.cccoiiiiiiiiiic 15
Command-Line Executables.........c...cccoooiiiiiiiiiiiiiiicccc 17

Using Standard Command-Line Commands & Scripts.........cccceeiieiennne. 21

Using Tcl Commandsccoceeviiiiiiiiiiiiiiiiicccc s 23
Creating Makefile SCripts.........cccooiiiiiiiiiic e 26
Chapter 2: Design ENtry......iccitntctcccscsissseaessssssessssesessssssssesesssssssseses 29
INErOAUCHON. ...eciii 30
Creating a Project.......ccocoiiiiiiiiiic s 31
UsIng ReVISIONScoviuiiiiiiiiiiiiiiiiicccc e 32
Converting MAX+PLUS II Projects........cccccoviiiininiciiiiciicces 33
Creating a DeSignccccuiiiiiiiiiiiiic s 34
Using the Quartus II Block EAitorcccooiiiviiiiiiccce 35

Using the Quartus II Text EAitoT........ccooooiiiiiiiiiicce 37

Using the Quartus II Symbol Editor........cooovoviiiiiiie 37

Using Verilog HDL, VHDL & AHDL.......ccccccoooviiiiiiiiiiiiiiciene, 37

Using Altera MegafuncCtions...........cccceiuiiiiiiiiiiiiiiceeicceeeeeeee s 38
Using Intellectual Property (IP) Functions..........ccooooiiiiiiciincn 39

Using the MegaWizard Plug-In Manager...........c.cccooeeiiiiicieiiicncie 41
Instantiating Megafunctions in the Quartus II Software..............c.cccoceu. 42
Instantiation in Verilog HDL and VHDL.........cccccooiiiiinna 42

Using the Port and Parameter Definition..........c.ccccoooiiiii 42

Inferring Megafunctions............ccooceieioiiiiciiiiccccc 43

Instantiating Megafunctions in EDA Toolscccooeiiiiiiiiii 43

Using the Black Box Methodology........cccooviiieiiiiiicii 43

Instantiation by Inference............ccoooeeiiiii 44

Using the Clear Box Methodologycccoiiiiiciii 44

Specifying Initial Design Constraints.............ccooceueiiiicieiniiicccccc e 46
Using the Assignment EAitOrccoooiiiiiiiie 46

Using the Settings Dialog BoX........ccccoiiiiiiiie 48
Importing ASSIgNMENtScccociiiiiiiiiiiiec 49
Verifying Pin ASSignmentscccooiirieiiiiiceiciccccee e 50

Design Methodologies & Design Planningc.ccooceieiiiiiiiniiccccccee 50
Top-Down versus Bottom-Up Design Methodologiesc.cccccoeueunnene. 50
Block-Based Design FIOW.........cccccoeiviiiiiiiiiiiiiiiccccccs 51

Design Partitioningcccceeveeiiiiiiiiiecec e 51

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 11l

TABLE OF CONTENTS

Chapter 3: Synthesis............ .53
INErOAUCHION ..t 54
Using Quartus II VHDL & Verilog HDL Integrated Synthesis...........cc.ccccccooeo.0. 55
Using Other EDA Synthesis TOOIS..........ccccooiiiriiiiiiicccc 58
Controlling Analysis & Synthesisccooeuiiiiiiiiiii 61

Using Compiler Directives and Attributes............cccooeoiiiiiiiccccciennn, 61
Using Quartus I Logic Options........ccccccviviiiiiiiiiiiiiicccccccce 62
Using Quartus II Synthesis Netlist Optimization Optionsc.c.c..... 64
Using the Design Assistant to Check Design Reliabilitycccccoeiiiiiiiincnnes 65
Analyzing Synthesis Results with the RTL VieWercccccciviiiiiniiiiicenes 66

Chapter 4: SIMUIAtION ...ttt sssssssssssssssssssases 69
INErOAUCHION ..t 70
Simulating Designs with EDA TOOISccooeuiiiiiiiiicc e, 71

Specifying EDA Simulation Tool Settingscccoooooireiiiicii, 72
Generating Simulation OQutput Files ..., 73

EDA Simulation FIOW ... 74
Functional Simulation FIOWcccoiiiiiiiis 74

NativeLink Simulation FIOWcccooiiiiiiiiiiiiins 75

Manual Timing Simulation FIOW.........cccoooiiiii 75

Simulation Libraries ... 76

Simulating Designs with the Quartus II Simulator ..., 77
Creating Waveform Files ..o, 78

Performing PowerGauge Power Estimationccccccoeeeirinne. 79

Using the Simulator Tool.........ccoiiiiiiiiiiicccce 79
Simulating Excalibur DeSigns.........cccceuiiuiieiiiicicicie s 80
Simulating Excalibur Designs in the Quartus II Softwarec.c....... 81

Using the Bus Functional Model with EDA Tools.........cccccccccoiiiiiiinnnnes 82

Using the Full-Stripe Model with EDA ToOIScccccociviiiiiiiiiiiienn, 82

Using the ESS Model with EDA ToOIScccccoiiiiiiiiiiciiccccccennes 82

Chapter 5: Place & Route ...ttt ...85
INErOAUCHON ..o 86
Analyzing Fitting RESULLSccccooiiiiiiiiiiiiicccccccc e 88

Using the Messages Window to View Fitting Resultsccccoccceieaie, 88
Using the Report Window or Report File to View Fitting Results............ 89
Using the Floorplan Editor to Analyze Results.............cccoooiiiininnn, 91
Using the Design Assistant to Check Design Reliability..........cccccocoeeee.. 93
Optimizing the Fit ... 93
Using Location AsSignments...........ccocoeeiiiniiiiiiiniccnccccccccne 93
Setting Options that Control Place & Route............ccccceoeeiiiiiiiiiiicenn, 94
Setting Fitter Optionscccccoviviiiiiiiiiicccc 94

Setting Physical Synthesis Optimization Optionsc......... 94

Setting Individual Logic Options that Affect Fitting.................... 95

Using the Design Space EXpIOTer ..., 96

IV m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

TABLE OF CONTENTS

Performing Incremental Fitting...........ccccccoiiiiiiiiiiiiiiiiiiiicccccccc 99
Preserving Assignments through Back-Annotation............c.cccooooei, 99
Chapter 6: Block-Based Design.........coeceervencuccnnncncncnns 103
INErOdUCHON. ... 104
Quartus II Block-Based Design FIOWcoorueiiiiiicieiic, 104

Using LogicLock ReGIONS.........c.ceuiiiiiiiiiiiiiiiiccccceeceeece s 106

Saving Intermediate Synthesis ReSULILScccooiiiiiiiiiiiiiicccccce 109
Back-Annotating LogicLock Region Assignments.............ccccoovvevreininnes 110

Exporting & Importing LogicLock Assignmentscccccoecevvieiiiinnnee. 11

Using LogicLock with EDA ToOIS.......ccccccoiiiiiiiiiiiiiiiciciccccccces 113
Chapter 7: Timing Analysisccceeueunee 115
INErOdUCHON.oiiii s 116
Performing Timing Analysis in the Quartus II Software............cccccoooiii, 117
Specifying Timing Requirements...........ccccooeruriiiiiiinieiiiiceecc 117

Specifying Project-Wide Timing Settings...........c.cccooevivireinnnnes 118

Specifying Individual Timing Assignments............c.cccccooorueuennnes 119

Performing a Timing Analysisc.cccooeeiiiiiiiiiiiic 120

Viewing Timing Analysis Resultscccccooiiiiiii, 122

Using the Report WINAOwccccocuiiiiiiiiiiciicccccccccceceeees 122

Making Assignments & Viewing Delay Paths..........ccccccocoeviiiinnnnne 123

Performing Timing Analysis with EDA To0lSscccccccoiiiiiiiiiiiicciccee 126

Using the PrimeTime Softwareccccccceiiieiiiciicecceeeeeeeeees 126

Using the BLAST and Tau Software.........c.cccccoceeeiiiccieccccecieeeenee 127

Chapter 8: Timing ClOSUTE ...ttt ssssssssessssssesesesens 129
INErOAUCHION. ... 130

Using the Timing Closure Floorplan ... 130
Viewing Assignments & ROUtNGcoovrviiiiiiiiiiiiii 131

Making ASSIgNMENtS........c.corueiiiicicieiiceie e 133

Using Netlist Optimizations to Achieve Timing Closure............cccccccoeeiiciiinnnnne. 134

Using LogicLock Regions to Achieve Timing Closureccoooeeiiiiiiininnen. 137

Soft LogicLOCK ReZIONScuovuiuiiiiiiiciciec 137

Path-Based Assignments.............ccccoeiiiiiiniiiiniiceeeces 137

Chapter 9: Programming & Configurationeeeniceiicicnccinnciccnssscsesesesesennns 141
INErOAUCHON ..ot 142
Programming One or More Devices by Using the Programmer...............c......... 146
Creating Secondary Programming Filescccocoiiiiiiiiiiiiiiicccccnee 147
Creating Other Programming File Formatsccccccooviinininnnne 148

Converting Programming Filescccoooiiiiiiiiiiiice, 149

Using the Quartus II Software to Program Via a Remote JTAG Server................ 153

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m V

TABLE OF CONTENTS

Chapter 10: Debugging 155
INErOAUCHION ...ttt 156

Using the SignalTap II Logic Analyzer..........ccccooiiiiiiiiiiiiicce 157

Setting Up & Running the SignalTap II Logic Analyzer 157

Analyzing SignalTap II Data.........cccoooiiiiiiiiic, 161

Using SignalProbe ..o 163

Using the RTL VIEWeToooviiiiiiiii s 165

Using the Chip EdIOTc.coiiiiiiiiiiiiiicciciccccecccecceeeee e 165
Chapter 11: Engineering Change Management................. 167
INErOAUCHON ... 168
Identifying Delays & Critical Paths with the Chip Editor..........cccccccooeiiiiiini. 169
Modifying Resource Properties with the Resource Property Editor..................... 172
Viewing & Managing Changes with the Change Manager...............ccccooooeei 174
Verifying the Effect of ECO Changes...........cccoouoiiiiiiiiiiiciic 176
Chapter 12: System-Level Design 177
INErOAUCHON ..o 178
Creating SOPC Designs with SOPC Buildercooioiiiiiiiiiiiiiicicccans 179
Creating the SYStem ... 180

Generating the SYStem.........ccccciiiiiiiiiiiicce 181

Creating DSP Designs with the DSP Builder..........c.cocooooiiiiiii 182
Instantiating FUNCHONSc.oiiiiiiiiiici 182

Generating Simulation Files ..., 183

Generating Synthesis Files...........cccooiiiiii, 183

Chapter 13: Software Developmentccceeuvururnruennnnes 185
INErOAUCHON ..o 186

Using the Software Builder in the Quartus II Softwareccccccoeiiiiiiiinn. 186
Specifying Software Build Settingscccooovvoriiiiiiiiiiic e, 187
Generating Software Output FIles ..o 187
Generating Flash Programming Files............c.cccccoooiiiiiiiiiiinn, 188

Generating Passive Programming Files..........cccocooiiiiiniiiiiinniinnnn, 190

Generating Memory Initialization Data Filescccccccoeiiiiiiinn, 192

Chapter 14: Installation, Licensing & Technical Supporttueeceenvcncrnnncncncnnnnne 195
Installing the Quartus II SOftware ..o 196
Licensing the Quartus II Software.............cccooiiiiiiiiiiiiiicccccccces 196
Getting Technical SUPPOTt.......ccociiiiiiiiiiiiiiccc e 199
Chapter 15: Documentation & Other ReSoUrces..........ceeienicinenninicennenncceensscacsenns 201
Getting Online Helpoooriiii 202

Using the Quartus II Online Tutorial..........ccooiiiiiiiiiiiicccs 203

Other Quartus II Software Documentationc.ccoeeeveeerierieieieeeieeereeeeeeneenens 204

Other Altera Literatureccocoovieiiiiiiiiiiccccec s 205

TIUA@X ettt 207

Vi m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

Preface

You hold in your hands the Introduction to Quartus Il manual. The Altera®
Quartus® II design software is the most comprehensive environment
available for system-on-a-programmable-chip (SOPC) design. If you have
primarily used the MAX+PLUS® Il software, other design software, or ASIC
design software in the past, and are thinking of making the switch to the
Quartus II software, or, if you are somewhat familiar with the Quartus II
software but would like to gain a greater knowledge of its capabilities, this
manual is for you.

This manual is designed for the novice Quartus II software user and
provides an overview of the capabilities of the Quartus II software in
programmable logic design. It is not, however, intended to be an exhaustive
reference manual for the Quartus II software. Instead, it is a guide that
explains the features of the software and how these can assist you in FPGA
and CPLD design. This manual is organized into a series of specific
programmable logic design tasks. Whether you use the Quartus II graphical
user interface, other EDA tools, or the Quartus II command-line interface,
this manual guides you through the features that are best suited to your
design flow.

The first chapter gives an overview of the major graphical user interface,
EDA tool, and command-line interface design flows. Each subsequent
chapter begins with an introduction to the specific purpose of the chapter,
and leads you through an overview of each task flow. It shows how to
integrate the Quartus II software with your existing EDA tool and
command-line design flows. In addition, the manual refers you to other
resources that are available to help you use the Quartus II software, such as
Quartus II online Help and the Quartus II online tutorial, application notes,
white papers, and other documents and resources that are available on the
Altera web site.

Follow this manual through a tour of the Quartus II software to learn how it
can help you increase productivity and shorten design cycles, integrate with
existing programmable logic design flows, and achieve design,
performance, and timing requirements quickly and efficiently.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = i

Documentation Conventions

The Introduction to Quartus® Il manual uses the following conventions to
make it easy for you to find and interpret information.

Typographic Conventions

Quartus II documentation uses the following typographic conventions:

Visual Cue:

Bold Initial Capitals

bold

Initial Capitals

“Subheading Title”

Italic Initial Capitals

italics

Courier font

ALTERA CORPORATION

Meaning;

Command names; dialog box, page, and tab titles;
and button names are shown in bold, with initial
capital letters. For example: Find Text command,
Save As dialog box, and Start button.

Directory names, project names, disk drive
names, file names, file name extensions, software
utility names, software executable names, and
options in dialog boxes are shown in bold.

Examples: quartus directory, d: drive, license.dat
file.

Keyboard keys, user-editable application window
fields, and menu names are shown with initial
capital letters. For example: Delete key, the
Options menu.

Subheadings within a manual section are
enclosed in quotation marks. In manuals, titles of
Help topics are also shown in quotation marks.
Help categories, manual titles, section titles in
manuals, and application note and brief names
are shown in italics with initial capital letters. For
example: FLEXIm End Users Guide.

Variables are enclosed in angle brackets (< >) and
shown in italics. For example: <file name>,
<CD-ROM drive>.

Anything that must be typed exactly as it appears
is shown in Courier. For example:
\quartus\bin\lmulti Imhostid.

Enter or return key.

Bullets are used in a list of items when the
sequence of the items is not important.

INTRODUCTION TO QUARTUS Il =

IX

DOCUMENTATION CONVENTIONS

Visual Cue: Meaning;:
L - The feet show you where to go for more
a

information on a particular topic.

v The checkmark indicates a procedure that consists
of one step only.

The hand points to information that requires
special attention.

Terminology

The following terminology is used throughout the Introduction to Quartus II

manual:

Term: Meaning;:

“click” Indicates a quick press and release of the left
mouse button.

“double-click” Indicates two clicks in rapid succession.

“choose” Indicates that you need to use a mouse or key
combination to start an action.

“select” Indicates that you need to highlight text and/or

objects or an option in a dialog box with a key
combination or the mouse. A selection does not
start an action. For example: Select Chain
Description File, and click OK.

“turn on”/“turn off” Indicates that you must click a check box to turn a
function on or off.

X m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 1:

Introduction

Graphical User Interface Design Flow
EDA Tool Design Flow
Command-Line Design Flow

2
3
10
15

Chapter
One

Design Flow

CHAPTER 1: DESIGN FLOW
INTRODUCTION

Introduction

The Altera® Quartus®II design software provides a complete, multiplatform
design environment that easily adapts to your specific design needs. It is a
comprehensive environment for system-on-a-programmable-chip (SOPC)
design. The Quartus II software includes solutions for all phases of FPGA
and CPLD design. See Figure 1 for an illustration of the Quartus II design
flow.

Figure 1. Quartus Il Design Flow

Includes block-based design,

Design Entry system-level design &
software development

Synthesis

Place & Route > Debugging
Y
Timing Engineering
Analysis g Gz
Management
A
. . Timing
Simulation s
Yy

Programming &
Configuration

In addition, the Quartus II software allows you to use the Quartus II
graphical user interface, EDA tool interface, or command-line interface for
each phase of the design flow. You can use one of these interfaces for the
entire flow, or you can use different options at different phases of the design

2 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Graphical User Interface Design

Flow

Figure 2. Quartus Il Graphical User Interface Features

Design Entry

e Text Editor

Block & Symbol Editor
MegaWizard Plug-In Manager
Assignment Editor

Floorplan Editor

System-Level Design
e SOPC Builder
o DSP Builder

Synthesis

e Analysis & Synthesis

e VHDL, Verilog HDL & AHDL
e Design Assistant

e RTL Viewer

Software Development
e Software Builder

Block-Based Design
e LogicLock Window
e Floorplan Editor

e VQM Writer

Place & Route
Fitter

Assignment Editor
Floorplan Editor
Chip Editor

Report Window
Incremental Fitting

EDA Interface
o EDA Netlist Writer

Timing Analysis
e Timing Analyzer
e Report Window

Timing Closure
e Floorplan Editor
e LogicLock Window

Simulation
e Simulator
e Waveform Editor

Debugging

e SignalTap Il
e SignalProbe
e Chip Editor
e RTL Viewer

Programming

e Assembler

e Programmer

o Convert Programming Files

Engineering Change
Management

e Chip Editor

e Resource Property Editor
e Change Manager

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il

flow. This chapter explains the options that are available for each of the
design flows. The remaining chapters in this manual describe individual
stages of the design flow in more detail.

You can use the Quartus II software to perform all stages of the design flow;
it is a complete, easy-to-use, stand-alone solution. Figure 2 shows the
features that the Quartus II graphical user interface provides for each stage
of the design flow.

3

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Figure 3 shows the Quartus II graphical user interface as it appears when
you first start the software.

Figure 3. Quartus Il Graphical User Interface

¥ =
MAA+PLUS Il File Edit “iew Project Assignments Fiocessing Tools “window Help Quartus |1
EECIEEE I R T IR
=
Entity |
Compilation Hierarchy|
uartus Il
Information
http:/fwww. altera.com
&yHierarchy | B Fikes | 67 Desian Units
B
Processing)\ System [
For Help, press F1 [nhE | Idle [[NOM [A
The Quartus II software includes a modular Compiler. The Compiler
' includes the following modules (modules marked with an asterisk are
\ optional during compilation, depending on your settings):
Analysis & Synthesis
Fitter
Assembler

Timing Analyzer

Design Assistant*

EDA Netlist Writer*
Compiler Database Interface*

You can run all Compiler modules as part of a full compilation by choosing
Start Compilation (Processing menu). You can also run each module
individually by choosing Start (Processing menu) and then choosing the
command for the module you want to start from the Start submenu.

4 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

In addition, you can start the Compiler modules by choosing Compiler Tool
(Tools menu) and running the module in the Compiler Tool window. The
Compiler Tool window also allows you to open the settings file or report file
for the module, or to open other related windows. See Figure 4.

Figure 4. Compiler Tool Window

Start module
Open module settings page
Open report file

Fitter Azzembler Timing Analyzer ED& Metlist whiter—
[e [e o
00: 0000 DD 0000 00:00:00 00:00:00
[3 FIT ﬁSM TAN [EDA r
w1, B g W e eEedEEE

00:00:00

P Start

@ Stop

@ Report

The Quartus II software also provides some predefined compilation flows,
which you can use with commands from the Processing menu. Table 1 lists
the commands for some of the most common compilation flows.

Table 1. Commands for Common Compiler Flows (Part 1 of 2)

Description

Quartus Il Command
from Processing Menu

Full compilation
flow

Compilationand
simulation flow

ALTERA CORPORATION

Performs a full compilation of the
current design.

If the Simulation mode is timing, flow
performs a full compilation and then a
simulation of the current design. If the
Simulation mode is Functional, the flow
performs only the Generate
Functional Simulation Netlist
command and then a simulation of the
current design.

INTRODUCTION TO QUARTUS Il

Start Compilation
command

Start Compilation and
Simulation command

(] 5

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Table 1. Commands for Common Compiler Flows (Part 2 of 2)

Quartus Il Command

e from Processing Menu
Incremental Performs a full compilation on a Start > Start
fitting flow previously compiled design where the Incremental Fitting
Fitter compares the netlist and command

placement from the previous and
current compilations in order to use as
many node placements from the
previous compilation as possible in the
current compilation.

SignalProbe™ Routes user-specified signals to output Start > Start

flow pins without affecting the existing SignalProbe
fitting in a design, so that you can debug Compilation command
signals without completing a full

compilation.
“ ._ Py For Information About Refer To
Using compilation flows “Overview: Using Compilation Flows” in

Quartus Il Help

You can customize the layout, menus, commands, and icons in the
Quartus II software according to your individual preferences. You can
choose between the standard Quartus II user interface or the MAX+PLUS® I1
look and feel when starting the Quartus II software for the first time, or you
can choose the look and feel later by using the Customize dialog box (Tools
menu). If you have previously used the MAX+PLUS II software, the
MAX+PLUS I look and feel allows you to use the familiar MAX+PLUS II
layout, commands, and icons to control functions of the Quartus II software.
Figure 5 shows the Customize dialog box.

6 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Figure 5. Customize Dialog Box

General | TDUIbarSI Cummandsl Tcl |

r~ Look & Feel

Choose the prefered look and feel for the Quartus I software. You can fully customize
the Quartus Il software regardless of what you choose here.

Click &pply and restart the Quartus || software for any change to take effect. You can
alzo click Apply without changing the selection to rezet to the factary defauiltz.

© Quartus Il

& MAXPLUS II &I
 Buick menu:
Quartus 1 menu: Qrf It

Mas+PLUS 1| menu: ILelt ‘I

Cancel |

The Customize dialog box also allows you to choose whether you want the
optional Quartus II or the MAX+PLUS II quick menus to display, and
whether you want them on the right or left side of the menu bar. The
Quartus II quick menu contains menu commands for each Quartus II
application and common processing commands. The MAX+PLUS II quick
menu, which is similar to the MAX+PLUS II menu from the MAX+PLUS II
software, provides commands for applications and common MAX+PLUS I
menu commands. The commands on the MAX+PLUS Il menu perform the
same functions as the corresponding Quartus II commands. Figure 6 shows
the Quartus II and MAX+PLUS II quick menus.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 7

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

8 [

Figure 6. Quartus Il and MAX+PLUS Il Quick Menus

aﬁc Mew Text File

@ Mew Block DiagramdSchematic File
& New Block Symbal File

Mew Memary Initialization File

@-‘ Mew Vectar Wavetorm File

x Project Mavigator Al+0
i Node Finder A1
m Tel Consale Al+2
E Meszages Al+3
@ Meszage Locations Al+4
E Statuz Al+5
e Change Manager Al+E

4% Lssignment Edior Lt +Shiftes
w Timing Elozure Flaarplan

S Logiclock Fegions Window AL

Cormpilation Hepart [Etr|+FY

d=b Simulation Feport CirleShift+R

ﬁ Compiler Tool
B Sirnulator Tool
P2 Timing Analyzer Tool

% Chip Editor
Ay RTL Yiswer
SignalTap || Logic Analyzer
@ Programmer

Quartus Il Quick Menu

Hierarchy Digplay
#% Graphic E ditor
bl Editar
Text Editor
“wiaveform Editar
fg, Eloorplan Editar
ﬁ LCompiler

=y Sirnulatar

B2 Timing Analyzer
ﬁ Programmer
Meszage Processar

—— MAX+PLUS Il Quick Menu

it Quick Start Guide

File
Assign
Optionz
Help

- v v ¥

For Information About Refer To

Chapter 2, “Quartus Il Design Flow for
MAX+PLUS Il Users” in the Quartus Il
Handbook, vol. 1 on the Altera web site

Using the Quartus Il design flow for

MAX+PLUS Il users

MAX+PLUS Il Conversion module of the
Quartus Il Tutorial

Customizing the user interface

“Overview: Working With the User Interface”
and “Customizing the User Interface” in

Quartus Il Help

Using the MAX+PLUS Il look and feel

“MAX+PLUS Il Quick Start Guide for the
Quartus Il Software” and “List of
MAX+PLUS Il Commands” in Quartus Il Help

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

The following steps describe the basic design flow for using the Quartus II
graphical user interface:

10.

12.

ALTERA CORPORATION

Create a new project and specify a target device or device family by
using the New Project Wizard (File menu).

Create a Verilog HDL, VHDL, or Altera Hardware Description
Language (AHDL) design by using the Text Editor. If you want, you
can use the Block Editor to create a block diagram with symbols that
represent other design files, or to create a schematic. You can also use
the MegaWizard® Plug-In Manager to generate custom variations of
megafunctions and IP cores to instantiate in your design.

(Optional) Specify initial design constraints using the Assignment
Editor, the Settings dialog box (Assignments menu), the Floorplan
Editor, and/or the LogicLock™ feature.

(Optional) Create a system-level design by using the SOPC Builder or
DSP Builder.

(Optional) Create software and programming files for Excalibur™
device processors or Nios® embedded processors by using the Software
Builder.

Synthesize the design by using Analysis & Synthesis.

(Optional) Perform functional simulation on the design by using the
Simulator and the Generate Functional Simulation Netlist command.

Perform place and route on the design by using the Fitter. If you have
made a small change to the source code, you can also use incremental
fitting.

Perform timing analysis on the design by using the Timing Analyzer.
Perform timing simulation on the design by using the Simulator.
(Optional) Make timing improvements to achieve timing closure by
using physical synthesis, the Timing Closure floorplan, the LogicLock
feature, the Settings dialog box, and the Assignment Editor.

Create programming files for your design by using the Assembler.

INTRODUCTION TO QUARTUS Il = 9

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

13. Program the device by using programming files, the Programmer, and
Altera hardware; or convert programming files to other file formats for
use by other systems, such as embedded processors.

14. (Optional) Debug the design by using the SignalTap®II Logic Analyzer,
the SignalProbe™ feature, or the Chip Editor.

15. (Optional) Manage engineering changes by using the Chip Editor, the
Resource Property Editor, and the Change Manager.

EDA Tool Design Flow

The Quartus II software allows you to use the EDA tools you are familiar
with for various stages of the design flow. You can use these tools together
with the Quartus II graphical user interface or with Quartus II command-
line executables. Figure 7 shows the EDA tool design flow.

10 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

Figure 7. EDA Tool Design Flow

Source design files,
including VHDL Design
Files (.vhd) & Verilog
Design Files (.v)

\ 4 Y

ﬁi?r?::g < EDA Synthesis EDA Physical
— Syn'zlhesis Tool Synthesis Tool

* A
y

Quartus Il Fitter

<

EDIF netlist
files (.edf) or Verilog
Quartus Mapping Files (.vam)
Quartus Il EDA Timing » | EDA Board-Level
Timing Analyzer Analysis Tool " | Verification Tool
v A
Quartus Il N . EDA Formal
EDA Netlist Writer — '| - Verification Tool
v L \ Output files for EDA tools,
including Verilog Output
. . Files (.vo), VHDL Output
%uartlus I EDA Sll.n;gllatlon Files (.vho), VQM Files, Standard
imulator Delay Format Output Files (.sdo),
testbench files, symbol files, Tcl
script files (.tcl), IBIS Output Files
Y (.ibs) & STAMP model files (.data,
.mod, or .lib)
- Quartus Il L 5 Quartus Il
Assembler Programmer

Table 2 shows the EDA tools that are supported by the Quartus II software,
and indicates which EDA tools have NativeLink® support. NativeLink
technology facilitates the seamless transfer of information between the
Quartus I software and other EDA tools and allows you to run the EDA tool
automatically from within the Quartus II software.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 11

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

Table 2. EDA Tools Supported by the Quartus Il Software (Part 1 of 2)

Function Supported EDA Tools Ng:i;;l(;irtlk
Synthesis Mentor Graphics Design Architect
Mentor Graphics LeonardoSpectrum v
Mentor Graphics Precision RTL Synthesis v
Mentor Graphics ViewDraw
Synopsys Design Compiler
Synopsys FPGA Compiler Il v
Synplicity Synplify v
Synplicity Synplify Pro
Simulation Cadence NC-Verilog v
Cadence NC-VHDL v
Cadence Verilog-XL
Model Technology™ ModelSim® v
Model Technology ModelSim-Altera v
Synopsys Scirocco v
Synopsys VSS
Synopsys VCS
Timing Analysis Mentor Graphics Blast (through Stamp)
Mentor Graphics Tau (through Stamp)
Synopsys PrimeTime v
Board-Level Hyperlynx (through Signal Integrity IBIS)
Verification XTK (through Signal Integrity IBIS)
ICX (through Signal Integrity IBIS)
SpectraQuest (through Signal Integrity IBIS)
Mentor Graphics Symbol Generation
(Viewdraw)
Formal Verification Cadence Conformal LEC

12 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW

EDA TooL DESIGN FLow

Table 2. EDA Tools Supported by the Quartus Il Software (Part 2 of 2)

Function Supported EDA Tools Ngt“’e'"“k
upport
Resynthesis Aplus Design Technologies (ADT) PALACE v

Synplicity Amplify

The EDA Tool Settings page of the Settings dialog box (Tools menu) allows
you to specify which EDA tools you want to use with the Quartus II
software. The individual pages under EDA Tool Settings provide
additional options for each type of EDA tool. See Figure 8.

Figure 8. EDA Tool Settings Page of Settings Dialog Box

Categorny:

- General

- Files

- User Libraries

- Device

- Timing A equirements & O ptions
[=]- EDé& T ool Settings

Design Entry & Synthesiz

Timing Analyziz

i~ Formal Verification
. Bespnthesis
- Compilation Process
- Analysiz & Synthesis Settings
- Fitter Settings
- Timing Analyzer
- Degign Assizstant
- SignalT ap Il Logic Analyzer
- SignalProbe Settings
- Sirnulatar
- Software Build Settingz
- Stratix G R egistration
- HardCopy Settings

TF]-TF]
[l

el
(k)

EDA Tool Settings

Specify the ather EDA tools -- in addition to the Quartus || software - used on thiz project,
Double-click on a Tool Tupe below or zelect a page under EDA Taoaol Settings in the Categany list to
change the EDA Tool or to specify options.

EDA tools:
Tool type | Tool name | Run tool automatically
D esign entrydsynthesis Synplify Pro Yes
Simulation ModelSim [Verlog HOL output from Quart... Yes
Timing analysiz FrimeTime [Verlog HOL output from Quar...
Board-level Sighal Integrity [IBIS]
Formal werification Conformal LEC
Respnthesiz Amplify

Cancel

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il ®m 13

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

The following steps describe the basic design flow for using other EDA tools
with the Quartus II software. Refer to Table 2 on page 12 for a list of the
supported EDA tools.

2.

Create a new project and specify a target device or device family.

Create a VHDL or Verilog HDL design file by using a standard text
editor. If you want, instantiate functions from libraries, or use the
MegaWizard Plug-In Manager (Tools menu) to create custom
variations of megafunctions.

Synthesize your design by using one of the Quartus II-supported EDA
synthesis tools, and generate an EDIF netlist file (.edf) or a Verilog
Quartus Mapping File (.vqm).

(Optional) Perform functional simulation on your design by using one
of the Quartus II-supported simulation tools.

In the Quartus II Settings dialog box (Assignments menuy), specify
which EDA design entry, synthesis, simulation, timing analysis, board-
level verification, formal verification, and resynthesis tools you are
using with the Quartus II software, and specify additional options for
those tools.

Compile your design and perform place and route by using the
Quartus Il software. You can perform a full compilation, or you can run

the Compiler modules individually:

- Run Analysis & Synthesis to process your design and map the
functions in your design to the correct library module.

— Run the Fitter to place and route your design.

— Run the Timing Analyzer to perform timing analysis on your
design.

- Run the EDA Netlist Writer to generate output files for use with
other EDA tools.

— Run the Assembler to create programming files for your design.

(Optional) Perform timing analysis on your design by using one of the
Quartus II-supported EDA timing analysis tools.

14 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

8. (Optional) Perform timing simulation on your design by using one of
the Quartus II-supported EDA simulation tools.

9. (Optional) Perform board-level verification by using one of the
Quartus II-supported EDA board-level verification tools.

10. (Optional) Perform formal verification by using one of the Quartus II-
supported EDA formal verification tools to make sure that Quartus
post-fit netlist is equivalent to that of the synthesized netlist.

11. (Optional) Perform board-level resynthesis by using one of the
Quartus II-supported EDA resynthesis tools.

Program the device by using programming files, the Programmer, and
Altera hardware; or convert programming files to other file formats for use
by other systems, such as embedded processors.

“ .. Py For Information About Refer To

Using the Quartus Il software with Chapter 9, “Synplicity Synplify and Synplify

Synplicity Synplify and Synplify Pro Pro Support” in the Quartus Il Handbook,

software vol. 1 on the Altera web site

Using the Quartus Il software with Chapter 10, “Mentor Graphics

Mentor Graphics LeonardoSpectrum LeonardoSpectrum support” in the

software Quartus Il Handbook, vol. 1 on the Altera
web site

Using the Quartus Il software with Chapter 11, “Mentor Graphics Precision RTL

Mentor Graphics Precision RTL Synthesis Support” in the Quartus Il

Synthesis software Handbook, vol. 1, on the Altera web site

Using the Quartus Il software with Chapter 12, “Synopsys FPGA Compiler Il

Synopsys FPGA Compiler Il software BLIS and the Quartus Il LogicLock Design
Flow” in the Quartus Il Handbook, vol. 1, on
the Altera web site

Command-Line Design Flow

The Quartus II software offers a complete command-line interface solution.
It allows you to perform every stage of the design flow by using command-
line executables and options. Using the command-line flow allows you to

reduce memory requirements; control the Quartus Il software with scripts or

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 15

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

standard command-line options and commands, including Tcl commands;
and create makefiles. See Figure 9 for an illustration of the command-line

design flow.

Figure 9. Command-Line Design Flow

Quartus Il Shell
quartus_sh

- — - = -

Source design files, including
Verilog Design Files (.v), VHDL
Design Files (.vhd), Verilog
Quartus Mapping Files (.vgm),
Text Design Files (.tdf), Block

Design Files (.bdf) & EDIF

The Quartus Il Shell can be
used as a Tcl interpreter for
the Quartus Il executables

/

Design Assistant
quartus_drc

netlist files (.edf) Analysis &
Synthesis —
quartus_map
Simulator Ly
quartus_sim |
\/
A

Fitter —

quartus_fit —
Timing Analyzer ¢ | ~

Y

Compiler Database

EDA Netlist Writer
quartus_eda

Assembler
quartus_asm

Software Builder
quartus_swb

Y

v

Y

Programmer
quartus_pgm

Convert

Programming Files
quartus_cpf

Output files for EDA tools,

including Verilog Output Files (.vo),
VHDL Output Files (.vho), VQM
Files & Standard Delay Format

]
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! quartus_tan
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
|
|
|
|

Output Files (.sdo)

|
|
|
|
|
|
|
|
I
I
I
|
|
|
|
|
|
|
|
|
quartus_cdb |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

16 =m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Command-Line Executables

The Quartus II software includes separate executables for each stage of the
design flow. Each executable occupies memory only while it is being run.
You can use these executables with standard command-line commands and
scripts, with Tcl scripts, and in makefile scripts. See Table 3 for a list of all of
the available command-line executables.

[Stand-Alone Graphical User Interface Executables

The Quartus Il software also provides some stand-alone graphical user interface
(GUI) executables. The gmegawiz executable provides a stand-alone GUI version of
the MegaWizard Plug-In Manager. The quartus_pgmw executable provides a
stand-alone GUI interface for the Programmer.

Table 3. Command-Line Executables (Part 1 of 2)

Bt Title Function
Name
quartus_map Analysis & Creates a project if one does not already exist,
Synthesis and then creates the project database,

synthesizes your design, and performs
technology mapping on the project’s design
files.

quartus_fit Fitter Places and routes a design. Analysis & Synthesis

must be run successfully before running the
Fitter.

quartus_drc

Design Assistant

Checks the reliability of a design based on a set
of design rules. Either Analysis & Synthesis or
the Fitter must be run successfully before
running the Design Assistant.

quartus_tan

Timing Analyzer

Analyzes the speed performance of the
implemented circuit. The Fitter must be run
successfully before running the Timing
Analyzer.

quartus_asm

Assembler

Creates one or more programming files for
programming or configuring the target device.
The Fitter must be run successfully before
running the Assembler.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il m 17

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Table 3. Command-Line Executables (Part 2 of 2)

Executable
Name

Title

Function

quartus_eda

EDA Netlist Writer

Generates netlist files and other output files for
use with other EDA tools. Analysis & Synthesis,
the Fitter, or the Timing Analyzer must be run
successfully before running the EDA Netlist
Writer, depending on the options used.

quartus_cdb

Compiler
Database Interface
(including vQM
Writer)

Generates internal netlist files, including VQM
Files for the Quartus Il Compiler Database, so
they can be used for back-annotation and for the
LogicLock feature. Either the Fitter or Analysis &
Synthesis must be run successfully before
running the Compiler Database Interface.

quartus_sim

Simulator

Performs functional or timing simulation on your
design. Analysis & Synthesis must be run before
performing a functional simulation. The Timing
Analyzer must be run before performing a
timing simulation.

quartus_pgm

Programmer

Programs Altera devices.

quartus_cpf

Convert
Programming Files

Converts programming files to secondary
programming file formats.

quartus_swb

Software Builder

Processes a design for an Excalibur embedded
processor.

quartus_sh

Tcl Shell

Provides a Tcl scripting shell for the Quartus |l
software.

18 =m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

[[5 Getting Help On the Quartus Il Executables

If you want to get help on the command-line options that are available for each of
the Quartus Il executables, type one of the following commands at the command
prompt:

<executable name> -h '
<executable name> --help ¢
<executable name> --help=<topic or option name> ¢

You can also get help on command-line executables by using the Quartus I
Command-Line Executable and Tcl API Help Browser, which is a Tcl- and Tk-based
GUI that lets you browse the command-line and Tcl API help. To use this help, type
the following command at the command prompt:

quartus_sh --ghelp ¢

You can run each executable individually, but you can also run all the
Compiler executables at once by using the following command:

quartus_sh --flow compile <project name> [-c <revision name>]

This command will run the quartus_map, quartus_fit, quartus_asm, and
quartus_tan executables as part of a full compilation. Depending on your
settings, it may also run the optional quartus_drc, quartus_eda, and
quartus_cdb executables.

[The quartus_cmd Executable

If you have used the quartus_cmd executable to perform project compilation in
previous versions of the Quartus |l software, this executable is still supported for
backward compatibility; however, Altera recommends that for all new designs, you
do not use the quartus_cmd executable, but use the executables that are listed in
Table 3 on page 17. If you are used to using the quartus_cmd executable to
compile a design, you can get the same functionality by using the quartus_sh
executable with the following options:

quartus_sh --flow compile <project name> [-c < Revision Name> 1+

Some of the executables create a separate text-based report file that you can
view with any text editor. The name of each report file uses the following
format:

<revision name>.<abbreviated executable name>.rpt

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 19

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

For example, if you want to run the quartus_map executable for the chiptrip
project, you could type the following command at the command prompt:

quartus_map chiptrip

The quartus_map executable will perform analysis and synthesis and will
produce a report file with the name chiptrip.map.rpt.

[[& Using Quartus Il Settings Files with Quartus Il Executables

When you are using the Quartus Il executables, the Quartus Il software uses the
revision that has the same name as the project name, by default. If you want to use
a revision with a name that is different from the project name, you can use the -c
option to specify the name of the revision and its associated Quartus Il Settings
File (.qsf). For example, if you want to run the quartus_map executable for the
chiptrip project with a revision named speed_ch and its associated speed_ch.qsf
file, you could type the following command at the command prompt:

quartus_map chiptrip -c speed_ch ¢

The quartus_map executable performs analysis and synthesis using that revision
and settings, and produces a report file with the name speed_ch.map.rpt.

The Quartus II software also offers several predefined compilation flows
that use the Quartus II executables. You can use these commands with the
quartus_sh --flow command, or with the Tcl execute_flow
command. Table 4 shows some of the most common Compiler flows.

Table 4. Command-Line Compiler Flows (Part 1 of 2)

Command-Line Option

Description for quartus_sh --flow or
execute_flow

Full compilation flow Performs a full compilation of the compile
current design.

Compilation and If the Simulation mode is timing, compile_and_simulate
simulation flow performs a full compilation and

then a simulation of the current

design. If the Simulation mode is

Functional, generates a functional

simulation netlist and then

performs a simulation of the

current design.

20 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Table 4. Command-Line Compiler Flows (Part 2 of 2)

Command-Line Option

Description for quartus_sh --flow or
execute_flow

Incremental fitting Performs a full compilation on a incremental_fitting
flow previously compiled design

where the Fitter compares the

netlist and placement from the

previous and current

compilations to use as many node

placements from the previous

compilation as possible in the

current compilation.

SignalProbe flow Routes user-specified signals to signalprobe
output pins without affecting the
existing fitting in a design, so that
you can debug signals without
completing a full compilation.

“ .- - For Information About Refer To

Using compilation flows “Overview: Using Compilation Flows” in
Quartus Il Help

Using Standard Command-Line
Commands & Scripts

You can use the Quartus II executables with any command-line scripting
method, such as Perl scripts, batch files, and Tcl scripts. These scripts can be
designed to create new projects or to compile existing projects. You can also
run the executables from the command prompt or console.

Figure 10 shows an example of a standard command-line script. The
example demonstrates how to create a project, perform analysis and
synthesis, perform place and route, perform timing analysis, and generate
programming files for the filtref tutorial design that is included with the
Quartus II software. If you have installed the tutorial design, it is in the
[<Quartus II system directory>/qdesigns/tutorial directory. Altera
recommends that you create a new directory and copy all the design files

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 21

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

(*.v, *.bsf, *.bdf) from the /<Quartus II system directory>/qdesigns/tutorial
directory to the new directory, in order to compile the design flow example.
You can run the four commands in Figure 10 from a command prompt in the
new project directory, or you can store them in a batch file or shell script.
These examples assume that the /<Quartus II system directory>/bin
directory (or the /<Quartus II system directory>/<platform> directory on
UNIX or Linux workstations, where <platform> can be solaris, linux, or
hp_II) is included in your PATH environment variable.

Figure 10. Example of a Command-Line Script

quartus_map filtref --family=Stratix Creates a new
Quartus Il project
targeting the Stratix
device family

quartus_fit filtref --part=EP1S10F780C5 --fmax=80MHz --tsu=8ns

Performs fitting for
the EP1S10F780C5
device and specifies
global timing
requirements

quartus_tan filtref Performs timing
analysis

quartus_asm filtref Generates
programming files

Figure 11 shows an excerpt from a sample quartus_sh command-line script
for use on a UNIX workstation. The script assumes that the Quartus II
tutorial project called fir_filter exists in the current directory. The script
analyzes every design file in the fir_filter project and reports any files that
contain syntax errors.

Figure 11. Example of a UNIX Command-Line Shell Script (Part 1 of 2)
#1/bin/sh
FILES_WITH_ERRORS=""

for filename in “1s *.bdf *.v®

22 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 11. Example of a UNIX Command-Line Shell Script (Part 2 of 2)

do

done

if [-z
then

else

fi

quartus_map fir_ filter --analyze_file=$filename

if [$? -ne 0]
then

FILES_WITH_ERRORS="SFILES_WITH_ERRORS S$filename"
fi

"SFILES_WITH_ERRORS"]

echo "All files passed the syntax check"
exit 0

echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

“ .. Py For Information About Refer To

Command-Line Scripting Chapter 2, “Command-Line Scripting” in the
Quartus Il Handbook, vol. 2 on the Altera
web site

Using Tcl Commands

In the Quartus II software, you can run Tcl commands or create and run Tcl
scripts with the Quartus II executables to do the following tasks in a
Quartus II project. The Tcl API functions include the following categories:

Project & assignment functions
Device functions
Advanced device functions
Flow functions

Timing functions
Advanced timing functions
Simulator functions

Report functions

Timing report functions
Back-annotate functions
LogicLock functions

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 23

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

m Chip Editor Functions
m Miscellaneous functions

There are several ways to use Tcl scripts in the Quartus II software. You can
create a Tcl script by using commands from the Quartus II API for Tcl. You
should save a Tcl script as a Tcl Script File (.tcl).

The Templates command (Edit menu) in the Quartus II Text Editor allows
you to insert Tcl templates and Quartus II Tcl templates (for Quartus 11
commands) into a text file to create Tcl scripts. Commands used in the
Quartus II Tcl templates use the same syntax as the Tcl API commands. If
you want to use an existing project as a baseline for another project, the
Generate Tcl File for Project command (Project menu) can generate a Tcl
Script File for the project.

You can run Tcl scripts in command-line mode with the quartus_sh
executable, in the Quartus II Tcl Console window, or from the Tcl Scripts
dialog box (Tools menu).

[Getting Help On Tcl Commands

The Quartus Il software includes a Quartus Il Command-Line Executable and Tcl API
Help Browser, which is a Tcl- and Tk-based GUI that lets you browse the command-
line and Tcl API help. To use this help, type the following command at the command
prompt:

quartus_sh --ghelp ¢

Figure 12 shows an example of a Tcl Script.

Figure 12. Example of a Tcl Script (Part 1 of 3)

Since

::quartus: :report is not pre-loaded

by quartus_sh, load this package now

before using the report Tcl API
load_package ::quartus::report

Since ::quartus::flow is not pre-loaded

by quartus_sh, load this package now

before using the flow Tcl API

Type "help -pkg flow" to view information
about the package

load_package ::quartus::flow

24 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 12. Example of a Tcl Script (Part 2 of 3)

#-— Get Actual Fmax data from the Report File ------ #
proc get_fmax_from_ report {} {
f———————————— - - Y #

global project_name

Load the project report database
load_report

Find the "Timing Analyzer Summary" panel name containing
the Actual Fmax data by traversing the panel names

Then set the panel row containing the Actual Fmax
information

HH H H

set fmax_panel_name "Timing Analyzer Summary"

foreach panel_name [get_report_panel_names] {

if { [string match "*$fmax_panel_name*" "Spanel_name"] } {
Fmax is sorted so we just need to go to Row 1

set fmax_row [get_report_panel_row "Spanel_name" -row 1]

}
Actual Fmax is found on the fourth column
Index starts at 0O

set actual_fmax [lindex $fmax_row 1]

Now unload the project report database
unload_report

return Sactual_fmax
#-—---—- Set the project name to chiptrip ------ #
set project_name chiptrip

- Create or open project ------ #
if {project_exists S$Sproject_name} {

e Project already exists -- open project ------- #
project_open S$project_name} {

telse {

$omo——— Project does not exist -- create new project ------ #

project_new $project_name

#-— Fmax requirement: 155.55MHz ------ #
set required_fmax 155.55MHz

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 25

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 12. Example of a Tcl Script (Part 3 of 3)

#-— Make global assignments ------ #
set_global_assignment -name family STRATIX
set_global_assignment -name device EP1S10F484C5
set_global_assignment -name fmax_ requirement Srequired_fmax
set_global_assignment -name tsu_requirement 7.55ns

#-— Make instance assignments ------ #
The following is the same as doing:
"set_instance_assignment -name location -to clock Pin_M20"

set_location_assignment -to clock Pin_M20

e Compile using ::quartus::flow ------ #
execute_flow -compile

e Report Fmax from report ------ #

set actual_fmax [get_fmax_from_report]

puts ""

PUES Mmm e "

puts "Required Fmax: S$required_fmax Actual Fmax: S$Sactual_fmax"
puts "-----7------""""---——— - —————

“ .- Py For Information About Refer To

Tcl Scripting Chapter 3: “Tcl Scripting” in the Quartus Il
Handbook, vol. 2 on the Altera web site

Creating Makefile Scripts

The Quartus II software supports makefile scripts that use the Quartus II
executables, which allow you to integrate your scripts with a wide variety of
scripting languages. Figure 13 shows an excerpt from a standard makefile
script.

Figure 13. Excerpt from Makefile Script (Part 1 of 3)

FHE R R R R R R R
Project Configuration:

#

Specify the name of the design (project) and Quartus II Settings
File (.gsf) and the list of source files used.

HHEFHH A H A H AR R R R R

26 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 13. Excerpt from Makefile Script (Part 2 of 3)

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_ FILES = chiptrip.qgpf chiptrip.gsf

HEHHHHAHAHAH AR HAH S HRH S F AR A A B A BABABAHAHAHAH AR AR AR H AR AR AR AR AR
Main Targets

#

all: build everything

clean: remove output files and database

B i

all: smart.log $(PROJECT) .asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.egn *.pin *.sof *.pof db

map: smart.log $(PROJECT) .map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT) .asm.rpt
tan: smart.log $(PROJECT).tan.rpt

smart: smart.log

FHE R R R R R R R
Executable Configuration
HHEFHHHHH AR R R R R R

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =

TAN_ARGS =

FHE R R R R R R R
Target implementations
FHEFFH R R R R R

STAMP = echo done >

$ (PROJECT) .map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

S (PROJECT) .fit.rpt: fit.chg $(PROJECT) .map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
$ (STAMP) asm.chg
$ (STAMP) tan.chg

S (PROJECT) .asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 27

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 13. Excerpt from Makefile Script (Part 3 of 3)

$ (PROJECT) .tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

FH R R
Project initialization

HHEFHHHAH AR H R R R

$ (ASSIGNMENT_FILES) :
quartus_sh --tcl_eval project_new $(PROJECT) -overwrite

map.chg:

S (STAMP) map.chg
fit.chg:

$ (STAMP) fit.chg
tan.chg:

$ (STAMP) tan.chg
asm.chg:

$ (STAMP) asm.chg

“ ._ Py For Information About Refer To

Using Command-Line Executables “Overview: Using Command-Line
Executables” in Quartus Il Help

Chapter 2, “Command-Line Scripting,” in
the Quartus Il Handbook, vol. 2, on the
Altera web site

Tcl Commands and Tcl Scripting “Overview: Using Tcl from the User
Interface,” “Overview: Using Tcl Scripting,”
and “API Functions for Tcl” in Quartus Il
Help

Chapter 3, “Tcl Scripting,” in the Quartus I
Handbook, vol. 2, on the Altera web site

28 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s In Chapter 2:

Introduction

Creating a Project

Creating a Design

Using Altera Megafunctions
Specifying Initial Design Constraints

Design Methodologies & Design
Planning

30
31
34
38
46

50

Chapter
Two

Design Entry

CHAPTER 2: DESIGN ENTRY
INTRODUCTION

Introduction

Py
S

A Quartus® II project includes all of the design files, software source files,
and other related files, necessary for the successful operation of a design.
Using revisions allows you to compare multiple versions of settings and

assignments for your project, giving you the ability to meet design
requirements more quickly and efficiently. You can use the Quartus II Block
Editor, Text Editor, MegaWizard® Plug-In Manager (Tools menu), and EDA
design entry tools to create designs that include Altera® megafunctions,
library of parameterized modules (LPM) functions, and intellectual
property (IP) functions. You can use the Settings dialog box (Assignments
menu) and the Assignment Editor to make design constraints. Figure 1
shows the design entry flow.

Figure 1. Design Entry Flow

30

EDA Synthesis
Tool

\

MegaWizard Plug-In Verilog HDL

Manager & VHDL
design files

Files generated by

EDIF netlist files (.edf)
or Verilog Quartus
Mapping Files (.vqgm)

Text Design Files (.tdf)
& Verilog HDL & VHDL
design files (.v, .vhd)

Block Design
Files (.bdf)

MegaWizard Plug-In — > Quartus Il
Manager — Text Editor
Quartus Il

Symbol Editor

- o Quartus Il
— Eé Block Editor

-

Block Symbol Files (.bsf) &
MAX+PLUS Il Symbol
Files (.sym)

Quartus Il
Settings Dialog Box

Quartus Il
Settings File (.gsf)

Quartus Il
Project File (.qpf)

=——

Quartus Il
Assignment Editor

Yy

VQM Files &
QSFs

Design

m INTRODUCTION TO QUARTUS Il

from Block-Based

to Quartus Il
Analysis & Synthesis

ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

Creating a Project

You can create a new project by using the New Project Wizard (File menu)
or the quartus_map executable. When creating a new project, you specify
the working directory for the project, assign the project name, and designate
the name of the top-level design entity. You can also specify which design
files, other source files, user libraries, and EDA tools you want to use in the
project, as well as the target device (or allow the Quartus II software to
automatically select a device). Table 1 lists the project and settings files for a
Quartus II project.

Table 1. Quartus Il Project Files

File Type Description

Quartus Il Project File (.qpf) Specifies the version of the Quartus Il software used to
create the project and the revisions associated with
the project.

Quartus Il Settings Contains all revision-wide or individual assignments

File (.gqsf) you made with the Assignment Editor, Floorplan
Editor, Settings dialog box (Assignments menu), Tcl
scripts, or Quartus Il executables. There is one QSF for
each revision in the project.

Quartus Il Workspace Contains user preferences and other information such
File (.qws) as the position of the windows, the open files and their
positions in the windows.

Quartus Il Default Settings Located in the \<Quartus Il system directory>\bin

File (.qdf) directory and contains all the global default project
settings. These settings are overridden by the settings
in the QSF.

Once you have created a project, you can add and remove design and other
files from the project using the Settings dialog box (Assignments menu).
During Quartus II Analysis & Synthesis, the Quartus II software processes
the files in the order they appear in the Files page.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 31

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

The Project Navigator displays information related to the current project
and provides a graphical representation of the project hierarchy, files, and
design units, and shortcuts to various menu commands. You can also
customize the information shown in the Project Navigator with the
Customize Columns command (right button pop-up menu).

Figure 2. Project Navigator Window
ProjectNavigator

Entity LC Combinationals | LC Registers | Memory Bits | DSP Elements | DSP 998 |DSP 18:18 |DSP 36836 | Pin:
Compilation Hierarchy
- b 22 13 0] 0] 0 22
------ 200 auto_max:auta [3 0 0 0 0 0 1]
------ b9 speed_chispeed |3 4 0 0 0 0 0 1]
Bl b tick_cnt:tick 5 4 i] 0] 0 a 0
[300 time_cnt:time_c 2 2 0 0 0 0 0 1]

"Hierarc:hy Filesl & Design Units]

32 =

Using Revisions

You can use revisions in the Quartus II software to save a set of settings and
assignments for an entity or group of entities in a design. When you create a
revision, the Quartus II software creates a separate QSF, which contains all
the settings and assignments related to that revision, and places it in the top-
level directory for the design. You can create a revision for any entity in a
design. You can view the top-level entity for the current revision in the
General page of the Settings dialog box (Assignments menu).

The Revisions dialog box (Project menu) allows you to view all the revisions
for the current project, create a revision for a specific design entity, delete a
revision, or set a particular design entity as the top-level design entity for
compilation, simulation, or timing analysis. A check mark icon indicates the
current revision. Using the Create Revision dialog box, you can create a new
revision (based on an existing revision), enter a description for the revision,
and set a revision as the current revision. See Figure 3.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

Figure 3. Revisions Dialog Box

Specify the current revision for the project, create a new
revision, or delete an exigting rervision.

Revisions:
AUTO_Ma Set Current |
CHIFTRIF
[Py A0S0
~/ SPEED_CH Delete Specify a name and description for the new revision.
TICK_CWT — Youcan base the revision on an esisting revision, and
TIME_CMT Close SPecify the revision as the curent revisian.
Revision name: |SPEED_CH_1
¥ Baszed on revision: I SPEED_CH j
Descripion:

W Set as curent revision

ag | Cancel |
e

Creating a revision does not affect the source design files for the project. You
can create a revision, set it as the current revision for the design, and then
make assignments and settings for the entity. This feature allows you to
create different settings and assignments for the same design entity and save
those settings as different revisions for comparison. Each revision has a
corresponding report file that you can open to view and compare the results
of the effects of settings and assignments changes against other revisions.

Converting MAX+PLUS Il Projects

The Convert MAX+PLUS II Project command allows you to select an
existing MAX+PLUS II project's Assignment & Configuration File (.acf), or
design file, and convert it into a new Quartus II project that contains all
supported assignments and constraints from the original MAX+PLUS I
project. The Convert MAX+PLUS II Project command automatically
imports the MAX+PLUS Il assignments and constraints, creates new project
files, and opens the new Quartus II project. Figure 4 shows the Convert
MAX+PLUS II Project dialog box.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 33

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Figure 4. Convert MAX+PLUS Il Project Dialog Box

Allowes you to convert exigting MA=+PLUS Il projects and assignments into a
new Quartus |l project.

M2 +PLUS | file name:

Id:\qdesigns'\chiptrip\chiptrip.ac:f |

Gluartuz Il project name:

Ic:hiptlip

Ok Cancel
4
For Information About Refer To
Converting MAX+PLUS Il projects MAX+PLUS Il Conversion module in the
Quartus Il Tutorial

Creating and using revisions “Overview: Using Revisions” in Quartus Il

Help

Creating a Design

You can use the Quartus Il software to create a design in the Quartus II Block
Editor or use the Quartus II Text Editor to create an HDL design using the
AHDL, Verilog HDL, or VHDL design languages.

The Quartus II software also supports designs created from EDIF Input
Files (.edf) or Verilog Quartus Mapping Files (.vqm) generated by EDA
design entry and synthesis tools. You can also create Verilog HDL or VHDL
designs in EDA design entry tools, and either generate EDIF Input Files and
VQM Files, or use the Verilog HDL or VHDL design files directly in
Quartus II projects. For more information on using EDA synthesis tools to
generate EDIF Input Files or VQM Files, see “Using Other EDA Synthesis
Tools” on page 58 in Chapter 3, “Synthesis.”

You can use the following design file types to create a design in the
Quartus II software or in EDA design entry tools.

34 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Table 2. Supported Design File Types

Type Description Extension

Block Design File A schematic design file created with the bdf
Quartus Il Block Editor.

EDIF Input File An EDIF version 2 0 0 netlist file, .edf
generated by any standard EDIF netlist .edif
writer.

Graphic Design File A schematic design file created with the .gdf
MAX+PLUS Il Graphic Editor.

Text Design File A design file written in the Altera tdf
Hardware Description Language (AHDL).

Verilog Design File A design file that contains design logic v
defined with Verilog HDL. .vig

.verilog

VHDL Design File A design file that contains design logic .vh

defined with VHDL. .vhd

.Vhdl

Verilog Quartus A Verilog HDL-format netlist file vgqm
Mapping File generated by the Synplicity Synplify

software or the Quartus Il software.

Using the Quartus Il Block Editor

The Block Editor allows you to enter and edit graphic design information in
the form of schematics and block diagrams. The Quartus II Block Editor
reads and edits Block Design Files and MAX+PLUS II Graphic Design Files.
You can open Graphic Design Files in the Quartus II software and save them
as a Block Design Files. The Block Editor replaces the Graphic Editor from
the MAX+PLUS II software.

Z

Each Block Design File contains blocks and symbols that represent logic in
the design. The Block Editor incorporates the design logic represented by
each block diagram, schematic, or symbol into the project.

You can create new design files from blocks in a Block Design File, update
the design files when you modify the blocks and the symbols, and generate
Block Symbol Files (.bsf), AHDL Include Files (.inc), and HDL files from
Block Design Files. You can also analyze the Block Design Files for errors

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 35

CHAPTER 2: DESIGN ENTRY

CREATING A DESIGN

before compilation. The Block Editor also provides a set of tools that help
you connect blocks and primitives in a Block Design File, including bus and
node connections and signal name mapping.

You can change the Block Editor display options, such as guidelines and
grid spacing, rubberbanding, colors and screen elements, zoom, and
different block and primitive properties to suit your preferences.

You can use the following features of the Block Editor to assist in creating a
Block Design File in the Quartus II software:

Instantiate Altera-provided megafunctions: The MegaWizard Plug-
In Manager (Tools menu) allows you to create or modify design files
that contain custom variations of megafunctions. These custom
megafunction variations are based on Altera-provided megafunctions,
including LPM functions. Megafunctions are represented by blocks in
Block Design Files. See “Using the MegaWizard Plug-In Manager” on
page 41.

Insert block and primitive symbols: Block diagrams use rectangular-
shaped symbols, called blocks, to represent design entities and the
corresponding assigned signals, and are useful in top-down design.
Blocks are connected by conduits that represent the flow of the
corresponding signals. You can use block diagrams exclusively to
represent your design, or you can combine them with schematic
elements.

The Quartus II software provides symbols for a variety of logic
functions—including primitives, library of parameterized modules
(LPM) functions, and other megafunctions—that you can use in the
Block Editor.

Create files from blocks or Block Design Files: To facilitate
hierarchical projects, you can use the Create/Update command (File
menu) in the Block Editor to create other Block Design Files, AHDL
Include Files, Verilog HDL and VHDL design files, and Quartus II
Block Symbol Files from blocks within a Block Design File. You can also
create Verilog Design Files, VHDL Design Files, and Block Symbol Files
from a Block Design File itself.

36 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Using the Quartus Il Text Editor

The Quartus II Text Editor is a flexible tool for entering text-based designs in
the AHDL, VHDL, and Verilog HDL languages, and the Tcl scripting
language. You can also use the Text Editor to enter, edit, and view other
ASCII text files, including those created for or by the Quartus II software.

The Text Editor also allows you to insert a template for any AHDL statement
or section, Tcl command, or for any supported VHDL or Verilog HDL
construct, into the current file. AHDL, VHDL, and Verilog HDL templates
provide an easy way for you to enter HDL syntax, increasing the speed and
accuracy of design entry. You can also get context-sensitive help on all
AHDL elements, keywords, and statements, as well as on megafunctions
and primitives.

Using the Quartus Il Symbol Editor

The Symbol Editor allows you to view and edit predefined symbols that
represent macrofunctions, megafunctions, primitives, or design files. Each
Symbol Editor file represents one symbol. For each symbol file, you can
choose from libraries containing Altera megafunctions and LPM functions.
You can customize these Block Symbol Files, then add the symbols to
schematics created with the Block Editor. The Symbol Editor reads and edits
Block Symbol Files and MAX+PLUS II Symbol Files (.sym), and saves them
as Block Symbol Files.

Using Verilog HDL, VHDL & AHDL

You can use the Quartus II Text Editor or another text editor to create Text
Design Files, Verilog Design Files, and VHDL Design Files, and combine
them with other types of design files in a hierarchical design.

Verilog Design Files and VHDL Design Files can contain any combination of
Quartus II-supported constructs. They can also contain Altera-provided
logic functions, including primitives and megafunctions, and user-defined
logic functions.

In the Text Editor, you use the Create/Update command (File menu) to
create a Block Symbol File from the current Verilog HDL or VHDL design
file and then incorporate it into a Block Design File. Similarly, you can create

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 37

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Using

an AHDL Include File that represents a Verilog HDL or VHDL design file
and incorporate it into an Text Design File or another Verilog HDL or VHDL
design file.

For more information on using the Verilog HDL and VHDL languages in the
Quartus Il software, see “Using Quartus II VHDL & Verilog HDL Integrated
Synthesis” on page 55 in Chapter 3, “Synthesis.”

AHDL is a high-level, modular language that is completely integrated into
the Quartus II system. AHDL supports Boolean equation, state machine,
conditional, and decode logic. AHDL also allows you to create and use
parameterized functions, and includes full support for LPM functions.
AHDL is especially well suited for designing complex combinational logic,
group operations, state machines, truth tables, and parameterized logic.

For Information About Refer To

Using the Quartus Il Block Editor and “Block Editor & Symbol Editor Introduction”

Symbol Editor in Quartus Il Help

Using the Quartus Il Text Editor “Text Editor Introduction” in Quartus Il Help
Creating designs in the Quartus Il Design Entry module in the Quartus Il
software Tutorial

Altera Megafunctions

Altera megafunctions are complex or high-level building blocks that can be
used together with gate and flipflop primitives in Quartus II design files.
The parameterizable megafunctions and LPM functions provided by Altera
are optimized for Altera device architectures. You must use megafunctions
to access some Altera device-specific features, such as memory, DSP blocks,
LVDS drivers, PLLs, and SERDES and DDIO circuitry.

You can use the MegaWizard Plug-In Manager (Tools menu) to create
Altera megafunctions, LPM functions, and IP functions for use in designs in
the Quartus II software and EDA design entry and synthesis tools.

38 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Table 3. Altera-Provided Megafunctions & LPM Functions

Type Description

Arithmetic Includes accumulators, adders, multipliers, and LPM arithmetic
Components functions.

Gates Includes multiplexers and LPM gate functions.

I/0 Components Includes Clock Data Recovery (CDR), phase-locked loop (PLL),

double data rate (DDR), gigabit transceiver block (GXB), LVDS
receiver and transmitter, PLL reconfiguration, and remote
update megafunctions.

Memory Compiler Includes the FIFO Partitioner, RAM, and ROM megafunctions.
Storage Components Memory and shift register megafunctions, and LPM memory
functions.

To save valuable design time, Altera recommends using megafunctions
instead of coding your own logic. Additionally, these functions can offer
more efficient logic synthesis and device implementation. It is easy to scale
megafunctions to different sizes by simply setting parameters. Altera also
provides AHDL Include Files and VHDL Component Declarations for both
megafunctions and LPM functions.

Using Intellectual Property (IP)
Functions

Altera provides several methods for obtaining both Altera Megafunction
Partners Program (AMPP™) and MegaCore® megafunctions, functions that
are rigorously tested and optimized for the highest performance in Altera
device-specific architectures. You can use these parameterized blocks of
intellectual property to reduce design and test time. MegaCore and AMPP
megafunctions include megafunctions for applications in communications,
digital signal processing (DSP), PCI and other bus interfaces, and memory
controllers.

With the OpenCore™ Plus feature, you can download and evaluate AMPP
and MegaCore functions for free prior to licensing and purchasing.

Altera provides the following programs, features, and functions to assist

you in using IP functions in the Quartus II software and EDA design entry
tools:

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 39

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

m AMPP Program: The AMPP program offers support to third-party
vendors to create and distribute megafunctions for use with the
Quartus II software. AMPP partners offer a large selection of off-the-
shelf megafunctions that are optimized for Altera devices.

Evaluation periods for AMPP functions are determined by the
individual vendors. You can download and evaluate AMPP functions
through the IP MegaStore™ on the Altera web site at
www.altera.com/ipmegastore.

B MegaCore Functions: MegaCore functions are pre-verified HDL
design files for complex system-level functions, and are fully
parameterizable using the MegaWizard Plug-In Manager. MegaCore
functions consist of several different design files: a post-synthesis
AHDL Include File for design implementation, as well as VHDL or
Verilog HDL functional simulation models supplied for design and
debugging with EDA simulation tools.

MegaCore functions are available through the IP MegaStore on the
Altera web site, or by using the MegaWizard Portal Extension to the
MegaWizard Plug-In Manager. A license is not needed to evaluate
MegaCore functions, and there is no time limit on evaluation.

B OpenCore Evaluation Feature: The OpenCore evaluation feature
allows you to evaluate AMPP functions before purchase. You can use
the OpenCore feature to compile, simulate, and verify the performance
of a design, but it does not support programming file generation.

® OpenCore Plus Hardware Evaluation Feature: The Altera OpenCore
Plus feature allows you to compile, simulate, and verify functionality
and performance of MegaCore functions before purchase. It also allows
you to generate time-limited programming files for designs that
contain these megafunctions.

The OpenCore Plus feature supports free RTL simulation and
hardware evaluation. RTL simulation support allows you to simulate
an RTL model of your MegaCore function in your design. Hardware
evaluation support allows you to generate time-limited programming
file, but not output netlist files, for a design that includes Altera
MegaCore functions. With these files, you can perform board-level
design verification before deciding to purchase licenses for the
MegaCore functions.

40 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Using the MegaWizard Plug-In
Manager

The MegaWizard Plug-In Manager helps you create or modify design files
that contain custom megafunction variations, which you can then instantiate
in a design file. These custom megafunction variations are based on Altera-
provided megafunctions, including LPM, MegaCore, and AMPP functions.
The MegaWizard Plug-In Manager runs a wizard that helps you easily
specify options for the custom megafunction variations. The wizard allows
you to set values for parameters and optional ports. You can open the
MegaWizard Plug-In Manager from the Tools menu or from within a Block
Design File, or you can run it as a stand-alone utility. Table 4 lists the files
generated by the MegaWizard Plug-In Manager for each custom
megafunction variation you generate.

Table 4. Files Generated by the MegaWizard Plug-In Manager

File Name Description

<output file>.bsf Symbol for the megafunction used in the Block Editor.

<output file>.cmp Component Declaration File.

<output file>.inc AHDL Include File for the module in the megafunction wrapper
file.

<output file>.tdf Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd Megafunction wrapper file for instantiation in a VHDL design.

<output file>.v Megafunction wrapper file for instantiation in a Verilog HDL
design.

<output file>_bb.v Hollow-body or black box declaration of the module in the

megafunction wrapper file used in Verilog HDL designs to
specify port directions when using EDA synthesis tools.

<output file>_inst.tdf Sample AHDL instantiation of the subdesign in the
megafunction wrapper file.

<output file>_inst.vhd Sample VHDL instantiation of the entity in the megafunction
wrapper file.

<output file>_inst.v Sample Verilog HDL instantiation of the module in the
megafunction wrapper file.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 41

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

[[Using the Stand-Alone MegaWizard Plug-In Manager

You can use the MegaWizard Plug-In Manager from outside the Quartus Il
software by typing the following command at a command prompt:

gqmegawiz €

Instantiating Megafunctions in the
Quartus Il Software

You can instantiate Altera megafunctions and LPM functions in the
Quartus II software through direct instantiation in the Block Editor,
instantiation in HDL code (either by instantiating through the port and
parameter definition or by using the MegaWizard Plug-In Manager to
parameterize the megafunction and create a wrapper file), or through
inference.

Altera recommends that you use the MegaWizard Plug-In Manager to
instantiate megafunctions and create custom megafunction variations. The
wizard provides a graphical interface for customizing and parameterizing
megafunctions, and ensures that you set all megafunction parameters
correctly.

Instantiation in Verilog HDL and VHDL

You can use the MegaWizard Plug-In Manager to create a megafunction or
a custom megafunction variation. The MegaWizard Plug-In Manager then
creates a Verilog HDL or VHDL wrapper file that contains an instance of the
megafunction, which you can then use in your design. For VHDL
megafunctions, the MegaWizard Plug-In Manager also creates a
Component Declaration File.

Using the Port and Parameter Definition
You can instantiate the megafunction directly in your Verilog HDL or VHDL

design by calling the function like any other module or component. In
VHDL, you also need to use a Component Declaration.

42 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Inferring Megafunctions

Quartus II Analysis & Synthesis automatically recognizes certain types of
HDL code and infers the appropriate megafunction. The Quartus Il software
uses inference because Altera megafunctions are optimized for Altera
devices, and performance may be better than standard HDL code. For some
architecture-specific features, such as RAM and DSP blocks, you must use
Altera megafunctions.

The Quartus II software maps the following logic to megafunctions during
synthesis:

Counters

Adders/Subtractors

Multipliers

Multiply-accumulators and multiply-adders
RAM

Shift registers

Instantiating Megafunctions in EDA
Tools

You can use Altera-provided megafunctions, LPM functions, and IP
functions in EDA design entry and synthesis tools. You can instantiate
megafunctions in EDA tools by creating a black box for the function, by
inference, or by using the clear box methodology.

Using the Black Box Methodology

You can use the MegaWizard Plug-In Manager to generate Verilog HDL or
VHDL wrapper files for megafunctions. For Verilog HDL designs, the
MegaWizard Plug-In Manager also generates a Verilog Design File that
contains a hollow-body declaration of the module, used to specify port
directions.

The Verilog HDL or VHDL wrapper file contains the ports and parameters
for the megafunction, which you can use to instantiate the megafunction in
the top-level design file and direct the EDA tool to treat the megafunction as
a black box during synthesis.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 43

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

The following steps describe the basic flow for using the MegaWizard Plug-
In Manager to create a black box for an Altera megafunction or LPM
function in EDA design entry and synthesis tools:

1. Use the MegaWizard Plug-In Manager to create and parameterize the
megafunction or LPM function.

2. Use the black box file generated by the MegaWizard Plug-In Manager
to instantiate the function in the EDA synthesis tool.

3. Perform synthesis and optimization of the design in the EDA synthesis
tool. The EDA synthesis tool treats the megafunction as a black box
during synthesis.

Instantiation by Inference

EDA synthesis tools automatically recognize certain types of HDL code and
infer the appropriate megafunction.You can directly instantiate memory
blocks (RAM and ROM), DSP blocks, shift registers, and some arithmetic
components in Verilog HDL or VHDL code. The EDA tool then maps the
logic to the appropriate Altera megafunction during synthesis.

Using the Clear Box Methodology

In the black box flow, an EDA synthesis tool treats Altera megafunctions and
LPM functions as black boxes. As a result, the EDA synthesis tool cannot
fully synthesize and optimize designs with Altera megafunctions, because
the tool does not have a full model or timing information for the function.
Using the clear box flow, you can use the MegaWizard Plug-In Manager to
create a fully synthesizeable Altera megafunction or LPM function for use
with EDA synthesis tools.

The following steps describe the basic flow for using clear box
megafunctions with EDA synthesis tools:

1. Use the MegaWizard Plug-In Manager to create and parameterize the
megafunction or LPM function. Make sure you turn on Generate a

Clearbox body in the MegaWizard Plug-In Manager.

2. Use the Verilog or VHDL design file generated by the MegaWizard
Plug-In Manager to instantiate the function in the EDA synthesis tool.

44 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

3. Perform synthesis and optimization of the design in the EDA synthesis
tool.

Using of the clear box methodology generally results in slower simulation
times in EDA simulation tools (but not the Quartus II Simulator), due to the
level of detail (timing information and device resources used) that is
included with a clear box megafunction or LPM function. In addition,
specific device details are included in the clear box megafunction or LPM
function, so that to use a different device for the design, the clear box
function needs to be regenerated for the new device.

“ .- - For Information About Refer To

List of ports and parameters for a If you are using an IP function, refer to the
megafunction IP documentation. For Altera
megafunctions, refer to Quartus Il Help.

Using Altera-provided megafunctions “Overview: Creating & Instantiating Altera-
and LPM functions in EDA tools Provided Functions in Other EDA Tools” in
Quartus Il Help

Chapter 9, “Synplicity Synplify and Synplify
Pro Support,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Mentor Graphics
LeonardoSpectrum Support,” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Chapter 11, “Mentor Graphics Precision RTL
Synthesis Support,” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Using Altera-provided megafunctions Design Entry module in the Quartus Il

and LPM functions in the Quartus Il Tutorial

software

Using the MegaWizard Plug-in “Overview: Using the MegaWizard Plug-In
Manager and Altera-provided Manager” in Quartus Il Help

megafunctions and LPM functions

MegaCore functions and OpenCore Application Note 125 (Evaluating AMPP &
Plus hardware evaluation feature MegaCore Functions) on the Altera web site

Application Note 176 (OpenCore Plus
Hardware Evaluation) on the Altera web
site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 45

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

Specifying Initial Design
Constraints

Once you have created a project and your design, you can use the Settings
dialog box (Assignments menu), the Assignment Editor, and the Floorplan
Editor in the Quartus II software to specify your initial design constraints,
such as pin assignments, device options, logic options, and timing
constraints. You can import assignments using the Import Assignments
command (Assignments menu). You can also import assignments from
other EDA synthesis tools using Tcl commands or scripts. The Quartus II
software also provides the Compiler Settings wizard (Assignments menu)
and Timing wizard (Assignments menu) to assist in specifying initial design
constraints. Many of the settings available from the Assign command in the
MAX+PLUS II quick menu can be made in the Assignment Editor and
Settings dialog box.

Using the Assignment Editor

The Assignment Editor is the interface for creating and editing entity-level
assignments in the Quartus II software. Assignments allow you to specify
various options and settings for the logic in your design, including location,
1/0 standard, timing, logic option, parameter, simulation, and pin
assignments.

Using the Assignment Editor, you can select an assignment category; use the
Quartus II Node Finder to select specific nodes and entities to assign;
display information about specific assighments; and add, edit, or delete
assignments for selected nodes. You can also add comments to an
assignment, and you can view the settings and configuration file in which
the assignment appears.

The following steps illustrate the basic flow for using the Assignment Editor
to make assignments:

1. Open the Assignment Editor.
2. Select the appropriate category assignment in the Category bar.

3. Specify the appropriate node or entity in the Node Filter bar, or use the
Node Finder dialog box to find a specific node or entity.

46 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

4. Inthespreadsheet that displays the assignments for the current design,
add the appropriate assignment information.

The spreadsheet in the Assignment Editor provides applicable drop-down
lists or allows you to type assignment information. As you add, edit, and
remove assignments, the corresponding Tcl command appears in the
Messages window. You can also export the data from the Assignment Editor
to a Tcl Script File (.tcl) or a spreadsheet-compatible file.

When creating and editing assignments, the Quartus II software
dynamically validates the assignment information where possible. If an
assignment or assignment value is illegal, the Quartus II software does not
add or update the value, and instead reverts to the current value or does not
accept the value. When you view all assignments, the Assignment Editor
shows all assignments created for the current project, but when you view
individual assignment categories, the Assignment Editor displays only the
assignments that are related to the specific category selected.

Figure 5. The Quartus Il Assignment Editor

& = [O]]
TJl Category: | Ja [€ o | & tming| # Logic options |
< = | show assignments for specific nodes:
z O® checkal |
(=
- Uncheck Al |
§ Delete all |
=z =1 | | This cell specifies the destination name for point-to-point assignments., For single-point assignments, this cell specifies the ;I
_ destination of the assignment. Alkera recommends using the Node Finder bo assign a destination name,
=2
% --= Double-dlick ko create & new assignment.
o
=
= I
]
le Edit: 2 [<znews= |
Frarm To Assignrnent Marne Value
1 = accel Glabal Signal on
2 i dir Decrease Input Delay to Input Register on
3 - dir[0] Decrease Input Delay ko Inpuk Register |On
4 = accel 1} Skandard LYCMOS
5 € chiptrip 1JC Skandard LVTTL
6 < ME e E

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 47

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

Using the Settings Dialog Box

You can use the Settings dialog box (Assignments menu) to specify
assignments and options for your project. You can set general project-wide
options and synthesis, fitting, simulation, and timing analysis options.

Using the Settings dialog box, you can perform the following types of tasks:

Modify project settings: specify and view the current top-level entity
for project and revision information; add and remove files from the
project; specify custom user libraries; specify device options for
package, pin count, speed grade), make pin assignments (via the
Assign Pins dialog box), and specify migration devices.

Specify EDA tool settings: specify EDA tools for design entry/
synthesis, simulation, timing analysis, board-level verification, formal
verification, resynthesis, and related tool options.

Specify Analysis & Synthesis settings: project-wide settings for
Analysis & Synthesis, Verilog HDL and VHDL input settings, default
design parameters, and synthesis netlist optimizations options.

Specify compilation process options: options for smart compilation,
preserving node names during compilation, and saving node-level
netlists.

Specify fitting settings: timing-driven compilation options, Fitter
effort, project-wide Fitter logic options assignments, and physical
synthesis netlist optimizations.

Specify timing analysis settings: default frequencies for the project or
define individual clock settings, delay requirements and path-cutting
options, and timing analysis reporting options.

Specify Simulator settings: mode (functional or timing), source vector
file, simulation period, and simulation detection options.

Specify software build settings: toolset directories, processor
architecture and software toolset, compiler, assembler, and linker
settings.

Specify Design Assistant, SignalTap II, SignalProbe, and HardCopy
settings: turn on the Design Assistant and select rules; enable the
SignalTap® Il Logic Analyzer and specify SignalTap II File (.stp) name;

48 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

options for automatically routing SignalProbe™ signals and modifying
fitting results for the SignalProbe feature; and specify HardCopy
timing options and generate HardCopy files.

Importing Assignments

The Import Assignments command (Assignments menu) allows you to
import assignments from projects created in the Quartus II software or the
MAX+PLUS 1I software into a new project in the Quartus II software. The
Import Assignments dialog box allows you to specify the specific types of
assignments to import into the QSF for the current project. See Figure 6.

Figure 6. Import Assignments Dialog Box

Select a file and the categories of assignments ta import. Mote: ‘When importing
instance aszignments from a lower hierarchy level to a higher level, you may need
ta specify the pramation hierarchy.

Promation hierarchy format: symbol_namelinst_name

File name: ID:.-"qdesigns.-"c:hiptrip.-"c:hiptrip.qsf |

Available azzignment categories:

WAl

[w] D evice Assignments

[w]Pin & Location Assignments

[w] Timing Azzignments

[w]Analysis & Synthesis Assignments
[wFitter Assignments

[w] Timing Analysiz Azzsignments
[wEDA Metlizt ‘Writer Azsignments
[w]Azzembler Assignments

[w] Simulator Assignments

Software Builder Assignments
Diesign Assistant Aszsignments
[w]Programmer Azzignments

v SinnalProhe Aszsinnments LI

| v

— Azzignment type to import

V' Global assignments

™ Instance assignments

Eramation hierarchy:

— lmpaort optian:

V' Ovensrite conflicting assignments

¥ Replace all assignments in selected categories

()3 Cancel

You can use this command to import the MAX+PLUS II Assignment &
Configuration File, which contains MAX+PLUS II project assignments and
settings, into your Quartus II project. You can also use this command to

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 49

CHAPTER 2: DESIGN ENTRY
DESIGN METHODOLOGIES & DESIGN PLANNING

import settings and assignments from other projects created in the
Quartus II software into your current project. For example, you can use this
command to import pin assignments from a previous Quartus II project into
the current Quartus II project.

Verifying Pin Assignments

The Quartus II software allows you to verify pin assignments—location,
I/0 bank and I/0O standard assignments—with the Start > Start I/O
Assignment Analysis command (Processing menu). You can use this
command at any stage of the design process to verify the accuracy of the
assignments, allowing you to create your final pin-out faster. You do not
need design files to use this command, and can verify pin-outs before design
compilation.

Design Methodologies & Design
Planning

When you are creating a new design, it is important to consider the design
methodologies the Quartus II software offers. For example, the LogicLock™
feature offers the ability to use top-down or bottom-up design
methodologies, and block-based design flows. You can use these design
flows with or without EDA design entry and synthesis tools.

Top-Down versus Bottom-Up Design
Methodologies

In the top-down design flow, there is only one output netlist for the entire
design, which allows you to perform optimization across design boundaries
and hierarchies for the entire design, and is often simpler to manage.

In the bottom-up design methodology, there are separate netlists for each
design module. This functionality allows you to compile each module
separately and apply different optimization techniques to each module.
Modifications to individual modules do not affect the optimizations to other
modules. The bottom-up design methodology also facilitates the reuse of
design modules in other designs.

50 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
DESIGN METHODOLOGIES & DESIGN PLANNING

Block-Based Design Flow

In the bottom-up block-based LogicLock design flow, you can design and
optimize each module independently, integrate all optimized modules in a
top-level design, and then verify the overall design. Each module has a
separate netlist, which can then be incorporated after synthesis and
optimization into the top-level design. Each module in the top-level design
does not affect the performance of the other modules. The general block-
based design flow concepts can be used in modular, hierarchical,
incremental, and team-based design flows.

You can use EDA design entry and synthesis tools in the block-based design
flow to design and synthesize individual modules, and then incorporate the
modules into a top-level design in the Quartus II software, or completely
design and synthesize a block-based design in EDA design entry and
synthesis tools.

Design Partitioning

When creating a hierarchical design in the Quartus II software or in other
EDA tools, the design is partitioned into separate modules. Considerations
for the partitioning of a design during design planning include the
following:

Where to partition the design

The number of clock and I/O connections between partitions
Placement of state machines

Separation of timing-critical functions from noncritical functions
Limiting the critical path in hierarchical modules

Registering the inputs and outputs of individual modules

For more information on using LogicLock features and block-based design,
refer to “Chapter 6: Block-Based Design” on page 103.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 51

What’s in Chapter 3:

Introduction

Using Quartus Il VHDL & Verilog HDL
Integrated Synthesis

Using Other EDA Synthesis Tools
Controlling Analysis & Synthesis

Using the Design Assistant to Check
Design Reliability

Analyzing Synthesis Results with the
RTL Viewer

54

55
58
61

65

66

Chapter
Three

Synthesis

v

CHAPTER 3: SYNTHESIS
INTRODUCTION

Introduction

- You can use the Quartus® I Analysis & Synthesis module of the Compiler to
analyze your design files and create the project database. Analysis &
Synthesis uses Quartus II Integrated Synthesis to synthesize your VHDL
Design Files (.vhd) or Verilog Design Files (.v). If you prefer, you can use
other EDA synthesis tools to synthesize your VHDL or Verilog HDL design
files, and then generate an EDIF netlist file (.edf) or a Verilog Quartus
Mapping File (.vqm) that can be used with the Quartus II software. Figure 1
shows the synthesis design flow.

Figure 1. Synthesis Design Flow

Library Mapping
Files (.Imf) & User
Libraries

VHDL Design Files (.vhd), r: 4

Verilog HDL Design Files (.v), = N

Text Design Files (.tdf) & Block ré Quartus Il Analysis & r;

Design Files (.bdf) Synthesis — E to Quartus Il

quartus_map Fitter

Compiler Database
Files (.rdb) & Report

EDA Synthesis Files (.rpt, .htm)
—5 Tools 4
) o Quartus I I
Verilog HDL & EDIF netlist files (.edf) & Design Assistant Quarl_:us
VHDL source design Verilog Quartus Mapping d RTL Viewer
files (.v, .vhd) Files (.vqm) quartus_drc

You can start a full compilation in the Quartus II software, which includes
the Analysis & Synthesis module, or you can start Analysis & Synthesis
separately. The Quartus II software also allows you to perform an
Analysis & Elaboration without running Integrated Synthesis.

54 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING QUARTUS Il VHDL & VERILOG HDL INTEGRATED SYNTHESIS

[[Using the quartus_map executable

You can also run Analysis & Synthesis separately at the command prompt or in a
script by using the quartus_map executable. The quartus_map executable will
create a new project if it does not already exist.

The quartus_map executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_map executable, type one of the following
commands at the command prompt:

quartus_map -h ¢
quartus_map --help ¢
quartus_map --help=<topic name> '

Using Quartus Il VHDL &
Verilog HDL Integrated Synthesis

You can use Analysis & Synthesis to analyze and synthesize VHDL and
Verilog HDL designs. Analysis & Synthesis includes Quartus II Integrated
Synthesis, which fully supports the VHDL and Verilog HDL languages and
provides options to control the synthesis process.

Analysis & Synthesis supports the Verilog-1995 standard (IEEE Std. 1364-
1995) and most Verilog-2001 standard (IEEE Std. 1364-2001) constructs, and
also supports the VHDL 1987 (IEEE Std. 1076-1987) and 1993 (IEEE Std.
1076-1993) standards. You can select which standard to use; Analysis &
Synthesis uses Verilog-2001 and VHDL 1993 by default. You can also specify
a Library Mapping File (.Imf) that the Quartus II software should use to map
non-Quartus II functions to Quartus II functions. You can specify these and
other options in the Verilog HDL Input and VHDL Input pages, which are
under Analysis & Synthesis Settings in the Settings dialog box
(Assignments menu). These pages are shown in Figure 2.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 55

CHAPTER 3: SYNTHESIS
USING QUARTUS Il VHDL & VERILOG HDL INTEGRATED SYNTHESIS

Figure 2. VHDL Input & Verilog HDL Input Pages of Settings Dialog Box

Cateqgorn:
- General
- Files VHDL /npul‘
User Libraries Options for directly compiling or simulating YHOL input files. [Click on the EDA Tool Settings category Page
- Device to enter options for YHDL files generated by other EDA tocls.)
- Timing Requirements & Options
- EDA Tool Settings YHOL version .
-~ Compilation Process WHDL 1987 Ve”lOg HDL
nalysis & Synthesis Settings & VHDL 1953 lnput Page

Werilag HOL Inpu}
efault Paramete
prthesiz Metlist

Category:
[Fitter Settings o
- Timing Analyzer - General Verilog HDL Input
Design Assistant - s .
- SignalT ap Il Logic &1 - User Libraries Optians tor directly compiling or simulating Verllag HOL input fles. [Click an the EDA Taol Settings
- Device category to enter options for Yerilog HDL files generated by other EDA tools.]

SignalProbe Settings

Timing Requirements & Options

- Simulator X
- Softwane Buid Settin | =1 EDA Tool Setings —erilog version

- Stratix G¥ Registratic g Eomlpl\:an&o!r; F’rf:l:es.s St Verilog1985
- HardCopy Settings =l Analysis & Spnthesis Settings - o

Ry Ie UHDL Input & Verlog-2001

-~ Diefault Parameters - Library Mapping Fil
Synthesis Methst Optimizations s remics I |
(- Fitter Settings -
Timing &nalyzer ™ Show information messages describing LMF mapping during compilation

- Design Assistant
- SignalT ap Il Logic Analyzer
- SignalProbe Settings
- Simnulator
Saftware Build Settings
- Stratix G Registiation
- HardCaopy Settings

&
ol

Cancel

v

Most VHDL and Verilog HDL designs will compile successfully in both
Quartus II Integrated Synthesis and in other EDA synthesis tools. If your
design instantiates Altera megafunctions, library of parameterized modules
(LPM) functions, or intellectual property (IP) megafunctions in a 3rd party
EDA too, you need to use a hollow-body or black box file. When you are
instantiating megafunctions for Quartus II Integrated Synthesis, however,
you can instantiate the megafunction directly without using a black box file.
For more information about instantiating megafunctions, refer to
“Instantiating Megafunctions in the Quartus II Software” on page 42 and
“Instantiating Megafunctions in EDA Tools” on page 43 in Chapter 2,
“Design Entry.”

56 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING QUARTUS Il VHDL & VERILOG HDL INTEGRATED SYNTHESIS

When you create your VHDL or Verilog HDL designs, you should add them
to the project. You can add the design files when creating a project by using
the New Project Wizard (File menu), or by using the Files page of the
Settings dialog box, or, if you edit the files in the Quartus II Text Editor, you
are prompted to add the file to the current project when you save it. When
you add files to the project, you should make sure you add them in the order
you want Integrated Synthesis to process them. For more information about
adding files to a project, refer to “Creating a Design” on page 34 in
Chapter 2, “Design Entry.”

Analysis & Synthesis builds a single project database that integrates all the
design files in a design entity or project hierarchy. The Quartus II software
uses this database for the remainder of project processing. Other Compiler
modules update the database until it contains the fully optimized project. In
the beginning, the database contains only the original netlists; at the end, it
contains a fully optimized, fitted project, which is used to create one or more
files for timing simulation, timing analysis, device programming, and so on.

As it creates the database, the Analysis stage of Analysis & Synthesis
examines the logical completeness and consistency of the project, and checks
for boundary connectivity and syntax errors.

Analysis & Synthesis also synthesizes and performs technology mapping on
the logic in the design entity or project’s files. It infers flipflops, latches, and
state machines from Verilog HDL and VHDL. It creates state assignments
for state machines and makes choices that will minimize the number of
resources used. In addition, it replaces operators, such as + or - with
modules from the Altera library of parameterized modules (LPM) functions,
which are optimized for Altera devices.

Analysis & Synthesis uses several algorithms to minimize gate count,
remove redundant logic, and utilize the device architecture as efficiently as
possible. You can customize synthesis by using logic option assignments.
Analysis & Synthesis also applies logic synthesis techniques to help
implement timing requirements for a project and optimize the design to
meet these requirements.

The Messages window and the Messages section of the Report window
display any messages Analysis & Synthesis generates. The Status window
records the time spent processing in Analysis & Synthesis during project
compilation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 57

CHAPTER 3: SYNTHESIS
USING OTHER EDA SYNTHESIS TOOLS

For Information About Refer To

Verilog HDL constructs supported in “Quartus Il Verilog HDL Support” in

the Quartus Il software Quartus Il Help
VHDL constructs supported in the “Quartus Il VHDL Support” in Quartus Il
Quartus Il software Help

Using Quartus Il Integrated Synthesis Chapter 8, “Quartus Il Integrated
Synthesis,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Other EDA Synthesis Tools

You can use other EDA synthesis tools to synthesize your VHDL or
Verilog HDL designs, and then generate EDIF netlist files or VOM Files that
can be used with the Quartus II software.

Altera provides libraries for use with many EDA synthesis tools. Altera also
provides NativeLink® support for many tools. NativeLink technology
facilitates the seamless transfer of information between the Quartus II
software and other EDA tools and allows you to run EDA tools
automatically from within the Quartus II graphical user interface.

If you have created assignments or constraints using other EDA tools, you
can use Tcl commands or scripts to import those constraints into the
Quartus II software with your design files. Many EDA tools generate an
assignment Tcl script automatically. Table 1 lists the Quartus II-supported
EDA synthesis software.

Table 1. Quartus lI-Supported EDA Synthesis Tools (Part 1 of 2)

Synthesis Tool Name

EDIF Netlist | VerilogQuartus | .. olink

File (.edf) F'i"l':':_'f,':l?') Support

Mentor Graphics Design v/

Architect

Mentor Graphics v v
LeonardoSpectrum

Mentor Graphics ViewDraw v

58 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING OTHER EDA SYNTHESIS TOOLS

Table 1. Quartus lI-Supported EDA Synthesis Tools (Part 2 of 2)

; Verilog Quartus . .
Synthesis Tool Name El?illz ?:::g’t Mapping N;:'ve:;::k

. File (.vqm) PP
Mentor Graphics Precision RTL v v
Synthesis
Synopsys Design Compiler v
Synopsys FPGA Compiler Il v v
Synplicity Synplify v v v
Synplicity Synplify Pro v v

In the Design Entry & Synthesis page under EDA Tool Settings in the
Settings dialog box (Assignments menu), you can specify the EDA synthesis
tool you will use, and you can also specify whether an EDA tool that has
NativeLink support should be run automatically within the Quartus II
software as part of full compilation to synthesize the design. The Design
Entry & Synthesis page also allows you to specify other options for EDA
synthesis tools. See Figure 3.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il ®m 59

CHAPTER 3: SYNTHESIS
USING OTHER EDA SYNTHESIS TOOLS

Figure 3. Design Entry & Synthesis Page of Settings Dialog Box

General Design Entiy & Synthesis
- Files
- User Libraries
- Device

- Timing Requirements & Options -
EDA Tool Settings Synplify Pro =]

Sirmulation
Timing Analysiz
i BoardLevel
- Formal Verfication
i Resynthesis
Compilation Process
- Analysis & Synthesis Settings
[#- Fitter Settings
- Timing Analyzer
- Desgign Assistant
- SignalTap Il Logic Analyzer
- SignalProbe Settings
- Simulator
- Software Build Settings
Stratix G4 Registration
- HardCopy Settings

If you have specified an EDA synthesis tool in the Design Entry & Synthesis
page, you can run that tool from within the Quartus II software by choosing
Start > Start EDA Synthesis (Processing menu). Many EDA tools also allow
you to run the Quartus II software from within that EDA tool’s graphical

user interface. Refer to your EDA tool documentation for more information.

60 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

“ ._ Py For Information About Refer To

Using Mentor Graphics Chapter 10, “Mentor Graphics

LeonardoSpectrum software LeonardoSpectrum Support” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Using Mentor Graphics Precision RTL Chapter 11, “Mentor Graphics Precision RTL
Synthesis software Synthesis Support” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Using Synplicity Synplify software Chapter 9, “Synplicity Synplify and Synplify
Pro Support” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Synopsys FPGA Compiler Il Chapter 12, “Synopsys FPGA Compiler Il

software BLIS and the Quartus Il LogicLock Design
Flow” in the Quartus Il Handbook, vol. 1, on
the Altera web site

Controlling Analysis & Synthesis

You can use the following options and features to control Quartus II
Analysis & Synthesis:

m Compiler directives and attributes
B Quartus II logic options
B Quartus II synthesis netlist optimization options

Using Compiler Directives and
Attributes

The Quartus II software supports compiler directives, also called pragmas.
You can include compiler directives, such as translate_on and
translate_off directives, in Verilog HDL or VHDL code as comments.
These directives are not Verilog HDL or VHDL commands; however,
synthesis tools use them to drive the synthesis process in a particular
manner. Other tools, such as simulators, ignore these directives and treat
them as comments.

You can also specify attributes, which are sometimes known as pragmas or
directives, that drive the synthesis process for a a specific design element.

Some attributes are also available as Quartus II logic options.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 61

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

For Information About Refer To

Using compiler directives and “VHDL Language Directives & Attributes”

attributes and “Verilog HDL Language Directives &
Attributes” in Quartus Il Help

Using compiler directives and Chapter 8, “Quartus Il Integrated

attributes with Quartus Il Integrated Synthesis,” in the Quartus Il Handbook,

Synthesis vol. 1, on the Altera web site

Using Quartus Il Logic Options

Quartus II logic options allow you to set attributes without editing the
source code. You can assign individual Quartus II logic options in the
Assignment Editor, and can specify global Analysis & Synthesis logic
options for the project in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu). See Figure 4.

62 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

Figure 4. Analysis & Synthesis Settings Page of Settings Dialog Box

Category:

£

£

- General

- Fileg

- Uger Libraries

- Device

- Timing Reguirements & Options
H- EDA Tool Settings

- Compilation Process

= Analyzis & Synthesis Settings

SYHDL Input

Werilog HDL Input

- Drefault Parameters

- Synthesiz Metlist Optimizations

- Timing &nalyzer

- Diezign Assiztant

- SignalT ap Il Logic Analyzer
- SignalProbe Settings

- Simulatar

H- Softwars Build Settings

- Slratix G¥ Registration

- HardCopy Seftings

Fitter Settings

Specify options far fiting. Nate: The availability of zome options depends on the curent device family
and Fitter.

— Timing-driven compilation

I~ Optinize tming: I Mormal compilation

¥ Optimize hold timing: IID Paths and Minimum TPD Paths j

W Optimize 140 cell regizter placement for timing

r— Fitter Effort
% Standard Fit [highest effart]
= Fast Fit [up to 50% faster compilation / may reduce fmas)

£ Auto Fit [reduce fitter effort after meeting timing requirements)
Desired worst caze slack [margin]: IU nz i

™ Limit to ore fitting atkempt

Seed: |1

More Settings... |

ok I Cancel

ALT

The Quartus II logic options that are available on the Analysis & Synthesis
Settings page allow you to specify that the Compiler should optimize for
speed, area, or perform a “balanced” optimization, which attempts to
achieve the best combination of speed and area. It also provides many other
options, such as options that control the logic level for power-up, the
removal of duplicate or redundant logic, the replacement of appropriate
logic with DSP Blocks, RAM, ROM, open-drain pins, the encoding style for
state machines, and many other options that affect Analysis & Synthesis.

ERA CORPORATION

INTRODUCTION TO QUARTUS Il m 63

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

For Information About Refer To

Using Quartus Il logic options to “Logic Options,” “Creating, Editing, and

control synthesis Deleting Assignments,” and “Specifying
Settings for Default Logic Options” in
Quartus Il Help

Creating a logic option assignment Compilation module in the Quartus Il
Tutorial

Using Quartus Il synthesis options and Chapter 8, “Quartus Il Integrated
logic options that affect synthesis Synthesis,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Quartus Il Synthesis Netlist
Optimization Options

Quartus II synthesis optimization options allow you to set options for
optimizing the netlist during synthesis for many of the Altera device
families. These optimization options are in addition to the optimization that
occurs during a standard compilation, and occur during the Analysis &
Synthesis stage of a full compilation. These optimizations make changes to
your synthesis netlist that are generally beneficial for area and speed. The
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu) allows you to
specify netlist optimization options, which include the following synthesis
optimization options:

B Perform WYSIWYG primitive resynthesis
B Perform gate-level register retiming
m Allow register retiming to trade off Tsu/Tco with Fmax

For more information about synthesis netlist optimization options, refer to
“Using Netlist Optimizations to Achieve Timing Closure” on page 134 in
Chapter 8, “Timing Closure.”

For Information About Refer To

Using Quartus Il synthesis and netlist Chapter 5, “Design Optimization for Altera
optimization options Devices” in the Quartus Il Handbook, vol. 2
on the Altera web site.

64 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING THE DESIGN ASSISTANT TO CHECK DESIGN RELIABILITY

Using the Design Assistant to Check
Design Reliability

The Quartus II Design Assistant allows you to check the reliability of your
design, based on a set of design rules. The Design Assistant is especially
useful for checking the reliability of a design before migrating it for
HardCopy™ devices. The Design Assistant page of the Settings dialog box
4 (Assignments menu), allows you to specify which design reliability
guidelines you want to use when checking your design. See Figure 5.

Figure 5. Design Assistant Page of Settings Dialog Box

x|
Categon:
General Design Assistant

- Files

- Uger Libraries Specily options for the Design Assistant, which checks a design for potential design problems. Mote:

- Device The availability of these options dependz on the curent device family.

- Timing Requirements & Options

[+ EDA Tool Settings I {Run Desion Assistant duing comeiztiord

- Compilation Process
Analysis & Synthesis Settings
- Fitter Settings =--[v| Degign Assigtant configuration rule names -
- Timing Analpzer Clock
- Design Assistant Gated clock should be implemented according to Altera standard scheme
- SighalTap |l Logic Analyzer Inverter should nat be implemented in logic cell
SignalProbe Settings Input clack pin should Fan cut ta only one gated clock
- Simulatar Clock signal sournce should drive only input clock ports
Software Build Settings Clock. signal should be a global signal
- Shratix G Registration Clock. signal source thould not drive registers that are tiggered by different clock e
- HardCopy Settings Reset
Timing closure
Mon-senchronous design structure
Signal race
Aspnchronous clock domaing o
HardCopy miles

- || Aszignment checking hd
| | »
Advanced |

Select the ez you want the Design Assistant to apply to the project.

ey
(E2)

.—|
E:1

ey
(E2)

Canicel |

4

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 65

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE RTL VIEWER

[[& Using the quartus_drc executable

You can also run the Design Assistant separately at the command prompt or in a
script by using the quartus_drc executable. You must run the Quartus Il Fitter
executable quartus_fit before running the Design Assistant.

The quartus_drc executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_drc executable, type one of the following
commands at the command prompt:

quartus_drc -h ¢
quartus_drc -help ¢
quartus_drc --help=<topic name> '

You can also improve design optimization by following good synchronous
design practices and by following Quartus II coding style guidelines.

« ._ Py For Information About Refer To

Using the Quartus Il Design Assistant ~ “Analyzing Designs with the Design
Assistant” and “Overview: Using the Design
Assistant” in Quartus Il Help

Using Quartus Il synthesis options, Chapter 7, “Recommended HDL Coding
following synchronous design Styles” and Chapter 8, “Quartus Il
practices, and following coding style Integrated Synthesis,” in the Quartus Il
guidelines Handbook, vol. 1, on the Altera web site

“AHDL, VHDL, and Verilog HDL Style Guide”
in Quartus Il Help

Analyzing Synthesis Results with
the RTL Viewer

The Quartus II RTL Viewer provides a gate-level schematic view of your
design. To run the RTL Viewer for a Quartus II project, you must first
analyze the design by choosing Start > Start Analysis & Elaboration
(Processing menu). You may also perform Analysis & Synthesis or a perform
a full compilation, because those processes include the Analysis &
Elaboration stage of the compilation flow. After a successful Analysis &

66 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE RTL VIEWER

Elaboration has been performed, you can display the RTL Viewer window
by choosing RTL Viewer (Tools menu). The RTL Viewer includes a
schematic view, and also includes a hierarchy list, which lists the instances,
primitives, pins, and nets for the entire design netlist. See Figure 6.

Figure 6. RTL Viewer Window

;-‘\

filtref

B Instances
[Primnitivess
[l Fing

[..

=]
AI
insts[4]
PRE
[
acoinEtd_yn - o o
chz
clkx2| }
instd IO PTE ENA
et PRE CLR
state_m:inst _nest]]
ck
clk =
in=tS[2)_0UT1 B _—— EHA inzta[s]
PRE
CLR [z
instS[0]_0UT1 3B__—a -] Q-
insts[1]_0UT1 X
IR PT
instsS[3]_0UTH X ENA
CLR [
insts[E]
" PRE
n] Q—
| v
IR PT
EMNA
CLR
) -
<] | M 4

The RTL viewer displays the initial Integrated Synthesis results for Verilog
HDL or VHDL designs, and AHDL Text Design Files (.tdf), Block Design
Files (.bdf), Graphic Design Files (.gdf), or files that are synthesized within
the Quartus II software. For VQM Files or EDIF netlist files that were
generated from other EDA synthesis tools, the RTL Viewer displays the
hierarchy for the atom representations of WYSIWYG primitives.

You can select one or more items in the hierarchy list to highlight in the
schematic view, and vice versa. The RTL Viewer allows you to adjust the
view or focus by zooming in and out to see different levels of detail,
searching through the RTL Viewer for a specific name, moving up or down

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 67

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE RTL VIEWER

in the hierarchy, or going to the source that feeds the selected net. You can
also select some types of nodes in the RTL Viewer and locate them in the
design file.

If a design is large, the RTL viewer partitions it into multiple pages for
display. The RTL Viewer page of the Options dialog box (Tools menu)
allows you to specify options that control how much of the design the RTL
Viewer displays on each page. You can navigate through pages in the RTL
Viewer by using the Next Page and Previous Page buttons or by using the
Go To command (Edit menu).

The Filter command (right button pop-up menu) allows you to filter the
view to show the sources of the selected node, the destinations of the
selected node, both the sources and the destinations of the selected node, or
the paths and nodes between two selected nodes. Each filter you choose
creates a new filtered page in the RTL Viewer; you can then navigate
through the filtered pages and the original page of the design with the
Forward and Back buttons.

If you decide to make changes to your design after you have analyzed it with
the RTL Viewer, you should perform Analysis & Elaboration again so you
can analyze the updated design in the RTL Viewer.

For Information About Refer To

Using the Quartus Il RTL Viewer Chapter 13, “Analyzing Designs with the
Quartus Il RTL Viewer” in the Quartus Il
Handbook, vol. 1, on the Altera web site

68 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 4:

Introduction
Simulating Designs with EDA Tools

Simulating Designs with the Quartus Il
Simulator

Simulating Excalibur Designs

70
71

77
80

Chapter
Four

Simulation

s

[N

CHAPTER 4: SIMULATION
INTRODUCTION

Introduction

You can perform functional and timing simulation of your design by using
EDA simulation tools or the Quartus® II Simulator.

The Quartus II software provides the following features for performing
simulation of designs in EDA simulation tools:

NativeLink® integration with EDA simulation tools
Generation of output netlist files
Functional and timing simulation libraries
PowerGauge™ power estimation
Generation of test bench template and memory initialization files

Figure 1 shows the simulation flow with EDA simulation tools and the

Quartus II Simulator.

Figure 1. Simulation Flow

Quartus Il Simulator
quartus_sim

Waveform files

Test bench
files

from Quartus Il
Fitter

Quartus Il
EDA Netlist Writer
quartus_eda

:

Verilog Output Files (.vo),
VHDL Output Files (.vho),
Standard Delay Format
Output Files (.sdf) &

test bench files (.vt, .vht)

Quartus Il
Waveform Editor

EDA
Simulation Tool
(Functional)

A

Verilog Output
Files, VHDL

Output Files &
test bench files

A

D
D
g

Functional
simulation
libraries

70 m INTRODUCTION TO QUARTUS Il

EDA
Simulation Tool
(Timing)

A

=

Timing simulation
libraries

ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

Simulating Designs with EDA Tools

The EDA Netlist Writer module of the Quartus II software generates VHDL
Output Files (.vho) and Verilog Output Files (.vo) for performing functional
or timing simulation and Standard Delay Format Output Files (.sdo) that are
required for performing timing simulation with EDA simulation tools. The
Quartus II software generates SDF Output Files in Standard Delay Format
version 2.1. The EDA Netlist Writer places simulation output files in a tool-
specific directory under the current project directory.

In addition, the Quartus II software offers seamless integration for timing
simulation with EDA simulation tools through the NativeLink feature. The
NativeLink feature allows the Quartus II software to pass information to
EDA simulation tools, and includes the ability to launch EDA simulation
tools from within the Quartus II software.

Table 1 lists which EDA simulation tools are supported by the NativeLink
feature.

Table 1. Quartus lI-Supported EDA Simulation Tools

Simulation NativeLink
Tool Name Support
Cadence Verilog-XL
Cadence NC-Verilog v
Cadence NC-VHDL v
Model Technology™ ModelSim® v
Model Technology ModelSim-Altera v
Synopsys Scirocco v
Synopsys VCS
Synopsys VSS

[The ModelSim-Altera Software

The Model Technology ModelSim-Altera software is included in Altera® design
software subscriptions for behavioral simulation and HDL test bench support.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 71

CHAPTER 4: SIMULATION

SIMULATING DESIGNS WITH EDA TooLs

Specifying EDA Simulation Tool
Settings

You can select an EDA simulation tool in the New Project Wizard (File
menu) when you create a new project, or in the Simulation page of the
Settings dialog box (Assignments menu). The Simulation page allows you
to select a simulation tool and specify options for the generation of Verilog
and VHDL output files and the corresponding SDF Output File. Figure 2
shows the Simulation page of the Settings dialog box.

Figure 2. Simulation Page

Category:

- General
- Files
- User Libraries
- Device
- Timing A eguirements & O ptions
[=- ED& Tool Settings:
: Desgign Entry & Synthesiz
on
iming Analyziz
Board-Level
Formal Werification
Resynthesis
- Compilation Process
- Analysis & Synthesis Settings
- Fitter Settings
- Timing Analyzer
- Degign Agsizstant
- SignalT ap Il Logic Analyzer
- SignalProbe Settings
- Sirnulataor
- Software Build Settingz
- Stratix G R egistration
- HardCopy Settings

-
[l

el
k)

Specify options for generating output files for uze with other EDA taols.

Tool name: IModeISim [“HODL output from GQuarkus 1]

™ PFun this toal autamatically after compilation

=

Time scale: I 'l

™| Mapillegal Werlog HOL characters

™ Truncate long hieranchy paths

™ Flatten buses into individual nodes

™ Output Exealibur stipe as a gingle module

™ Generate Power Input File

™ Bring out device-wide set/reset signals as ports
™ Maintain hierarchy

[~ Generate netlist for fumctional simulation only

V¥ Mapillegal WHDL characters [this option creates WYHDL 1987-compliant names)

Beset |
Advanced... |

72 m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

Generating Simulation Output Files

You can run the EDA Netlist Writer module to generate Verilog Output Files
and VHDL Output Files by specifying EDA tool settings and compiling the
design. If you have already compiled a design in the Quartus II software,
you can specify different simulation output settings in the Quartus II
software (for example, a different simulation tool) and then regenerate the
Verilog Output Files or VHDL Output Files by using the Start > Start EDA
Netlist Writer command (Processing menu). If you are using the NativeLink
feature, you can also run a simulation after an initial compilation by using
the Run EDA Simulation Tool command (Tools menu).

[[5> Using the quartus_eda executable

You can also run the EDA Netlist Writer separately at the command prompt or in a
script by using the quartus_eda executable.

The quartus_eda executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_eda executable, type one of the following
commands at the command prompt:

quartus_eda -h ¢
quartus_eda --help ¢
quartus_eda --help=<topic name> '

The Quartus II software also allows you to generate the following types of
output files for use in performing functional and timing simulation in EDA
simulation tools:

B Power Estimation Data: You can use EDA simulation tools to perform
a simulation that includes power estimation data. You can direct the
Quartus II software to include power estimation data for the design in
the Verilog HDL or VHDL output file. The EDA simulation tool
generates a Power Input File (.pwf) that you can use in the Quartus II
software to estimate the power consumption of a design.

B Test Bench Files: You can create Verilog Test Bench Files (.vt) and
VHDL Test Bench Files (.vht) from a Vector Waveform File (.vwf) in the
Quartus Il Waveform Editor. Verilog HDL and VHDL Test Bench Files
are test bench template files that contain an instantiation of the top-

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 73

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA ToOLS

74

level design file and test vectors from the Vector Waveform File. You
can also generate self-checking test bench files if you specify the
expected values in the Vector Waveform File.

B Memory Initialization Files: You can use the Quartus II Memory
Editor to enter the initial contents of a memory block, for example,
content-addressable memory (CAM), RAM, or ROM, in a Memory
Initialization File (.mif) or a Hexadecimal (Intel-Format) File (.hex).
You can then export the memory contents as a RAM Initialization
File (.rif) for use in functional simulation with EDA simulation tools.

EDA Simulation Flow

Using the NativeLink feature, you can direct the Quartus II software to
compile a design, generate the appropriate output files, and then
automatically perform the simulation using EDA simulation tools.
Alternatively, you can run EDA simulation tools manually before
compilation (functional simulation) or after compilation (timing simulation)
in the Quartus II software.

Functional Simulation Flow

You can perform a functional or behavioral simulation at any point in your
design flow. The following steps describe the basic flow needed to perform
a functional simulation of a design using an EDA simulation tool. Refer to
Quartus II Help for more information on specific EDA simulation tools. To
perform a functional simulation using EDA simulation tools:

1. Set up the project in the EDA simulation tool.

2. Create a working library.

3. Compile the appropriate functional simulation libraries with the EDA
simulation tool.

4. Compile the design files and test bench files with the EDA simulation
tool.

5. Perform the simulation with the EDA simulation tool.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

NativelLink Simulation Flow

You can use the NativeLink feature to perform the steps to setup and run an
EDA simulation tool automatically from within the Quartus Il software. The
following steps describe the basic flow for using EDA simulation tools with
the NativeLink feature:

1. Specify EDA tool settings in the Quartus I software, either through the
Settings dialog box (Assignments menu), or during project setup,
using the New Project Wizard (File menu).

2. Turn on Run this tool automatically after compilation when
specifying EDA tool settings.

3. Compile the design in the Quartus I software. The Quartus II software
performs the compilation, generates the Verilog HDL or VHDL output
files and corresponding SDF Output Files (if you are performing a
timing simulation), and launches the simulation tool. The Quartus II
software directs the simulation tool to create a working library; compile
or map to the appropriate libraries, design files, and test bench files; set
up the simulation environment; and run the simulation.

Manual Timing Simulation Flow

If you want more control over the simulation, you can generate the
Verilog HDL or VHDL output files and corresponding SDF Output File in
the Quartus II software, and then manually launch the simulation tool to
perform the simulation. The following steps describe the basic flow needed
to perform a timing simulation of a Quartus II design using an EDA
simulation tool. Refer to Quartus II Help for more information on specific
EDA simulation tools.

1. Specify EDA tool settings in the Quartus II software, either through the
Settings dialog box (Assignments menu), or during project setup,

using the New Project Wizard (File menu).

2. Compile the design in the Quartus II software to generate the output
netlist files. The Quartus II software places the files in a tool-specific
directory.

3. Launch the EDA simulation tool.

4. Set up the project and a working directory with the EDA simulation
tool.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 75

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TooLS

5. Compile or map to the timing simulation libraries, and compile the
design and test bench files with the EDA simulation tool.

6. Perform the simulation with the EDA simulation tool.

Simulation Libraries

Altera provides functional simulation libraries for designs that contain
Altera-specific components, and atom-based timing simulation libraries for
designs compiled in the Quartus II software. You can use these libraries to
perform functional or timing simulation of any design with Altera-specific
components in EDA simulation tools that are supported by the Quartus II
software. Additionally, Altera provides pre-compiled functional and timing
simulation libraries for simulation in the ModelSim-Altera software.

Altera provides functional simulation libraries for designs that use Altera
megafunctions and standard library of parameterized modules (LPM)
functions. Altera also provides pre-compiled versions of the altera_mf and
220model libraries for simulation in the ModelSim software. Table 2 shows
the functional simulation libraries for use with EDA simulation tools.

Table 2. Functional Simulation Libraries

Library Name Description

220model.v Simulation models for LPM functions (version 2 2 0)
220model.vhd

220model_87.vhd

220pack.vhd VHDL Component Declarations for 220model.vhd
altera_mf.v Simulation models and VHDL Component Declarations
altera_mf.vhd for Altera-specific megafunctions

altera_mf_87.vhd
altera_mf_components.vhd

In the Quartus II software, the information for specific device architecture
entities and Altera-specific megafunctions is located in postrouting atom-
based timing simulation libraries. The timing simulation library files differ
based on device family and whether you are using Verilog Output Files or
VHDL Output Files. For VHDL designs, Altera provides VHDL Component
Declaration files for designs with Altera-specific megafunctions.

76 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

“ ._ Py For Information About Refer To

Timing Simulation libraries “Altera Postrouting Libraries” in Quartus I
Help
Functional Simulation libraries “Altera Functional Simulation Libraries” in

Quartus Il Help

Performing simulation using the Chapter 1, “Mentor Graphics ModelSim
ModelSim or ModelSim-Altera software Support” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Performing simulation with the VCS Chapter 2, “Synopsys VCS Support” in the
software Quartus Il Handbook, vol. 3, on the Altera
web site

Performing simulation with the NC-Sim Chapter 3, “Cadence NC-Sim Support” in the
software Quartus Il Handbook, vol. 3, on the Altera
web site

Simulating Designs with the
Quartus Il Simulator

You can use the Quartus II Simulator to simulate any design in a project.
Depending on the type of information you need, you can perform a
') functional simulation to test the logical operation of your design, or you can
= perform a timing simulation to test both the logical operation and the worst-
-I_m_ case timing for the design in the target device.

The Quartus II software allows you to simulate an entire design, or to
simulate any part of a design. You can designate any design entity in a
project as the top-level design entity and simulate the top-level entity and all
of its subordinate design entities.

You can specify the type of simulation that should be performed, the time
period covered by the simulation, the source of vector stimuli, and other
simulation options in the Simulator page of the Settings dialog box
(Assignments menu), using the Simulator Settings Wizard (Assignments
menu), or using the Simulator Tool window (Tools menu).

Before starting a simulation, you must generate the appropriate simulation
netlist by either compiling the design for timing simulation or choosing the
Generate Functional Simulation Netlist command (Processing menu) for
functional simulation. In addition, you must create and specify a vector

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 77

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

source file as the source of simulation input vectors. The Simulator uses the
input vectors contained in the vector source file to simulate the output
signals that a programmed device would produce under the same
conditions.

The following steps describe the basic flow for performing either a
functional or timing simulation in the Quartus II software:

1. Specify Simulator settings.

2. If you are performing a functional simulation, choose the Generate
Functional Simulation Netlist command. If you are performing a
timing simulation, compile the design.

3. Create and specify a vector source file.

4. Run the simulation using the Start > Start Simulation command
(Processing menu), the Simulator Tool window, or the quartus_sim
executable.

The Status window shows the progress of a simulation and the processing
time. The Summary Section section of the Report window shows the
simulation results.

[[& Using the quartus_sim executable

You can also run the Simulator separately at the command prompt or in a script by
using the quartus_sim executable.

The quartus_sim executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_sim executable, type one of the following
commands at the command prompt:

quartus_sim -h ¢
quartus_sim --help ¢
quartus_sim --help=<topic name> ¢

Creating Waveform Files
The Quartus II Waveform Editor allows you to create and edit input vectors
for simulation in waveform or text format. Using the Waveform Editor, you

can add input vectors to the waveform file that describe the behavior of the
logic in your design. See Figure 3.

78 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

The Quartus II software supports waveform files in the Vector Waveform
File (.vwf), Vector Table Output File (.tbl), Vector File (.vec), and Simulator
Channel File (.scf) formats. You cannot edit a Simulator Channel File in the
Waveform Editor, but can save it as a Vector Waveform File.

Figure 3. The Quartus Il Waveform Editor

L] M [=]
Master Time Bar: | 1575 ns <| ’l Fainter: | 138 ns Interval | 1223 ns Start; | End: |
ps 10.0 nz 20.0ns |
W I I
Name 1| 157G ns
[clk BO
(1] clkx2 B1{} |] 3
> d u 1E
= et B0
1] reset BD
Lo wyalid B
Fo s riest B
= yr_out B R
1 |

ALTERA CORPORATION

Performing PowerGauge Power Estimation

The Quartus II software allows you to estimate the power consumed by the
current design during timing simulation. You can direct the Simulator to
calculate and report in milliwatts (mW) the internal power, I/O pin power,
and total power consumed by the design during the simulation period. You
can view the results of the PowerGauge power estimation in the Report
window. The Quartus II software also supports web-based power
estimation for some devices.

Using the Simulator Tool

You can also use the Simulator Tool command (Tools menu) to set
Simulator settings, as well as start or stop the Simulator and open the
simulation waveform for the current project. The Simulator Tool window is
similar in purpose to the MAX+PLUS II Simulator. To perform a simulation,
you must first generate a simulation netlist by using the

INTRODUCTION TO QUARTUS Il ®m 79

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

Generate Functional Simulation Netlist button in the Simulator Tool for
functional simulation or by compiling the design if you are performing a
timing simulation. Figure 4 shows the Simulator Tool window.

Figure 4. Simulator Tool Window

2 M=

Simulation mode:

Generate Functional Simulation MNetlist |

Sirnulation inpt: ID:.-’qdesigns;’chiptripa"chiptrip.vwf |

— Simulation period

& Run simulation until all vactor stimuli are used

= End simulation at: I‘IDD ng T

— Simulation option

[~ Automatically add pins to simulation output wavefoms
¥ Check outputs
r Setup and hald/time wiolation detection

™| Glitch detection: I‘I,U hE R

™ Owenwrite simulation inpuit file with simulation results

00:00:00

1.’.1 Start | @ Stop | @- Open | @9 Report

Simulating Excalibur Designs

You can perform a functional simulation of an Excalibur™ device with the
Quartus II Simulator using the bus functional model, or you can use EDA
simulation tools to perform a functional or timing simulation of an Excalibur
device using either the bus functional model or the full-stripe model. You
can also use EDA simulation tools and software debuggers to perform
functional, timing, and hardware co-simulation with the Excalibur Stripe
Simulator (ESS) model.

80 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

Simulating Excalibur Designs in the
Quartus Il Software

The bus functional model emulates the behavior of the AMBA™ high-
performance bus (AHB) in the Excalibur embedded processor stripe of an
Excalibur device. It simulates the interactions between the Excalibur
embedded processor stripe and the PLD over the Stripe-to-PLD Bridge via
the Stripe Master-Port and over the PLD-to-Stripe Bridge via the Stripe
Slave-Port.

You can perform a functional simulation of an Excalibur design before
compilation and synthesis in the Quartus II software. The bus functional
model verifies the functionality of the AHB slaves or masters connected to
the Excalibur stripe bridges. You must first generate an uPCore Transaction
Model Input File (.mbus_in). You can then use the Quartus II Simulator and
the bus functional model to perform a functional simulation of the design
and generate an uPCore Transaction Model Output File (.mbus_out) that
contains the bus transactions.

The following steps describe the basic flow to perform a bus functional
model functional simulation in the Quartus II software:

1. Create a Master Port High-Level Command File.

2. Use the exc_bus_translate utility to create an uPCore Transaction
Model Input File.

3. Specify Simulator settings. You must specify the name of the uPCore
Transaction Model Input File in the Simulator page of the Settings
dialog box (Assignments menu).

4. Run the simulation. The Quartus II Simulator simulates the design and

generates the uPCore Transaction Model Output File, which shows the
results of the bus functional model simulation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 81

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

Using the Bus Functional Model with
EDA Tools

You can use the bus functional model to perform functional or timing
simulation with EDA simulation tools. To use the bus functional model for
simulation using other EDA tools, you need to create bus functional model
simulation files, which include the stripe-to-PLD and PLD-to-stripe bus
transactions.

Once you have generated these files, you can then set up the simulation tool;
compile the appropriate libraries, design files, and test bench files; and run
the simulation. During simulation, the master commands, addresses, and
data values for each transaction are written an output file.

Using the Full-Stripe Model with EDA
Tools

The Excalibur full-stripe model is a complete Register Transfer Level (RTL)
model of the Excalibur embedded processor stripe. It includes the Excalibur
embedded processor core and peripherals (for example, SDRAM Interface,
DPRAM, Timer, Expansion Bus Interface, and UART). All stripe
components are included in the full stripe model with the exception of the
Configuration Logic Master.

You can use the full-stripe model to perform a functional or timing
simulation to verify the functionality and timing of all elements in the stripe
except the configuration logic. Software code can also be co-simulated with
the full-stripe model. You can use the Software Builder to convert the
software source files to memory initialization files for use with EDA
simulation tools.

Using the ESS Model with EDA Tools

The ESS model is a fast stripe simulation model that emulates the function
of the Excalibur embedded processor core, stripe registers, and Stripe-to-
PLD and PLD-to-Stripe bus transactions for simulation of Excalibur designs.

The ESS model contains a functionally accurate model of the ARM 922T
processor; watchdog timer, timer and interrupt controller; an embedded

UART; and an interface to the PLD. It supports booting from flash memory

82 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

and configuration from serial files loaded into on-chip memory and has an
interface to the ARM Development Suite (ADS) AXD and AWD software
debuggers and the GDB GNU debugger.

You can use the ESS model with the ModelSim PE or SE software to perform
both a functional hardware simulation to model the Stripe-to-PLD and PLD-
to-Stripe bridges and PLD interface, and for software and hardware co-
simulation, by connecting the AXD software debugger (provided as a part
of the ARM Development Suite) or GNU debugger to the Excalibur
embedded processor core to control the execution of the software code while
simulating the hardware design in the ModelSim software.

The ESS model also allows you to simulate Verilog HDL designs with the
ModelSim PE/SE and ModelSim-Altera software, and simulate VHDL
designs with the ModelSim SE software. The ESS model can be targeted
from the AXD, ADW, Mentor Graphics XRAY, and GNUPro arm-elf-gdb
software debuggers on PCs, and the GNUPro arm-elf-gdb debugger on
Solaris workstations.

“ .- Py For Information About Refer To

Bus functional model Excalibur Bus Functional Model User Guide
on the Altera web site

Using the bus functional model and “Overview: Using the ModelSim Software
full-stripe model in EDA simulation with the Quartus Il Software” in Quartus Il
tools Help

Excalibur Hardware Design Tutorial on the
Altera web site

Using SOPC Builder with Excalibur Devices
Tutorial on the Altera web site

Application Note 240 (Simulating Excalibur
Systems) on the Altera web site

Performing simulation or co-simulation “Overview: Using the ModelSim Software
with the ESS Model with the ESS Model” in Quartus Il Help

Excalibur Stripe Simulator User Guide on
the Altera web site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 83

What’s in Chapter 5:

Introduction

Analyzing Fitting Results
Optimizing the Fit

Performing Incremental Fitting

Preserving Assignments Through
Back-Annotation

86
88
93
99

99

Chapter
Five

Place & Route

o

&
3
5

CHAPTER 5: PLACE & ROUTE

INTRODUCTION

Introduction

The Quartus® II Fitter, which is also known as the PowerFit™ Fitter,
performs place and route, which is also referred to as “fitting” in the
Quartus Il software. Using the database that has been created by Analysis &
Synthesis, the Fitter matches the logic and timing requirements of the project
with the available resources of a device. It assigns each logic function to the
best logic cell location for routing and timing, and selects appropriate
interconnection paths and pin assignments. Figure 1 shows the place and
route design flow.

Figure 1. Place and Route Design Flow

from Quartus Il

Synthesis

to Quartus Il
—_ i Timing Analyzer,
i e = | Quartus Il Fitter |——» " ’
Analysis & = . quartus_fit Simulator, EDA
] g - Netlist Writer, or
Compiler Assembler

Database

Files (.cdb) v

Quartus Il
Design Assistant

?; quartus_drc ?

Quartus Il Report Files
Settings (.rpt, .htm)
Files (.gsf)

If you have made resource assignments in your design, the Fitter attempts to
match those resource assignments with the resources on the device, tries to
meet any other constraints you may have set, and then attempts to optimize
the remaining logic in the design. If you have not set any constraints on the
design, the Fitter automatically optimizes it. If it cannot find a fit, the Fitter
terminates compilation.

In the Compilation Process page of the Settings dialog box (Assignments
menu), you can specify whether you want to use a normal compilation or
smart compilation. With a “smart” compilation, the Compiler creates a
detailed database that can help future compilations run faster, but may
consume extra disk space. During a recompilation after a smart compilation,
the Compiler evaluates the changes made to the current design since the last
compilation and then runs only the Compiler modules that are required to
process those changes. If you make any changes to the logic of a design, the
Compiler uses all modules during processing. This option is similar to the
MAX+PLUS® II Smart Recompile command (Processing menu).

86 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
INTRODUCTION

You can start a full compilation in the Quartus II software, which includes
the Fitter module, or you can start the Fitter separately. You must run
Analysis & Synthesis successfully before starting the Fitter separately.

Using the quartus_fit executable

You can also run the Fitter separately at the command prompt or in a script by using
the quartus_fit executable. You must run the Analysis & Synthesis executable
quartus_map before running the Fitter.

The quartus_fit executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_fit executable, type one of the following
commands at the command prompt:

quartus_fit -h ¢
quartus_fit -help ¢
quartus_fit --help=<topic name> '

The Status window records the time spent processing in the Fitter during
project compilation, as well as the processing time for any other modules
you may have been running. See Figure 2.

Figure 2. Status Window

B x|
Module Time
Full Compilation 0:00.01
- finalysis f Synthesiz 0:00.01
- Fitter 00:00:00
- Agzembler 00:00:00

00:00:00
00:00:00

- Timing Analyzer
- E Dl Metlist “writer

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 87

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

Analyzing Fitting Results

The Quartus II software offers several tools to help you analyze the results
of compilation and fitting. The Message window and Report window
provide fitting results information. The Floorplan Editor and Chip Editor
allow you to view fitting results and make adjustments, if necessary. In
addition, the Design Assistant helps you check the reliability of a design
based on a set of design rules.

Using the Messages Window to View
Fitting Results

The Processing tab of the Messages window and the Messages section of the
Report window or Report File display the messages the Fitter generates. See
Figure 3.

Figure 3. Messages Window

fé,) Info: Device migration iz not selected. If you intend to use device migration later, wou ma;l
’é,) Info: User Assigned Global Signals Promation Operation completed.
’é,) Infoc Automatically promoted zignal clk to use Global clock in Pin A3
’5,) Infor Autamatically promoted signal clke2 to uze Global clock in Pin A1
’é,) Info: Autamatically prormoted signal reset to use Global clack in Pin 15 |
‘A Infor Auto Global Promotion Dperation completed.
"i,) Info: 140 Pin Placement Operation completed.
’é,) Info: Fitter placement was successful
’é,) Info: Elstimated mozt crtical path iz reqister bo register delay of 1.391 ns "I
4 3

Processing ,'{ Systern [

In the Messages window, you can choose Help from the right button pop-
up menu to get Help on a particular message.

If you want to filter the messages that appear in the Messages window, you
can set options in the Processing tab of the Options dialog box (Tools menu)
that control the display of information and /or warning messages. The right
button pop-up menu of the messages window also provides commands that
let you control the display of warning messages, critical messages,
information messages, and extra information messages.

88 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

If the message has a source in the design that you can locate, you can right-
click the message and then choose Locate (right button pop-up menu). The
Utility Windows > Message Locations command (View menu) also
displays the source(s) of a message.

“ .. - For Information About Refer To

Viewing messages “Viewing Messages” in Quartus Il Help
Locating the source of a message Compilation module of the Quartus Il
Tutorial

Using the Report Window or Report
File to View Fitting Results

way the Fitter performed place and route for your design. It includes several
sections that show resource usage. It also lists error messages that were
generated by the Fitter, as well as messages for any other module you were
running.

g The Report window contains many sections that can help you analyze the

By default, the Report window opens automatically when you run the Fitter
or any other compilation or simulation module; however, you can specify
that it should not open automatically by turning off Automatically open the
Report window before starting a processing task if the appropriate Tool
window is not already open in the Processing page of the Options dialog
box (Tools menu). Also, if the Compiler Tool window is open, the Report
window does not open automatically, but clicking on the Report File icon for
each module displays the report for that module. When the Fitter is
processing the design, the Report window continuously updates with new
information. If you stop the Fitter, the Report window contains only the
information created prior to the point at which you stopped the Fitter. See
Figure 4.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 89

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

Figure 4. Fitter Section of the Report Window

Ei
(=

P B Legal Motice

-~ &ZHEE Flow Summary

- pE Flow Settings

- 58 Flow Elapsed Time
B Flow Log

t-Eh 1] Analysis & Syrthesis
- &S24 Fitter

=5 Fitter Summary
S5 Fitter Settings
--¢ZhEmR Fitter Device Options
& Fitter Equations
@@' Floorplan *iew

& Pin-Out File
=-&HZ3 Resource Section

% Compilation Report =

I [=]

Fitter Status

Rievizion Mame
Top-lewvel Entity Mame
Family

Device

Tatal logic elements
Total ping

Total memony bits

Successful - Tue Dec 16 13:57:08 2003
filkref

filkref

Shratix G

EP15G=10CFE72CE

102 /1057001 %)

22 MEBE)

0/920448 (0%

" &SHER Fitter Resource Usage Summa DSP black 3-bit elements 0/43[0%
- SHEB Input Pins Total PLL: 0/5(0%)
- Dutput Pins Total DLLs 0/2(0%]
B 1/0 Bank Usage
BB Al Package Pins
@% Output Pin Load For Reported
- ¢=HEE8 Fitter Resource Utilization by E
. A=HEE Nielau Chain Summar
« I _»I’I 4 | »

20

INTRODUCTION TO QUARTUS Il

The Quartus II software automatically generates text and HTML versions of
the Report window, depending on options you specify in the Processing
page of the Options dialog box (Tools menu).

« ._ Py For Information About Refer To

“Report Window & File Format” in Quartus Il
Help

Report Window sections

Using the Report Window “Overview: Viewing the Results of a
Compilation or Simulation in the Report

Window” in Quartus Il Help

Viewing the compilation report Compilation module of the Quartus Il

Tutorial

ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

Using the Floorplan Editor to Analyze
Results

After you run the Fitter, the Floorplan Editor displays the results of place
and route. You can view the non-editable (read-only) Last Compilation
floorplan, which shows the resource assignments and routing made during
the last compilation. In addition, you can back-annotate the fitting results to
preserve the resource assignments made during the last compilation. The
editable Timing Closure floorplan allows you to view logic placement made
by the Fitter and/or user assignments, make LogicLock™ region
assignments, and view routing congestion. See Figure 5.

Figure 5. The Floorplan Editor

& _[ofx]
Chip name: [filr=f [EP1510F780C5) =l
32 m 34 | 35 m 37 | :I
] — N] u == —]
- I 5 L :
= am = = =
0 B P ua B o B oo

The Floorplan Editor allows you to
view resource usage and routing

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 91

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

If you compile a design that is targeted for an Excalibur™ device, you can
also view the Excalibur embedded processor stripe in the Floorplan Editor.
The stripe is located between the logic cells and pins, and contains interfaces
to the embedded logic for the microprocessor, as well as to the dual-port
RAM.

Resource usage in the Floorplan Editor is color coded. Different colors
represent different resources, such as unassigned and assigned pins and
logic cells, unrouted items, MegaLAB™ structures, columns, and row
FastTrack® fan-outs. The Floorplan Editor also provides different floorplan
views that show the pins and interior structure of the device.

To edit assignments in the Floorplan Editor, you can click a resource
assignment and drag it to a new location. While dragging a resource in the
Floorplan Editor, you can use rubberbanding to display a visual
representation of the number of routing resources affected by the move.

You can view the routing congestion in a design, view routing delay
information for paths, and view connection counts to specific nodes. The
Floorplan Editor also allows you to view the node fan-out and node fan-in
for specific structures, or view the paths between specific nodes. If
necessary, you can change or delete resource assignments. For more
information on using the Floorplan Editor, refer to “Using the Timing
Closure Floorplan” on page 130 in Chapter 8, “Timing Closure.”

If you want to view more fitting details and make additional fitting
adjustments, the Chip Editor reveals additional details about design
placement and routing that are not visible in the Floorplan Editor, and
allows you to make changes by using the Resource Property Editor and
Change Manager. For more information, refer to “Chapter 11: Engineering
Change Management” on page 167.

For Information About Refer To

Viewing assignment and routing “Overview: Working with Assignments in

information in the Floorplan Editor the Floorplan Editor” and “Overview:
Viewing Routing Information” in Quartus Il
Help

Viewing the fit in the Floorplan Editor Chapter 6, “Timing Closure Floorplan” in
Quartus Il Handbook, vol. 2, on the Altera
web site

Compiler module of the Quartus Il Tutorial

92 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Using the Design Assistant to Check
Design Reliability

The Quartus II Design Assistant allows you to check the reliability of your

design, based on a set of design rules, to determine whether there are any

issues that may affect fitting or design optimization. The Design Assistant

page of the Settings dialog box (Assignments menu) allows you to specify
i which design reliability guidelines to use when checking your design. For

more information, refer to “Using the Design Assistant to Check

Design Reliability” on page 65 in Chapter 3, “Synthesis.”

Optimizing the Fit

Once you have run the Fitter and have analyzed the results, you can try
several options to optimize the fit:

B Using location assignments
B Setting options that control place and route
B Using the Design Space Explorer

Using Location Assignments

You can assign logic to physical resources on the device, such as a pin, logic
cell, or Logic Array Block (LAB), by using the Floorplan Editor or the
Assignment Editor in order to control place and route. You may want to use
the Floorplan Editor to edit assignments because it gives you a graphical
view of the device and its features. If you want to create new location
assignments, you may want to use the Assignment Editor, which allows you
to create several node-specific assignments at once. In addition to using the
Floorplan Editor or Assignment Editor to create assignments, you can also
use Tcl commands. If you want to specify global assignments for the project,
you can use the Settings dialog box (Assignments menu). For more
information about specifying initial design constraints, refer to “Specifying
Initial Design Constraints” on page 46 in Chapter 2, “Design Entry.”

Once you create an assignment, you can edit it in the Assignment Editor or

the Floorplan Editor. After compilation, you can use the Floorplan Editor to
edit existing resource assignments to pins, logic cells, rows, columns,

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 93

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

regions, MegaLAB structures, and LABs. You can use the Floorplan Editor,
the LogicLock Regions window, or the LogicLock Region Properties dialog
box (Assignments menu) to assign nodes or entities to LogicLock regions.

The Floorplan Editor provides different views of the device and helps you
make precise assignments to specific locations. You can also view equations
and routing information, and demote assignments by dragging and
dropping assignments to various regions in the Regions window. If your
design has too many constraints that prevent it from fitting in the device,
you may also be able to optimize fitting by removing some of the location
assignments and allowing the Fitter to place the logic.

Setting Options that Control Place &
Route

You can set several options that control the Fitter and may affect place and
route:

m Fitter options
m Fitting optimization and physical synthesis options
B Individual and global logic options that affect fitting

Setting Fitter Options

The Fitter Settings page of the Settings dialog box (Assignments menu)
allows you to specify options that control timing-driven compilation and
compilation speed. You can specify whether the Fitter should try to use
registers in I/O cells (rather than registers in regular logic cells) to meet
timing requirements and assignments that relate to I/O pins. You can
specify whether you want the Fitter to use standard fitting, which works
hardest to meet your fyjax timing constraints, to use the fast fit feature,
which improves the compilation speed but may reduce the fyax, or to limit
fitting to only one attempt, which may also reduce the fyjax.

Setting Physical Synthesis Optimization Options

The Quartus II software allows you set options for performing physical
synthesis to optimize the netlist during fitting. You can specify physical
synthesis optimization options in the Physical Synthesis Optimizations
page under Fitter Settings in the Settings dialog box (Assignments menu).

94 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Physical synthesis optimization options include the following options:

B Perform physical synthesis for combinational logic
B Physical synthesis for registers:

— Perform register duplication

— Perform register retiming

For more information about physical synthesis options, refer to “Using
Netlist Optimizations to Achieve Timing Closure” on page 134 in Chapter 8,
“Timing Closure.”

“ .- - For Information About Refer To

Using Quartus Il physical synthesis Chapter 7, “Netlist Optimizations & Physical
optimizations Synthesis” in the Quartus Il Handbook,
vol.2, on the Altera web site

Setting Individual Logic Options that Affect Fitting

Quartus II logic options allow you to set attributes without editing the
source code. You can specify Quartus II logic options for individual nodes
and entities in the Assignment Editor (Assignments menu) and can specify
global default logic options in More Fitter Settings dialog box, which is
available by clicking More Settings in the Fitter Settings page of the
Settings dialog box (Assignments menu). For example, you can use logic
options to specify that the signal should be available throughout the device
on a global routing path, specify that the Fitter should create parallel
expander chains automatically, specify that the Fitter should automatically
combine a register with a combinational function in the same logic cell, also
known as “register packing,” or limit the length of carry chains, cascade
chains, and parallel expander chains.

« ._ Py For Information About Refer To

Using Quartus Il logic options to “Logic Options,” “Creating, Editing &

control place and route Deleting Assignments,” and “Specifying
Settings for Default Logic Options” in
Quartus Il Help

Using Quartus |l Fitter optimization “Optimizing Netlists During Synthesis &
options Fitting” in Quartus Il Help

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 95

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

926

Using the Design Space Explorer

Another way to control Quartus II fitting is to use the Design Space
Explorer (DSE) Tcl script, dse.tcl, that you can run from the command line
with the quartus_sh executable to optimize your design. The DSE interface
allows you to explore a range of Quartus II options and settings
automatically to determine which settings should be used to obtain the best
possible result for the project.

You can specify the level of change you will allow DSE to make, your
optimization goals, the target device, and the allowable compilation time.
See Figure 6.

Figure 6. Design Space Explorer Interface

IS [=] B3

File Processing Options Help

— Project Settings

Project Marne: Ifir_filler
Family: IStlatiH [Ex
Revizion Marne: |filtref
Sesds: 13574

[~ Project uses Quartus || Integrated Synthesis

— Exploration Settings

" Search for Best &rea

% Seanch for Best Performance

Effort Level: IMedium [Extra Effort Space] j

" Advanced Search

| Quartuz Il Yersion 4.0 Intermal Build 146 10427/2003 5J Full Yersion

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

DSE provides several exploration modes, which are listed under
Exploration Settings in the DSE window:

B Search for Best Area
B Search for Best Performance (allows you to specify an effort level)
B Advanced Search

Selecting the Advanced Search option opens the Advanced Search dialog
box, which allows you to specify additional options for exploration space,
optimization goal, and search method. See Figure 7.

Figure 7. Advanced Search Dialog Box for DSE

7éAdvanced Search... -lalx|

— Exploration Space

(Basic Space =

A zimple zeed sweep.

— Optimization Goal

|Dptimize for Speed j

Chooze the best zettings for your dezign bazed on the best worst-caze
slack valug in your design.

— Search Method

IEHhauslive Search of Explaration Space j

A eshaustive search of vour exploration space.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 97

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Running the Design Space Explorer

You can run DSE in graphical user interface mode by typing the following command
at a command prompt:

quartus_sh --dse ¢

You can run DSE in command-line mode by typing the following command at a
command prompt:

quartus_sh -t dse ¢

For help on DSE options, type quartus_sh --help=dse ' at command prompt, or
choose Show Documentation (Help menu) in the DSE window.

You should not run DSE from within the Quartus Il graphical user interface.

Many of the Exploration Space modes allow you to specify the degree of
effort you want DSE spend in fitting the design; however, increasing the
effort level usually increases the compilation time. Custom exploration
mode allows you to specify various parameters, options, and modes and
then explore their effects on your design.

The Signature modes allow you to explore the effect of a single parameter on
your design and its trade-offs for fyprax, slack, compile time, and area. In the
Signature modes, DSE tests the effects of a single parameter over multiple
seeds, and then reports the average of the values so you can evaluate how
that parameter interacts in the space of your design.

DSE also provides a list of Optimization Goal options, which allow you to
specify whether DSE should optimize for area, speed, or for negative slack
and failing paths.

In addition, you can specify Search Method options, which provide

additional control over how much time and effort DSE should spend on the
search.

98 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
PERFORMING INCREMENTAL FITTING

“ ._ Py For Information About Refer To

Using the Design Space Explorer Chapter 8, “Design Space Explorer” in the
Quartus Il Handbook, vol. 2, on the Altera
web site

Parameters and settings for optimizing Chapter 5, “Design Optimization for Altera
performance Devices” in the Quartus Il Handbook, vol. 2,
on the Altera web site

Performing Incremental Fitting

If you have made a change that affects only a few nodes, you can also avoid
running a full compilation by using incremental fitting. Incremental fitting
allows you to run the Fitter module of the Compiler in a mode that attempts
to preserve the fitting results of the previous compilation. Incremental
fitting attempts to reproduce the results of the previous compilation as
closely as possible, which prevents unnecessary changes in the timing
results, and because it reuses the results of the previous compilation, it
usually requires less compilation time than standard fitting.

You can turn on incremental fitting by choosing the Start > Start
Incremental Fitting command (Processing menuy).

Running Incremental Fitting from the Command Line

You can also run incremental fitting with the quartus_fit executable by typing the
following command at the command prompt:

quartus_fit <project name> --incremental_fitting ¢

Preserving Assignments through
Back-Annotation

You can preserve resource assignments from the last compilation by back-
annotating assignments to any device resource. You can back-annotate all
the resource assignments in a project; you can also back-annotate the size

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 99

CHAPTER 5: PLACE & ROUTE
PRESERVING ASSIGNMENTS THROUGH BACK-ANNOTATION

and location of LogicLock regions. You can specify assignments to back-
annotate in the Back-Annotate Assignments dialog box (Assignments
menu).

The Back-Annotate Assignments dialog box allows you to select the type of
back-annotation: Default type or Advanced type. See Figure 8.

Figure 8. Back-Annotate Assignments Dialog Box

Sack ametsionvps. [GEEUII <]

O

D evice azsignment .
Back annotation type:
Fin & device assignments i I.t’-‘n.dvanced j

Q

@ Pin. cel & device assignments — Assighments bo back-annotate
Demate cell assignme -

) Pin. cell, routing & device assig Device

O

Delay chains O Delay chains
LogicLock regions: |“ | Eegion Filter ||
O Lock size and origin
Modes: [* | ModeFilter |

Agzignment type
® Create assignments

4| (O Remove assignments
Finz
— Sawve intermediate synthesis results — O Demote pin sssignments to 140 bark

Logic cell:
O Demote cell assignments to L&Bs

File harne: ID:;"qdesignsx’lutoria Regizter

Combinatarial

W Save a nodelevel netlist into a4

Ré
512
b 4K
Rk
[5P black
Back-Annotate Fresvent further netlist aptirmization
Assignments O Routing
dialog box (Default
type) — Save intermediate synthesis results
¥ Save a node-level netlizt into a YWerilog Quartuz Mapping File
ﬁzggﬁ;’;ﬂgz’a o g— File name: [0 /qdesigns/tutonal/atam_netlists et wam _l
box (Advanced

type) ok I Cancel |

A

100 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
PRESERVING ASSIGNMENTS THROUGH BACK-ANNOTATION

The Back-Annotate Assignments (Default type) dialog box allows you to
“demote” pin and/or logic cell assignments to less restrictive location
assignments so that you can allow the Fitter more freedom in rearranging
assignments. The Back-Annotate Assignments (Advanced type) dialog box
allows you to do everything that the Default back-annotation type allows
you to do, as well as back-annotate LogicLock regions, and optionally the
nodes and routing within them. The Advanced back-annotation type also
provides many options for filtering based on region, path, resource type,
and so on, and allows you to use wildcards. You should use only one type
of back-annotation or the other, but not both. If you are not sure which type
to use, Altera recommends that you use the Advanced back-annotation type
for most situations because it offers more options, especially if you are using
LogicLock regions. For more information about using back-annotation with
LogicLock regions, refer to “Back-Annotating LogicLock Region
Assignments” on page 110 in Chapter 6, “Block-Based Design.”

“ .- Py For Information About Refer To

Back-annotating location assignments “Back-Annotating Assignments for a
Project” in Quartus Il Help

Back-annotating LogicLock region “Back-Annotating a LogicLock Region” in
assignments Quartus Il Help

Back-annotating LogicLock placement LogicLock module of the Quartus Il Tutorial

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 101

What’s in Chapter 6:

Introduction

Quartus Il Block-Based Design Flow
Using LogicLock Regions

Saving Intermediate Synthesis Results
Using LogicLock with EDA Tools

104
104
106
109
113

Chapter
Six

Block-Based Design

L

CHAPTER 6: BLOCK-BASED DESIGN

INTRODUCTION

Introduction

-

The Quartus® II LogicLock™ feature enables a block-based design flow by
allowing you to create modular designs, designing and optimizing each
module separately before incorporating it into the top-level design.

LogicLock regions are flexible, reusable constraints that increase your ability
to guide logic placement on the target device. You can define any arbitrary
rectangular region of physical resources on the target device as a LogicLock
region. Assigning nodes or entities to a LogicLock region directs the Fitter to
place those nodes or entities inside the region during fitting.

LogicLock regions support team-oriented, block-based design by enabling

you to optimize logic blocks individually, and then import them and their

placement constraints into a larger design. The LogicLock methodology also
promotes module reuse, because modules can be developed separately and
then constrained to LogicLock regions to be used in other designs with no

loss in performance, allowing you to leverage resources and shorten design
cycles.

Quartus Il Block-Based Design Flow

In traditional top-down design flows, there is only one netlist for the design.
In a top-down design flow, individual modules of the design can have
different performance in the overall design than when implemented on their
own. In bottom-up block-based design flows, there are separate netlists for
each module. This allows designers to create block-based designs, where
each module is optimized independently and then incorporated into the
top-level design. You can use block-based design in the following design
flows:

B Modular design flow: In the modular design flow, you divide a design
into a top-level design that instantiates separate submodules. You can
develop each module separately and then incorporate each module
into the top-level design. Placement is determined manually by you or
by the Quartus II software.

B Incremental design flow: In the incremental design flow, you create
and optimize a system, and then add future modules with little or no
effect on the performance of the original system.

104 m INTRODUCTION TO QUARTUS I ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
QUARTUS |l BLOCK-BASED DESIGN FLOW

B Team-based design flow: In the team-based design flow, you partition
a design into separate modules, and instantiate and connect the
modules in a top-level design. Other team members then separately
develop the lower-level modules, creating separate projects for each
module, and using the assignments developed for the top-level design.
Once the lower-level modules are complete, they are imported into the

top-level design, which then undergoes final compilation and

verification.

In all three design flows, you can preserve performance at all levels of
development by partitioning designs into functional blocks, organized
according to the physical structure of the circuit or by critical paths. Figure 1
illustrates the basic block-based design flow.

Figure 1. Block-Based Design Flow

Design, verify, & lock
individual modules

Module A —_
Module B 3
Module C Eg

||_|||

Quartus Il
| Compiler Database
quartus_cdb

Module C

Top-level Design

Module B

Module A

r———

ALTERA CORPORATION

Module A

Verilog Quartus Mapping
File (.vam) & Quartus Il
Settings File (.gsf)

Module B
VQM File & QSF

Module C
VQM File & QSF

| ITTT | ITIT
I m I

L s e |

Integrate individual modules
into top-level design

I‘
I

INTRODUCTION TO QUARTUS Il

m 105

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGIcLOoCK REGIONS

Using LogicLock Regions

A LogicLock region is defined by its size (height and width) and location on
the device. You can specify the size and location of a region, or direct the
Quartus II software to create them automatically. Table 1 lists the major
properties of LogicLock regions that you can specify in the Quartus II
software.

Table 1. LogicLock Region Properties

Property

Values

Behavior

State

Floating or
Locked

Floating regions allow the Quartus Il software to
determine the region’s location on the device. Locked
regions have a user-defined location. Locked regions
are shown in the floorplan with a solid boundary and
floating regions shown by a dashed boundary in the
floorplan. A locked region must have a fixed size.

Size

Auto or Fixed

Auto-sized regions allow the Quartus Il software to
determine the appropriate size of a region given its
contents. Fixed regions have a user-defined shape and
size.

Reserved

On or Off

The reserved property allows you to define whether
the Quartus Il software can use the resources within a
region for entities that are not assigned to the region.
If the reserved property is on, only items assigned to
the region can be placed within its boundaries.

Enforcement

Hard or Soft

Soft regions give more deference to timing

constraints, and allow some entities to leave a region
if it improves the performance of the overall design.
Hard regions do not allow the Quartus Il software to
place contents outside the boundaries of the region.

Origin

Any Floorplan
Location

The origin defines the placement of the LogicLock
region in the floorplan.

106 =

INTRODUCTION TO QUARTUS Il

With the LogicLock design flow, you can define a hierarchy for a group of
regions by declaring parent and child regions. The Quartus II software
places child regions completely within the boundaries of a parent region.
You can lock a child module relative to its parent region without
constraining the parent region to a locked location on the device.

ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGICLOCK REGIONS

You can create and modify LogicLock regions using the Floorplan Editor,
the LogicLock Regions window (Assignments menu), the Hierarchy tab of
the Project Navigator, or by using Tcl scripts. Once you have created a
LogicLock region, you can also place logic within that region with the
Assignment Editor. All LogicLock attributes and constraint information
(clock settings, pin assignments, and relative placement information) are
stored in the Quartus II Settings File (.qsf) for the specific project.

You can use the Floorplan Editor to create and edit LogicLock region
assignments. You can draw LogicLock regions in the Timing Closure
floorplan with the Create New Region button and then drag and drop nodes
from the floorplan view, the Node Finder, or the Hierarchy tab of the Project
Navigator.

After you have created a LogicLock region, you can use the LogicLock
Regions window to view all of the LogicLock regions in your design,

including size, state, width, height, and origin. You can also edit and add
new LogicLock regions. See Figure 2.

Figure 2. LogicLock Regions Window

Reqion hame Size State Width | Height Origin
= [y LogicLock Regions
-1 Root_region Fixed Locked 34 13 LAB_ 1 a1
S <<newsy |
-1 Region_0 ALt Floating 1 1 LB B 1
-1 Region_1 Auta Floating 17 1 LAB_1_A1
-1 Region_2 Auta Floating 17 1 LAB_1_A1
-1 Region_3 Auta Floating 17 1 LAB_1_A1

You can also use the LogicLock Regions Properties dialog box to edit
existing LogicLock regions, open the Back-Annotate Assignments dialog
box to back-annotate all nodes in a LogicLock region, view information on
the LogicLock regions in the design, and determine which regions contain
illegal assignments.

In addition, you can add path-based assignments (based on source and

destination nodes), wildcard assignments, and Fitter priority for path-based
and wildcard assignments to LogicLock regions. Setting the priority allows

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 107

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGIcLOoCK REGIONS

you to specify the order in which the Quartus Il software resolves conflicting
path-based and wildcard assignments. You can open the Priority dialog box
from the LogicLock Region Properties dialog box. See Figure 3.

Figure 3. LogicLock Region Properties Dialog Box

Cortents | Size | Locationl

Specify nodes, entities, and path-based assignments for the selected LogicLock region.

Members:

Design Element Assigned | Add Node... |
o filter:filker_i3

Add Path... |

Edit Fath. |

[elete |

Eriority.... |

Back-&nnotate Contents Delete Back-annotated Assignments

Back-annotated nodes:

Back-annotated Mode | Mode Location |

™| Dizable back-annotated node [acations Content status: [1a Back Annotation

™ Beserve unused logic cell:

Ok Cancel

After you have performed an analysis and elaboration or a full compilation,
the Quartus Il software displays the hierarchy of the design in the Hierarchy
tab of the Project Navigator. You can click any of the design entities in this
view and create new LogicLock regions from them, or drag them into an
existing LogicLock region in the Floorplan Editor.

Altera also provides LogicLock Tcl commands to assign LogicLock region
content, at the command line or in the Quartus II Tcl Console window. You
can use the provided Tcl commands to create floating and auto-size
LogicLock regions, add a node or a hierarchy to a region, preserve the
hierarchy boundary, back-annotate placement results, import and export
regions, and save intermediate synthesis results.

108 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

“ ._ Py For Information About Refer To

Using LogicLock with the Quartus Il Chapter 9, “LogicLock Design
software Methodology,” in the Quartus Il Handbook,
vol. 2, on the Altera web site

“Overview: Using LogicLock Regions” in
Quartus Il Help

The LogicLock module in the Quartus Il
Tutorial

Saving Intermediate Synthesis
Results

You can save synthesis results for individual entities in conjunction with the
block-based LogicLock design flows by creating a Verilog Quartus Mapping
File (.vqm) for an entity in a design, with a corresponding QSF that contains
the LogicLock constraint information for the entity.

You can design a block of custom logic or instantiate a block of pre-verified
Intellectual Property (IP), make assignments to that block, verify
functionality and performance, lock the block to maintain this placement
and performance, and then export the block to be imported into another
design. In this way, blocks can be designed, tested, and optimized
individually and can maintain their performance when integrated into a
larger design.

In addition, by saving intermediate synthesis results into a VQM File and
replacing the entity with the VQM File in the project when you import the
assignments, you ensure that the node names synthesized in the new project
correspond to the node names in the imported assignments.

The following steps describe the basic flow for saving intermediate synthesis
results as a VQM File, back-annotating assignments, and exporting and
importing QSFs for designs that contain LogicLock regions:

1. Specify that the Quartus II software should save the intermediate
synthesis results as a VQM File by specifying the name of the VQM File
in the Compilation Process page of the Settings dialog box
(Assignments menu) or in the Back-Annotate Assignments (Advanced
type) dialog box (Assignments menu).

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 109

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

2. Create LogicLock regions.

3. Compile the design to generate the VOM File or use the Start > Start
VOM Writer command (Processing menu) to generate the VOQM File
after an initial compilation.

4. Use the Advanced Back-Annotate Assignments (Advanced type)
dialog box to lock the logic placement in the LogicLock region(s).

5. Export the LogicLock region assignments to a QSF by using the
LogicLock Regions > Export LogicLock Regions command
(Assignments menu).

6. You can then instantiate the module in the VQM File into a top-level
design and import the LogicLock region assignments by using the
LogicLock Regions > Import LogicLock Regions command
(Assignments menu).

[[& Using the quartus_cdb executable

You can also save intermediate synthesis results as a VQM File, back-annotate
assignments, and export and import LogicLock regions separately at the command
prompt or in a script by using the quartus_cdb executable.

If you want to get help on the quartus_cdb executable, type one of the following
commands at the command prompt:

quartus_cdb -h ¢
quartus_cdb --help ¢
quartus_cdb --help=<topic name> '

Back-Annotating LogicLock Region
Assignments

You can use the Back-Annotate Assignments (Advanced Type) command
to lock the logic placement into LogicLock regions in a design before
exporting the assignments for use in a top-level design. Back-annotation
allows you to maintain the performance of a LogicLock region when
importing the region and its assignments into a top-level design.

You must use the Back-Annotate Assignments (Advanced Type) command

to back-annotate LogicLock region assignments, and you can also use it to
back-annotate designs that do not include LogicLock region assignments.

110 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

For more information on back-annotating assignments, refer to “Preserving
Assignments through Back-Annotation” on page 99 in Chapter 5, “Place &
Route.”

Exporting & Importing LogicLock
Assignments

The LogicLock Regions > Export LogicLock Regions and LogicLock
Regions > Import LogicLock Regions dialog boxes (Assignments menu)
allow you to optimize entities individually using LogicLock region
assignments and preserve your optimization when you instantiate those
entities in a top-level design.

When you export LogicLock region assignments, the Quartus II software
writes all LogicLock region assignments, other QSF assignments, and 1/0O
standard assignments that apply to the specific entity instance to a QSF that
you specify in the Export LogicLock Regions dialog box. By default, the
Quartus II software exports the LogicLock region assignments for the entire
design. You can specify sub-design entities to export in the Export focus full
hierarchy path box. See Figure 4.

Figure 4. Export LogicLock Regions Dialog Box

Specify settings for exporting LogicLock region assignments and ather entity
azzignments. The Export Focus specifies the design component [instance] whose
aszignments should be exported. By default, the Export Focus is the project's
top-level design entity.

Export focus full hierarchy path:

Ilargefilter

File: name:
ID:.n’qdesigns.-’logiclocka’atom_netlistsflargefilter.qsf |

I” | Export back-arnstated rauting
QK | Cancel |

When you import LogicLock region assignments, the Quartus II software
traverses the compilation hierarchy, starting at the current compilation
focus. If the current project contains multiple instances of a lower-level
entity, the Quartus Il software instantiates the assignments imported for that
lower-level entity once for each instance.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 111

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

To prevent placement conflicts, the Quartus II software assigns imported
top-level LogicLock regions to floating locations. However, it preserves the
location of imported child regions relative to their parents. When importing
LogicLock regions, you can specify the assignment categories to import and
specify whether to create new LogicLock regions, update the currently
selected LogicLock region(s), or both. See Figure 5.

Figure 5. Import LogicLock Regions Dialog Box

Maote: when the Quartus || software updates a LogicLock region, it does not update the
region's child LogicLock regions unless thoze regions are alzo selected in the hierarchy.

¥ Import LogicLock region assignments

¥ Create new LogicLock regions

¥ Update the regions currently selected in the Logicl ock Flegions window
¥ Impaort ather node of entity assignmerts
¥ Import pin assighments

I™ Import back-anmotated ruting

QK Cancel

For Information About Refer To

Saving intermediate synthesis results ~ Chapter 9, “LogicLock Design

as a VQM File, back-annotating Methodology,” in the Quartus Il Handbook,
assignments, and exporting and vol. 2, on the Altera web site

importing LogicLock region

assignments “Overview: Saving Intermediate Synthesis

Results” in Quartus Il Help

“Overview: Using LogicLock Regions” in
Quartus Il Help

The LogicLock Module in the Quartus Il
Tutorial

112 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
USING LocGicLock wiTH EDA TooLs

Using LogicLock with EDA Tools

The block-based LogicLock design flow supports modules that are created
and optimized in EDA design entry and synthesis tools and then imported
as separate modules in the Quartus II software. You use the EDA design
entry and synthesis tool to create separate netlist files (EDIF Input

Files (.edf) or VQM Files) for modules in a design hierarchy. You can then
use the Quartus II software to place each netlist file into a separate
LogicLock region in a top-level design. Once in the Quartus II software, you
can make changes, optimize, and resynthesize specific modules in the
design by using the EDA tool to update the corresponding netlist file,
without affecting the other modules in the design.

The Mentor Graphics LeonardoSpectrum, Synplicity Synplify, Synopsys
FPGA Compiler II, and Mentor Graphics Precision RTL Synthesis software
provide customized features for using these tools in the block-based
LogicLock design flow.

“ ._ Py For Information About Refer To

Using LogicLock with EDA synthesis Chapter 9, “Synplicity Synplify and Synplify
tools Pro Support,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Mentor Graphics
LeonardoSpectrum Support,” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Chapter 11, “Mentor Graphics Precision RTL
Synthesis Support,” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Chapter 12, “Synopsys FPGA Compiler Il
BLIS and the Quartus Il LogicLock Design
Flow,” in the Quartus Il Handbook, vol. 1 on
the Altera web site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 113

Chapter
Seven

Timing
Analysis

&

What’s in Chapter 7:

Introduction 116
Performing Timing Analysis in the

Quartus Il Software 117
Viewing Timing Analysis Results 122

Performing Timing Analysis with
EDA Tools 126

CHAPTER 7: TIMING ANALYSIS

INTRODUCTION

Introduction

&

\ 5

The Quartus® II Timing Analyzer allows you to analyze the performance of
all logic in your design and helps to guide the Fitter to meet the timing
requirements in your design. By default, the Timing Analyzer runs
automatically as part of a full compilation to observe and report timing
information such as the setup times (tsy), hold times (ty), clock-to-output
delays (tco), pin-to-pin delay (tpp), maximum clock frequencies (fpax),
slack times, and other timing characteristics for the design. You can use the
information generated by the Timing Analyzer to analyze, debug, and
validate the timing performance of your design. You can also use the
Quartus II Timing Analyzer to perform a minimum timing analysis, which
reports the best-case timing results to verify clock-to-pad delays for signals
driving off-chip. Figure 1 shows the timing analysis flow.

Figure 1. Timing Analysis Flow

Report
Files
from Quar;iutiell > Quartus Il (.rpt, .htm)
Timing Analyzer
quartus_tan
_ | Quartus Il
Assignment Editor
Quartus Il
Settings —
File (.qsf) L=—
| | Quartus Il
Settings Dialog Box
R
Quartus Il >
from Quartus Il g EDA Netlist Writer > E-é E'iA Bloa.r d'TLe"Ie'
quartus_eda nalysis 100
Stamp Model Files
(.data, .mod, or .lib)
Verilog Output Files (.vo),

VHDL Output Files (.vho),

Standard Delay Format . SYnOPSYS
Output Files (.sdf) & — PrimeTime Software

Tcl Script Files (.tcl)

|

116 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Performing Timing Analysis in the
Quartus Il Software

The Timing Analyzer automatically performs timing analysis on your
design during a full compilation. The following guidelines describe some of
the tasks that you can accomplish with the Quartus II Timing Analyzer:

B Specify initial project-wide and individual timing requirements, using
the Timing Wizard (Assignments menu), the Settings dialog box
(Assignments menu), and the Assignment Editor.

B Perform the timing analysis during a full compilation or separately
after an initial compilation.

B View the timing results using the Report Window, Timing Closure
floorplan, and 1ist_paths Tcl command.

Specifying Timing Requirements

Timing requirements allow you to specify the desired speed performance
for the entire project, for specific design entities, or for individual entities,
nodes, and pins.

You can use the Timing wizard to help you to create initial project-wide
timing settings. Once you have specified initial timing settings, you can
modify settings either by using the Timing wizard again, or by using the
Settings dialog box.

You can make individual timing settings with the Assignment Editor. After
specifying project-wide timing assignments and/or individual timing
assignments, you can run a timing analysis by compiling the design, or by
running the Timing Analyzer separately after an initial compilation.

If you do not specify timing requirement settings or options, the Quartus II
Timing Analyzer will run the analyses using default settings. By default, the
Timing Analyzer calculates and reports the fppax of every register, the tgy
and ty of every input register, the tco of every output register, the tpp
between all pin-to-pin paths, slack times, hold times, minimum tco, and
minimum tpp of the current design entity.

You can specify I/O timing requirements using the traditional tgy

requirement, tco requirement, and/or ty requirement timing assignments,
or you can include these paths as part of the clock analysis by using the

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 117

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Input Maximum Delay, Input Minimum Delay, Output Maximum Delay,
or Output Minimum Delay assignments to specify delays based on external
device timing. Both types of I/O timing requirements ultimately produce

similar results through different methods.

Using the Settings dialog box or the Timing wizard, you can specify the
following timing requirements and other options:

m Overall frequency requirement for the project, or settings for individual

clock signals

B Delay requirements, minimum delay requirements, and path-cutting

options

B Reporting options, including the number or source and destination
registers and exclude paths
B Timing-driven compilation options

Specifying Project-Wide Timing Settings

Project-wide timing settings include maximum frequency, setup time, hold
time, clock-to-output delay and pin-to-pin delay, and minimum timing
requirements. You can also set project-wide clock settings and multiple
clock domains, and path-cutting options.

Table 1. Project-Wide Timing Settings (Part 1 of 2)

Requirement

Description

fmax (maximum frequency)

The maximum clock frequency that can be achieved
without violating internal setup (tsy) and hold (ty) time
requirements.

tgy (clock setup time)

The length of time for which data that feeds a register
via its data or enable input(s) must be present at an input
pin before the clock signal that clocks the register is
asserted at the clock pin.

ty (clock hold time)

The length of time for which data that feeds a register
via its data or enable input(s) must be retained at an
input pin after the clock signal that clocks the register is
asserted at the clock pin.

tco (clock-to-output delay)

The time required to obtain a valid output at an output
pin that is fed by a register after a clock signal transition
on an input pin that clocks the register.

118 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Table 1. Project-Wide Timing Settings (Part 2 of 2)

Requirement Description

tpp (pin to pin delay) The time required for a signal from an input pin to
propagate through combinational logic and appear at an
external output pin.

minimum tcgo (clock-to- The minimum time required to obtain a valid output at
output delay) an output pin that is fed by a register after a clock signal
transition on an input pin that clocks the register. This
time always represents an external pin-to-pin delay.

minimum tpp (clock-to- Specifies the minimum acceptable pin-to-pin delay, that
output delay) is, the time required for a signal from an input pin to
propagate through combinational logic and appear at an
external output pin.

Specifying Individual Timing Assignments

You can make individual timing assignments to individual entities, nodes,
and pins with the Assignment Editor. Individual timing assignments
override project-wide requirements (if they are more stringent). The
Assignment Editor supports point-to-point timing assignments, wildcards
to identify specific nodes when making assignments, and the use of
timegroup assignments to make individual assignments to groups of nodes.

The timing requirements that you enter for pins and nodes are saved in the
Quartus II Settings File (.qsf) for the top-level entity in the current hierarchy.

You can make the following types of individual timing assignments in the
Timing Analyzer:

B Individual clock settings: allow you to perform an accurate multiclock
timing analysis by defining the timing requirements and relationship of
all clock signals in the design. The Timing Analyzer supports both
single-clock and multiclock frequency analysis.

B Multicycle paths: paths between registers that require more than one
clock cycle to become stable. You can set multicycle paths to instruct the
Timing Analyzer to relax its measurements and avoid incorrect setup
or hold time violations.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 119

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

B Cut paths: by default, the Quartus II software will cut paths between
unrelated clock domains when there are no timing requirements set or
only the default required fygax clock setting is used. The Quartus II
software will also cut paths between unrelated clock domains if
individual clock assignments are set but there is no defined relationship
between the clock assignments. You can also define cut paths for
specific paths in the design.

B Minimum delay requirements: individual ty, minimum tco, and
minimum tpp timing requirements for specific nodes or groups. You
can make these assignments to specific nodes or groups to override
project-wide minimum timing requirements.

B Individual tgy, tpp, and tco requirements on specific nodes in the
design.

B timegroup assignments: advanced timing assignment that you can
define in the Quartus II Tcl Console or one of the Quartus Il executables
that support Tcl. Members of a defined timing group can include
regular node names, wildcards, and/or other timing group names.
Conversely, you can exclude specific nodes, wildcards, and/or other
timing group names from a timing group.

Performing a Timing Analysis

Once you have specified timing settings and assignments, you can run the
Timing Analyzer by performing a full compilation.

After compilation is complete, you can rerun timing analysis separately by
using the Start > Start Timing Analyzer command (Processing menu), run
a minimum timing analysis by choosing Start > Start Minimum Timing
Analysis (Processing menu), or use the Timing Analyzer Tool command
(Tools menu).

The Timing Analyzer Tool window provides an alternative interface for
controlling the Timing Analyzer. This interface is similar to the Timing
Analyzer interface in the MAX+PLUS II software. You can use the Timing
Analyzer Tool window to start and stop the Timing Analyzer, quickly view
summary timing analysis results, or to access detailed timing analysis
results in the Compilation Report. You can click List Paths to display
propagation delays for the selected path. See Figure 2.

120 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Figure 2. Timing Analyzer Tool

2 = [O]]
Registered Parfomance |1pd | tsu | teo | th | Custom Delays |
Clock: Iclock j
Value |
Fram alito_max autalstreat_rapl[l]
To tick_cnttickllipm_counter:ticket_rtl_1lentr_4I7:auto_generate...

Clock period | 1.993 ns
Frequency | 501 76 MHz

400 ®9° goo
300 700

200 800

2
00:00: 00

P, Shart | @Stop | @Heport | Murnber of paths to list: ITU Lizt Pathz |

[[5> Using the quartus_tan executable

You can also run the Timing Analyzer separately at the command prompt or in a
script by using the quartus_tan executable. You must run the Quartus Il Fitter
executable quartus_fit before running the Timing Analyzer.

The quartus_tan executable creates a separate text-based report file that can be
viewed with any text editor.

You can also launch the quartus_tan Tcl scripting shell, to run timing-related Tcl
commands, by typing the following command at a command prompt:

quartus_tan -s ¢

If you want to get help on the quartus_tan executable, type one of the following
commands at the command prompt:

quartus_tan -h ¢

quartus_tan -help ¢
quartus_tan --help=<topic name> '

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 121

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

“ ._ Py For Information About Refer To

Specific timing settings and “Overview: Using the Timing Analyzer” in
performing a timing analysis in the Quartus Il Help
Quartus Il Software

Chapter 4, “Quartus Il Timing Analysis,” in
the Quartus Il Handbook, vol. 3, on the
Altera web site

Timing Analysis module of the Quartus I

Tutorial
Using the Timing Analyzer Tool MAX+PLUS Il Conversion module of the
window Quartus Il Tutorial

Viewing Timing Analysis Results

After you run a timing analysis, you can view the timing analysis results in
the Timing Analyzer folder of the Compilation Report. You can then list the
timing paths to validate circuit performance, determine critical speed paths
and paths that limit the design’s performance, and make additional timing
assignments. Additionally, you can use the 1ist_paths Tcl command to
locate and view information on any delay path in the design.

You can also use the Timing Closure floorplan (Project menu) to view
information on the critical paths in the design and view routing congestion.
For more information on using the Timing Closure floorplan to view critical
paths and routing congestion, refer to “Using the Timing Closure Floorplan”
on page 130 in Chapter 8, “Timing Closure.”

Users familiar with MAX+PLUS® II timing reporting can find the timing
information, such as the delay information from the MAX+PLUS II Delay
Matrix, in the Timing Analyzer sections of the Compilation Report and in
the Custom Delays tab of the Timing Analyzer Tool window.

Using the Report Window

information for clock setup and clock hold; tsy, ty, tpp, tco; minimum pulse

g The Timing Analysis sections in the Report window list the reported timing
width requirements; any timing assignments that were ignored during the

122 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

timing analysis; and any messages generated by the Timing Analyzer. By
default, the Timing Analyzer also reports the best-case minimum clock-to-
output times and best-case minimum point-to-point delays.

The Report Window reports the following types of information for timing
analysis:

Settings for timing requirements
Slack and minimum slack
Source and destination clock names

Source and destination node names

Required and actual point-to-point times
Required hold relationships
Actual fpax

Figure 3. Timing Analysis Results in the Report Window

S o] x]
% Compilation Report
&EHB Leod Notice Type Slack |Required Time |Actual Time From To
& Flow Summary 1} Worst-case tsu N |Mone 3977 his dir[1] tick_cnt tick|lnm_co
4B Flow Settings . 2| worst-case tco Mt Mone 5959 ns auto_m... |at_altera
BB Flow Elapsed Tine 3| warst-case tpd W& |None 7829 s af] |
5 Flow Log 4| “Woarst-case th M Mone 2636 ns acecel Suto_max: autolstreet.
[]--éD Analysis & Synthesis
EJ--QD Fitter 5| Wwarst-case minimum toa| MAA Mone 4798 ne tirne_cnt... [imea[2]
w QD aasembler B “orst-case minimum tpd| M As Mone 7.281 ne dir{1] stf
Hé@ Timing Analyzer 7| Clock Setup: "clock’ M Mone 501.76 MHz [period = 1.933 ns]| auto_m... |tick_cnt:tickllpm_co

é% Timing Analyzer Settings

5B Timing Analyzer Summary

-¢SHBE Clock Settings Summary
¢S5 Clock Setup: 'clock’
B tau

-~ HER Minimum tco

BB Minimum tpd

-¢HEH Custom Delays
é% Timing Analyzer NI Usage

& E» Timing Analyzer Messages

B-&H EDA Metlist Wiiter

ALTERA CORPORATION

Making Assignments & Viewing Delay
Paths

You can access the Assignment Editor, List Paths and Locate in Timing

Closure Floorplan commands directly from the Timing Analyzer sections in
the Report Window to make individual timing assignments and view delay
path information. In addition, you can use the 1ist_paths Tcl command
to list delay path information.

INTRODUCTION TO QUARTUS Il m 123

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

124 =

You can use the Assignment Editor to make an individual timing
assignment on any path in a Timing Analyzer report. This feature allows
you to easily make point-to-point assignments on paths.

The following steps describe the basic flow for making individual timing
assignments in the Assignment Editor:

1. Inthe Category bar, click Timing to indicate the category of assignment
you wish to make.

2. Click the To cell in the spreadsheet and use the Node Finder to find a
node, or type a node name, wildcard, and/or timegroup character that
identifies the destination node you want to assign.

3. Click the From cell in the spreadsheet and use the Node Finder to find
a node, or type a node name, wildcard, and/or timegroup character
that identifies the source node you want to assign.

4. Inthe spreadsheet, double-click the Assignment Name cell and select
the timing assignment you wish to make. For assignments that require
a value, double-click the Value cell and type or select the appropriate
assignment value.

You can also use the Locate in Timing Closure Floorplan command (Project
menu) to locate a path in the Timing Closure floorplan, which allows you to
take advantage of the Timing Closure floorplan features to make
assignments to a specific path. For more information on using the Timing
Closure floorplan, refer to “Using the Timing Closure Floorplan” on page
130 in Chapter 8, “Timing Closure.”

You can use the List Paths command (right button pop-up menu) to display
the intermediate delays of any path in a Timing Analyzer report panel in the
Messages window. This allows you to find pin-to-pin, register-to-register,
and clock-to-output-pin delay paths, and display information about any
delay path in the design that appears in the Report Window. See Figure 4.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

Figure 4. Output from List Paths Command

Info: tsu for register state_meinstlfilker™8 [data pin = newt, clock pin = clk) is 4.098 ns

i Infa; + Longest pin to register delay iz 6.301 ng

Imfe: + Micra setup delay of destination is 0.103 ns

&) Info; - Shortest clock path from clock clk to destination register is 2.322 ns

L) Info; 1; + |C[0.000 ng) + CELL[1.290 ng) = 1.290 ns; Loc. = Pin_134; CLK Node = 'clk'

L) Infa: 20 +1C(0.312) + CELL[D.720 ns) = 2.322 nis: Loc. = EC8_1_AT: REG Node = 'state_m:inst [filker~ 5"

L) Info: Total cell delay = 2010 ns

&) Info: Total interconnect delay = 0.312 ns

Proceszing

System

The 1ist_paths Tcl command, which you can use in the quartus_tan API
and the Quartus II Tcl Console, allows you to specify any point-to-point path
and view the delay information. You can specify the number of paths to
report, the type of path (including minimum timing paths), and use
wildcards to identify source and destination nodes. This option reports
information in the same manner as the List Path command. See Figure 5.

Figure 5. Sample Output from list_paths Command

Fath Mumber: 1

tco from clock clock to destination pin gtl through register auto_maxiautolstreet_mapl0] is 8,869 n=

+ Longest clock path from clock clock to source register is 2,793 ns™M
13 + ICE0,000 nay + CELL{O,E1S ns) = 0,619 ns3 Loc, = Pin_WZ: CLK Mode = “clock”

2y + ICE1,638 nad + CELL{0,542 nsd = 2,799 n=; Loc,
Total cell delay = 1,161 ns
Total interconnect delay = 1,632 ns

+ Micro clock to output delay of source is 0,156 nz

+ Longest register to pin delay is 5,914 ns

1: + IC60L000 pey + CELLCOL000 nsd = 0,000 ns Loc,
23 + IC0,716 ney + CELLCOLO7D ner = 0,791 nsy Loc,
33 + ICI0,518 ns» + CELL{0,366 ns} = 1,675 ns: Loc,
43 + 001,350 nsy + CELL(2,889 nsr = 5,914 ns: Loc,

Total cell delay = 3,330 nz
Total interconnect delay = 2,584 ns

LC_H31_Y1_MN3: REC Hode = "auto_maxiautolstreet_mapl0]”

LC_X31_Y¥1_MN3: REC Node = “auto_maxiautolstrest_mapl0]”
LC_KZ0_Y1_MN3r COME Mode = “rtl™2817
LC_X30_Y1_N8: COMBE Mode = "rt1™17"

Fin_AALE: PIN Mode = “gtl”

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il m 125

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS WITH EDA TooLs

Performing Timing Analysis with
EDA Tools

The Quartus II software supports timing analysis and minimum timing
analysis using the Synopsys PrimeTime software on UNIX workstations and
board-level timing analysis using the Mentor Graphics® BLAST or Tau
board-level verification tools.

You can generate the necessary output files for performing timing analysis
in EDA timing analysis tools by specifying the appropriate timing analysis
tool in the Timing Analysis and Board-Level pages under EDA Tool
Settings in the Settings dialog box (Assignments menu) or in the New
Project Wizard (File menu) when creating a project, and then performing a
full compilation. You can also generate the files by using the Start > Start
EDA Netlist Writer command (Processing menu) after an initial
compilation. If you are using the NativeLink™ feature, you can also run a
timing analysis after an initial compilation by using the Run EDA Timing
Analysis Tool command (Tools menu).

[[5> Using the quartus_eda executable

You can also run the EDA Netlist Writer to generate the necessary output files
separately at the command prompt or in a script by using the quartus_eda
executable. You must run the Quartus Il Fitter executable quartus_fit before
running the EDA Netlist Writer.

The quartus_eda executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_eda executable, type one of the following
commands at the command prompt:

quartus_eda -h ¢

quartus_eda -help ¢
quartus_eda --help=<topic name> <

Using the PrimeTime Software

The Quartus II software generates a Verilog Output File or VHDL Output
File, a Standard Delay Format Output File (.sdo) that contains timing delay
information, and Tcl Script File that sets up the PrimeTime environment. If

126 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS WITH EDA TooLs

you are performing a minimum timing analysis, the Quartus II software
uses the minimum delay information generated by the Timing Analyzer in
the SDF Output File for the design.

Using the NativeLink feature, you can specify that the Quartus II software
launches the PrimeTime software in either command-line or GUI mode. You
can also specify a Synopsys Design Constraints (SDC) file that contains
timing assignments for use in the PrimeTime software.

The following steps describe the basic flow to manually use the PrimeTime
software to perform timing analysis on a design after compilation in the
Quartus II software:

1. Specify EDA tool settings, either through the Settings dialog box
(Assignments menu), or during project setup, using the New Project
Wizard (File menu).

2. Compile your design in the Quartus II software to generate the output
netlist files. The Quartus II software places the files in a tool specific

directory.

3. Source the Quartus II-generated Tcl Script File (.tcl) to set up the
PrimeTime environment.

4. Perform timing analysis in the PrimeTime software.

Using the BLAST and Tau Software

The Quartus Il software generates Stamp model files which can be imported
into the BLAST or Tau software to perform board-level timing verification.

The following steps describe the basic flow generate Stamp model files:

1. Specify EDA tool settings, either through the Settings dialog box
(Assignments menu), or during project setup, using the New Project
Wizard (File menu)

2. Compile the design in the Quartus II software to generate the Stamp
model files. The Quartus II software places the files in a tool-specific

directory.

3. Use the Stamp model files in the BLAST or Tau software to perform
board-level timing verification.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 127

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS WITH EDA TooLs

“ ._ Py For Information About Refer To

Using the Synopsys PrimeTime Chapter 5, “Synopsys PrimeTime Support,”
software with the Quartus Il software in the Quartus Il Handbook,” vol. 3, on the
Altera web site

Using the Innoveda BLAST and Mentor “Overview: Using the BLAST Software with
Graphics Tau software with the the Quartus Il Software” in Quartus Il Help
Quartus Il software
“Overview: Using the Tau Software with the
Quartus Il Software” in Quartus Il Help

128 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 8:

Introduction 130
Using the Timing Closure Floorplan 130

Using Netlist Optimizations to Achieve
Timing Closure 134

Using LogicLock Regions to Achieve
Timing Closure 137

Chapter
Eight

Timing Closure

L

CHAPTER 8: TIMING CLOSURE
INTRODUCTION

Introduction

The Quartus® II software offers a fully integrated timing closure flow that
allows you to meet your timing goals by controlling the synthesis and place
and route of a design. Using the timing closure flow results in faster timing
closure for complex designs, reduced optimization iterations, and automatic
balancing of multiple design constraints.

The timing closure flow allows you to perform an initial compilation, view
design results, and perform further design optimization efficiently. You can
use netlist optimizations on the design after synthesis and during place and
route, use the Timing Closure floorplan to analyze the design and make
assignments, and use LogicLock™ region assignments to further optimize
the design. Figure 1 shows the timing closure flow.

Figure 1. Timing Closure Flow

to Quartus Il
Compiler
l \
> Netlist
from Quartus Il Optimizations
Compiler No
Performance met?
Analysis with Make assignments,
> Timing Closure \—p including Logiclock —
Floorplan region, timing, &
p location assignments

Timing Closure
Achieved

Using the Timing Closure Floorplan

You can use the Timing Closure floorplan to view logic placement made by
the Fitter, view user assignments and LogicLock region assignments, and
routing information for a design. You can use this information to identify
critical paths in the design and make timing assignments, location
assignments, and LogicLock region assignments to achieve timing closure.

130 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

You can customize the way the Timing Closure floorplan displays
information using options available from the View menu. You can show the
device according to package pins and their function; by interior MegaLAB™
structures, LABs, and cells; by regions of the chip; by the name and location
of selected signals; and by using the Field View command (View menu).

The Field View command displays the major classifications of device
resources in a high-level outline view in the Floorplan Editor. Assignments
are represented in Field view by colored areas that indicate the amount of
user assigned, Fitter placed, and unassigned logic per structure in the
device. You can use the information in the Field view to make assignments
to achieve timing closure on a design.

Viewing Assignments & Routing

The Timing Closure floorplan can simultaneously show user assignments
and Fitter location assignments. User assignments are all location and
LogicLock region assignments you have made in the design. Fitter
assignments are the locations where the Quartus Il software placed all nodes
after the last compilation. You can show user assignments and Fitter
assignments with the Assignments command (View menu).

The Timing Closure Floorplan allows you to show the device resources and
the corresponding routing information for all design logic. Using the
Routing command (View menu), you can select device resources and view
the following types of routing information:

B Paths between nodes: display the path between selected logic cells,
I/0 cells, embedded cells, and pins that feed one another.

B Node fan-in and fan-out: display node fan-in and fan-out routing
information for selected embedded cells, logic cells, I/O cells and pins.

B Routing delays: display routing delays between selected, or to and
from, specific logic cells, I/O cells, embedded cells, or pins; or routing

delays along one or more critical paths.

B Connection counts: show or hide the number of connections to a
selected object, from a selected object, or between selected objects.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 131

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

132 =

B Physical timing estimates: displays the approximate delay to any other
physical resource on the device. Once you select a node or entity, the
delay is represented by the shade of potential destination resources (the
darker the resource, the longer the delay) and the delay to a destination
node is shown by placing the mouse over possible destination nodes.

B Routing congestion: displays a graphical representation of the routing
congestion in a design. The darker the shading, the greater the routing
resource utilization. You can select a routing resource and then specify
the congestion threshold (displayed as red areas in the device) for the
resource.

m Critical paths: displays the critical paths in a design, including path
edges and routing delays. The default critical path view shows the
register-to-register paths. You can also view all the combinational
nodes for the worst-case path between the source and destination
nodes. You can specify whether you want to view critical paths by
delay or slack criteria and can specify a clock domain, source and
destination node names, and the number of critical paths to display.

You can also view the routing information for LogicLock regions in the
design, including connectivity and intra-region delay. LogicLock region
connectivity displays the connectivity between entities assigned to
LogicLock regions in the design and intra-region delay displays the
maximum time delay between source and destination paths in a LogicLock
region, including its child regions.

The Equations window displays routing and equation information for pin,
170 cell, logic cell, and embedded cell assignments. When you turn on
Equations (View menu), the Equations window is displayed at the bottom
of the Floorplan Editor window. See Figure 2.

By selecting one or more logic cell, embedded cell, and/or pin assignments
in the floorplan, you can display their equations, fan-in, and fan-out in the
Equations list and expand or collapse the terms. The Fan-In list displays all
nodes that feed the selected logic cell, embedded cell, and/or pin
assignments. The Fan-Out list displays all nodes that are fed by the selected
logic cell, embedded cell, and/or pin assignments.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

Figure 2. Equations Window

Fardn [3] <GaTa | Equations [1] GoTo> | Far-Out 1]
A2 E1_resul{f] [acc:inst3resul]E]) a7 instB[2] [inst5[2]) = DFFE[;I A yr_out[2] (wr_out[2])
B clkw? [clks2) inztB[2] lut_out, GLOBAL [chk=2), .,
A instd [instd) inztd];

instS[2L lut_out = E1_result{g]:

i o

Making Assignments

To facilitate achieving timing closure, the Timing Closure floorplan allows
you to make location and timing assignments directly from the floorplan.
You can create and assign nodes or entities to custom regions and to
LogicLock regions in the Timing Closure floorplan and you can also edit
existing assignments to pins, logic cells, rows, columns, regions, MegaLAB
structures, and LABs.

You can edit assignments in the Timing Closure floorplan in the following
ways:

Cut, copy, and paste node and pin assignments.

Launch the Assignment Editor to make assignments.

Use the Node Finder to help make assignments.

Create and assign logic to LogicLock regions.

Drag and drop nodes and entities from the Hierarchy tab of the Project
Navigator, LogicLock regions, and the Timing Closure floorplan to
other areas of the floorplan.

Before making assignments, you can preserve resource assignments from
the current compilation by back-annotating assignments to pins, logic cells,
rows, columns, regions, LABs, MegaLAB structures, and LogicLock regions
by using the Back-Annotate Assignments command (Assignments menu).
For more information on using the Back-Annotate Assignments command,
see “Preserving Assignments through Back-Annotation” on page 99 in
Chapter 5, “Place & Route.”

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 133

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

“ ._ Py For Information About Refer To

Viewing and making assignments and Chapter 6, “Timing Closure Floorplan,” in
viewing routing in the Timing Closure the Quartus Il Handbook, vol. 2, on the
floorplan Altera web site

“Overview: Viewing Routing Information” in
Quartus Il Help

“Overview: Working with Assignments in
the Floorplan Editor” in Quartus Il Help

LogicLock module in the Quartus Il tutorial

Using Netlist Optimizations to
Achieve Timing Closure

The Quartus II software includes netlist optimization options to further
optimize your design during synthesis and during place and route. Netlist
' optimizations are push-button features that offer improvements to fygax
\ results by making modifications to the netlist to improve performance.
These options can be applied regardless of the synthesis tool used.
Depending on your design, some options may have more of an effect than
others.

You can specify synthesis and physical synthesis netlist optimizations in the

Synthesis Netlist Optimizations and Physical Synthesis Optimizations
pages of the of the Settings dialog box (Assignments menu). See Figure 3.

134 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

Figure 3. Netlist Optimizations

Category: Physical Synthesis
- General Physical Synthesis Dpltimizations — imi 0
. Fils Optimizations
User Librarias Specify options for perfarming physical synthesis optimizations during fitting, Mote: The availability of
.. Davice these options depends on the cunrent device family.
- Timing Reguirements & Options
[~ EDA Tool Settings ™ Perfom physical sunthesis for combinational logic
Compilation Process)))
B Analysis & Synthesis Settings IFT"";C‘TI syﬂlheslts '0‘; rE?' t_' synthes,s Netlist
~%HDL Input ‘erform register duplication Lo .
~Werllog HOL Irput ™ Peiform register retiming Optlmlzatlons
i Default Parameters
“ Synthesis Metlist Optimizations,

m

- F!ttel Settings

- Timing Analpzer Category:

-~ Design Assistant - General Synthesis Netlist Dptimizations
- SignalT ap Il Logic Analyzer - Files
SignalProbe Settings User Libraries Specify options for performing netlist optimizations during synthesis. Note: The availability of these
- Simulator - Device options depends on the current device family.
[+ Software Build Settings - Timing Reguirements & Options
Shiatix G Registration B EDA Tool Settings ™ Perfom WYSIWYG primitive resprthesis (using aptimization technique specified in Analysis &
HardCopy Settings Caompilation Process Synthesis settings|
E- A.nalysis % Synthesis Settings ™ Perfom gate-level register retiming
WHDL Input [Allewy register ietiming bo trads off Tsu/T oo with Frar
Werilog HOL |nput
Default Parameters
[Fitter Settings
Tirning Analyzer
- Design Assistant

- SignalT ap Il Logic &Analyzer

- SignalProbe Settings
Simulator

- Software Build Settings

- Shatix GX Registration
HardCopy Settings

[#

Cancel

Netlist optimizations for synthesis include the following options:

B Perform WYSIWYG primitive resynthesis: Directs the Quartus II
software to unmap WYSIWYG primitives during synthesis. When this
option is turned on, the Quartus II software unmaps the logic elements
in an atom netlist to gates and remaps the gates to Altera® LCELL
primitives. This option allows the Quartus II software to use different
techniques specific to a device architecture during the remapping
process and uses the optimization technique (Area, Balanced, or
Speed) that you specified in the Analysis & Synthesis Settings page of
the Settings dialog box.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 135

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

136 =

B Perform gate-level register retiming: Allows registers to be moved
across combinational logic to balance timing, but does not change the
functionality of the current design. This option moves registers across
combinational gates only, and not across user-instantiated logic cells,
memory blocks, DSP blocks, or carry or cascade chains, and has the
ability to move registers from the inputs of a combinational logic block
to the block’s output, potentially combining the registers. It can also
create multiple registers at the input of a combinational logic block
from a register at the output of a combinational logic block.

B Allow register retiming to trade off Tsu/Tco with Fmax: Directs the
Quartus II software to move logic across registers that are associated
with I/0O pins during register retiming to trade off tco and tgy with
fvmax- When you turn on this option, register retiming can affect
registers that feed and are fed by I/O pins. If you do not turn on this
option, register retiming does not touch any registers that are
connected to I/O pins.

Netlist optimizations for physical synthesis and fitting include the following
options:

B Perform physical synthesis for combinational logic: Directs the
Quartus II software to try to increase performance by performing
physical synthesis optimizations on combinational logic during fitting.

B Perform register duplication: Directs the Quartus II software to
increase performance by using register duplication to perform physical
synthesis optimizations on registers during fitting.

B Perform register retiming: Directs the Quartus II software to increase
performance by using register retiming to perform physical synthesis
optimizations on registers during fitting.

The Quartus II software cannot perform these netlist optimizations for
fitting and physical synthesis on a back-annotated design. In addition, if you
use one or more of these netlist optimizations on a design, and then back-
annotate the design, you must generate a Verilog Quartus Mapping

File (.vqm) if you wish to save the results. The VQM File must be used in
place of the original design source code in future compilations.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING LoGICLOCK REGIONS TO ACHIEVE TIMING CLOSURE

“ ._ Py For Information About Refer To

Achieving timing closure using netlist Chapter 7, “Netlist Optimizations and
optimizations Physical Synthesis,” in the Quartus Il
Handbook, vol. 2, on the Altera web site

Using LogicLock Regions to Achieve
Timing Closure

You can use LogicLock regions to achieve timing closure by analyzing the
design in the Timing Closure floorplan, and then constraining critical logic
in LogicLock regions. LogicLock regions are generally hierarchical, giving
] you more control over the placement and performance of modules or groups
d of modules. You can use the LogicLock feature on individual nodes, for
instance, by assigning the nodes along the critical path to a LogicLock
region.

Successfully improving performance by using LogicLock regions in a design
requires a detailed understanding of the design’s critical paths. Once you
have implemented LogicLock regions and attained the desired performance,
back-annotate the contents of the region to lock the logic placement.

Soft LogicLock Regions

LogicLock regions have predefined boundaries and nodes assigned to a
particular region always reside within the boundary or LogicLock region
size. Soft LogicLock regions can enhance design performance by removing
the fixed rectangular boundaries of LogicLock regions. With the soft region
property enabled, the Fitter attempts to place as many assigned nodes in the
region as close together as possible, and has the added flexibility of moving
nodes outside the soft region to meet a design’s performance requirement.

Path-Based Assignments

The Quartus II software enables you to assign specific source and
destination paths to LogicLock regions, allowing for easy grouping of
critical design nodes into a LogicLock region. You can create path-based

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 137

CHAPTER 8: TIMING CLOSURE
USING LoGICcLOCK REGIONS TO ACHIEVE TIMING CLOSURE

assignments with the Paths dialog box, by dragging and dropping critical
paths from the Timing Analyzer section of the Report window and the
Timing Closure floorplan into LogicLock regions.

The Paths dialog box allows you to specify a path by identifying a source
and destination node and using wildcards when identifying nodes. You can
click List Nodes to determine how many nodes will be assigned to the
LogicLock region. You open this dialog box by clicking Add Path or double-
clicking in the Contents tab of the LogicLock Region Properties dialog box,
or by double-clicking on a path in the Floorplan Editor. See Figure 4.

Figure 4. Paths Dialog Box

Specify path-bazed and wildzard aszignments for the selected Logiclock region. Mote: Leaving

the source name blank directs the Fitter to treat the assignment az a hierarchical or wildcard
azzignment.

~ Path

Source name; Ir:filler_ﬂ Irnalt: ralt_i1|a_out_2

v Exclude source

Destination name: |Ifi|ter:fi|ter_i1|rnull: rult_itl_15

v Exclude destination

MName exclude: IIIargefiIterIfiIter:fiIter_iUImuIt: mult_idlr_14

A g o o

LogicLock region: IHegion_FiIter

¥ Show full higrarchy names

— Matching Hodes
Modes:

filter:filker_i1 lrmult: mul_it lmodgen_mult_0_modgen_add_10_nx41 3
filker:filker_iT Imult: rmult_iTimodgen_mult_0_maodgen_add_10_nx45
filker:filker_iT [mult: mult_iljmodgen_mult_0_modgen_add_10_n=43
filter:filker_i1 lmult: mul_it imodgen_mult_0_modgen_add_10_nx53
filker:filker_iT lmult: mult_iTlmodgen_mult_0_modgen_add_10_n=57
filter:filker_iT lrmult: mul_iTlmodgen_mult_0_modgen_add_10_nxE1
filker:filkar_iT Irault: rult_it Imadgen_mult_0_maodgen_add_10_nxE5 LI

$edeedQ

MNode count: 146

Ok | Cancel |

138 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING LoGICLOCK REGIONS TO ACHIEVE TIMING CLOSURE

“ ._ Py For Information About Refer To

Achieving timing closure using the Chapter 6, “Timing Closure Floorplan,” in
LogicLock methodology the Quartus Il Handbook, vol. 2, on the
Altera web site

Chapter 9, “LogicLock Design
Methodology,” in the Quartus Il Handbook,
vol. 2, on the Altera web site

LogicLock module of the Quartus Il Tutorial

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 139

What’s in Chapter 9:

Introduction 142

Programming One or More Devices
by Using the Programmer 146

Creating Secondary Programming Files 147

Using the Quartus Il Software to
Program Via a Remote JTAG Server 153

Chapter
Nine

Programming &
Configuration

CHAPTER 9: PROGRAMMING & CONFIGURATION

INTRODUCTION

Introduction

Once you have successfully compiled a project with the Quartus® II
software, you can program or configure an Altera® device. The Assembler
module of the Quartus II Compiler generates programming files that the
Quartus II Programmer can use to program or configure a device with
Altera programming hardware. You can also use a stand-alone version of
the Quartus II Programmer to program and configure devices. Figure 1
shows the programming design flow.

Figure 1. Programming Design Flow

from > Quartus I Altera
Quartus || ——p| Quartus Il Assembler Programmer > Programming
Fitter quartus_asm > quartus_pgm Hardware
Programmer *
Object Files'(.pof) N
& SRAM Object Jam Files (jam) & I 2\ Chain
Files (.sof) Jam Byte-Code l D Description
Files (jbc) Files (.cdf)
Serial Vector Format
Files (.svf) & In System
: Configuration Files (.isc)
: — p- O other systems,
11 =] e puch s et
Quartus Il Convert P
Programming Files
quartus_cpf
Secondary programming files, including Raw
Binary Files (.rbf), Tabular Text Files (.ttf),
Raw Programming Data Files (.rpd),
Hexadecimal Output Files for EPC16 (.hex) &
POFs for Local Update or Remote Update
The Assembler automatically converts the Fitter’s device, logic cell, and pin
assignments into a programming image for the device, in the form of one or
more Programmer Object Files (.pof) or SRAM Object Files (.sof) for the
target device.
You can start a full compilation in the Quartus II software, which includes
the Assembler module, or you can run the Assembler separately.
142 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

[[& Using the quartus_asm executable

You can also run the Assembler separately at the command prompt or in a script by
using the quartus_asm executable. You must run the Quartus Il Fitter executable,
quartus_fit, successfully before running the Assembler.

The quartus_asm executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_asm executable, type one of the following
commands at the command prompt:

quartus_asm -h ¢
quartus_asm -help ¢
quartus_asm --help=<topic name> '

You can also direct the Assembler to generate programming files in other
formats by using one of the following methods:

B The Device & Pin Options dialog box, which is available from the
Device page of the Settings dialog box (Assignments menu), allows
you to specify optional programming file formats, such as Hexadecimal
(Intel-Format) Output Files (.hexout), Tabular Text Files (.ttf), Raw
Binary Files (.rbf), Jam™ Files (.jam), Jam Byte-Code Files (.jbc), Serial
Vector Format Files (.svf), and In System Configuration Files (.isc).

B The Create/Update > Create JAM, SVF, or ISC File command (File
menu) generates Jam Files, Jam Byte-Code Files, Serial Vector Format
Files, or In System Configuration Files.

B The Convert Programming Files command (File menu) combines and
converts SOFs and POFs for one or more designs into other secondary
programming file formats, such as Raw Programming Data Files (.rpd),
HEXOUT Files for EPC16 or SRAM, POFs, POFs for Local Update or
Remote Update, Raw Binary Files, and Tabular Text Files.

These secondary programming files can be used in embedded processor-
type programming environments, and, for some Altera devices, by other
programming hardware.

The Programmer uses the POFs and SOFs generated by the Assembler to
program or configure all Altera devices supported by the Quartus II
software. You use the Programmer with Altera programming hardware,
such as the MasterBlaster™, ByteBlasterMV™, ByteBlaster™ II, or
USB-Blaster™ download cable; or the Altera Programming Unit (APU).

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 143

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

[[Using the Stand-Alone Programmer

If you want to use only the Quartus Il Programmer, you can install the stand-alone
version of the Quartus Il Programmer, quartus_pgmw, instead of installing the
complete Quartus Il software.

The Programmer allows you to create a Chain Description File (.cdf) that
contains the name and options of devices used for a design. For some
programming modes that allow programming or configuring multiple
devices, the CDF also specifies top-to-bottom order of the SOFs, POFs, Jam
Files, Jam Byte-Code Files, and devices used for a design, as well as the order
of the devices in the chain. Figure 2 shows the Programmer window.

Figure 2. Programmer Window

I [=1 3

‘:; Hardware 5 etup... ButeBlaster [LPT] pode: IJTAG j Progress: | 0%
P / Blank.- S it
W Start File: Device Checksum | Uzercode mg.ram Werify an E =ammitmed fac:uny
Configure Check Bit
mii Stop 1. D:Aqdesignstutorialfilref. zof EP1S10F7E0 00136EAC FFFFFFFF [l [l]]]
[] [1 [] [[
m Auto Detect 3. D:qdesignstutonial filtref. pof - EPC4 OB3164B8 FFFFFFFF O O O]]

¥ Delete

(2 Add File...
B Change File...
Bl s aveFile..
[Add Devics...
A up

B Down

144 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

[[& Using the quartus_pgm executable

You can also run the Programmer separately at the command prompt or in a script
by using the quartus_pgm executable. You may need to run the Assembler
executable, quartus_asm, in order to produce a programming file before running
the Programmer.

If you want to get help on the quartus_pgm executable, type one of the following
commands at the command prompt:

quartus_pgm -h ¢
quartus_pgm -help ¢
quartus_pgm --help=<topic name> '

The Programmer has four programming modes:

Passive Serial mode

JTAG mode

Active Serial Programming mode
In-Socket Programming mode

The Passive Serial and JTAG programming modes allow you to program
single or multiple devices using a CDF and Altera programming hardware.
You can program a single EPCS1 or EPCS4 serial configuration device using
Active Serial Programming mode and Altera programming hardware. You
can program a single CPLD or configuration device using In-Socket
Programming mode with a CDF and Altera programming hardware.

If you want to use programming hardware that is not available on your

computer, but is available via a JTAG server, you can also use the
Programmer to specify and connect to remote JTAG servers.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 145

CHAPTER 9: PROGRAMMING & CONFIGURATION
PROGRAMMING ONE OR MORE DEVICES BY USING THE PROGRAMMER

“ ._ Py For Information About Refer To

General programming information “Programming Files” glossary definition,
“Overview: Working with Chain Description
Files,” and “Overview: Converting
Programming Files” in Quartus Il Help

Using the Programmer The Programming module of the Quartus I
Tutorial
Altera programming hardware Altera Programming Hardware Installation

Guide on the Altera web site

Programming hardware installation Quartus Il Installation & Licensing for PCs
and Quartus Il Installation & Licensing for
UNIX and Linux Workstations manuals

Device-specific programming The Configuration Handbook on the Altera
information web site

Programming One or More Devices
by Using the Programmer

The Quartus II Programmer allows you to edit a CDF, which stores device
name, device order, and optional programming file name information for a
design. You can use a CDF to program or configure a device with one or
more SOFs, POFs, or with a single Jam File or Jam Byte-Code File.

The following steps describe the basic flow for programming one or more
devices by using the Programmer:

1. Connect Altera programming hardware to your system and install any
necessary drivers.

2. Perform a full compilation of the design, or at least run the Analysis &
Synthesis, Fitter, and Assembler modules of the Compiler. The
Assembler automatically creates SOFs and POFs for the design.

3. Open the Programmer to create a new CDF. Each open Programmer

window represents one CDF; you can have multiple CDFs open, but
you can program using only one CDF at a time.

146 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

4. Select a programming hardware setup. The programming hardware
setup you select affects the types of programming modes available in
the Programmer.

5. Selectan appropriate programming mode, such as Passive Serial mode,
JTAG mode, Active Serial Programming mode, or In-Socket
Programming mode.

6. Depending on the programming mode, you can add, delete, or change
the order of programming files and devices in the CDF. You can direct
the Programmer to detect Altera-supported devices in a JTAG Chain
automatically and add them to the device list of the CDF. You can also
add user-defined devices.

7. For non-SRAM, non-volatile devices, such as configuration devices,
MAX 3000, and MAX 7000 devices, you can specify additional
programming options to query the device, such as Verify, Blank-
Check, Examine, and Security Bit.

8. Start the Programmer.

Creating Secondary Programming
Files

You can also create secondary programming files in other formats, such as
Jam Files, Jam Byte-Code Files, Serial Vector Format Files, In System
Configuration Files, Raw Binary Files, or Tabular Text Files, for use by other
systems, such as embedded processors. Additionally, you can convert SOFs
or POFs into other programming file formats, such as a POF for Remote
Update, a POF for Local Update, a HEXOUT File for EPC16, a HEXOUT File
for SRAM, or a Raw Programming Data File. You can create these secondary
programming files by using the Create/Update > Create JAM, SVF, or ISC
File command (File menu) and the Convert Programming Files command
(File menu). You can also use the Programming Files tab of the Device &
Pin Options dialog box, which is available from the Device page in the
Settings dialog box (Assignments menu), to specify optional programming
file formats for the Assembler to generate during compilation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 147

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

Creating Other Programming File
Formats

You can use the Create/Update > Create JAM, SVF, or ISC File command
(File menu) to create Jam Files, Jam Byte-Code Files, Serial Vector Format
Files, or In System Configuration Files. These files can then be used in
conjunction with Altera programming hardware or an intelligent host to
configure any Altera device supported by the Quartus II software. You can
also add Jam Files and Jam Byte-Code Files to CDFs. See Figure 3.

Figure 3. Create JAM, SVF, or ISC File Dialog Box

File name: ID:'\qdesigns\tutnrial\filtref.svf _I
File format: [Eiial VeGtan FGImaL SV]
—Dperation————————— Programming options

% Program [" Blank-check

 Werify [¥ ety

— Clock frequency

TCK frequency: I'I 0.0MHz

Supply valtage: |1.8 volts j

The following steps describe the basic flow for creating Jam Files, Jam Byte-
Code Files, Serial Vector Format Files, or In System Configuration Files:

1. Perform a full compilation of the design, or at least run the Analysis &
Synthesis, Fitter, and Assembler modules of the Compiler. The
Assembler automatically creates SOFs and POFs for the design.

2. Open the Programmer window to create a new CDF.

3. Specify JTAG mode.

148 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

4. Add, delete, or change the order of programming files and devices in
the CDF. You can direct the Programmer to detect Altera-supported
devices in a JTAG Chain automatically and add them to the device list
of the CDF. You can also add user-defined devices.

5. Choose Create/Update > Create Jam, SVF, or ISC File (File menu) and
specify the name and file format of the file you want to create.

Converting Programming Files

You can use the Convert Programming Files dialog box (File menu) to
combine and convert SOFs or POFs for one or more designs into other
programming file formats for use with different configuration schemes. For
example, you can add a remote update-enabled SOF to a POF for Remote
Update, which is used to program a configuration device in remote update
configuration mode, or you can convert a Programmer Object File into a
HEXOUT File for EPC16 for use by an external host. Or you can convert a
POF into a Raw Programming Data File for use with some configuration
devices. See Figure 4.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 149

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

Figure 4. Convert Programming Files Dialog Box

S pecify the input files to convert and the type of programming file ta generate.

“r'ou can alzo import input file information from other files and save the converzsion zetup information created here for

future use.

— Conversion setup file:

Upen Coryersion Setup Data..,

Save Conversion Setup...

— Output programming file

Frogramming file type: I Prograrmer Object File [paf]

Options... | LConfiguration device: IEPC‘IBUCEB j Mode: |1-bitPassive Serial

File name: ID:\qdesigns\my_test_design_restored\output_file.pof

Remate/Local update difference file: INDNE
™ Memory Map File

Led i L] Lo

— Input files to conwvert

File/Data area Properties
Main Block Drata
SOF Data Page 0
Buattorn Boot D ata

Add D ata
£dd Eile:.

Hemove

Do

Eraperties

[LLELE

| Cancel |

You can use the Convert Programming Files dialog box to set up output
programming files by arranging the chain of SOFs stored in a HEXOUT File
for SRAM, POFs, Raw Binary Files, or Tabular Text Files, or by specifying a
POF to be stored in a HEXOUT File for EPC16. The settings you specify in
the Convert Programming Files dialog box are saved to a Conversion Setup
File (.cof) that contains information such as device and file names, device

order, device properties, and file options.

For a POF for an EPC4, EPCS, or EPC16 configuration device, you can also

specify the following information:

B Establish different configuration bitstreams, which are stored in pages

in the configuration memory space.

B Create parallel chains of SOFs within each page.

B Arrange the order of SOFs and Hexadecimal (Intel-Format) Files (.hex)

stored in flash memory.

B Specify the properties of SOF Data items and HEX Files.

150 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

B Add orremove SOF Data items from the configuration memory space.
m If you wish, create Memory Map Files (.map).

For POFs for Local Update and POFs for Remote Update, you can specify the
following information:

B Add or remove remote update enabled POFs and remote update
enabled SOFs from the configuration memory space.

B Specify the properties of SOF Data items.

Add or remove SOF Data items.

m If you wish, create Memory Map Files, and generate remote update
difference files and local update difference files.

You can also use the Convert Programming Files dialog box to arrange and
combine multiple SOFs into a single POFs in Active Serial Configuration
mode. The POF can be used to program an EPCS1 or EPCS4 serial
configuration device, which can then be used to configure multiple devices
through a Cyclone device.

[[Using the quartus_cpf executable

You can also run the Convert Programming Files feature separately at the command
prompt or in a script by using the quartus_cpf executable. You may need to run

the Assembler executable, quartus_asm, in order to produce a programming file
before running the Programmer.

If you want to get help on the quartus_cpf executable, type one of the following
commands at the command prompt:

quartus_cpf -h ¢

quartus_cpf -help ¢
quartus_cpf --help=<topic name> ¢

The following steps describe the basic flow for converting programming
files:

1. Run the Assembler module of the Compiler. The Assembler
automatically creates SOFs and POFs for the design.

2. Use the Convert Programming Files dialog box and specify the format
and name of the programming file you want to create.

3. Specify a configuration mode that is compatible with the configuration
memory space of the programming file.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 151

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

152 =

10.

Specify appropriate programming options for the programming file
type and target device.

(Optional) Direct the Programmer to generate a remote update
difference file or a local update difference file for a Programmer Object
File for Remote Update or a Programmer Object File for Local Update,
by selecting the type of difference file.

Add or remove SOF Data items and assign them to pages.

(Optional) Add, remove, or change the order of SOFs and POFs to be
converted for one or more SOF Data item(s) or POF Data item.

(Optional) Add a HEX File to a Bottom Boot Data or Main Block Data
item for a POF for an EPC4, EPCS, or EPC16 configuration device, and
specify additional properties of SOF Data items, POF Data items, and
HEX Files.

Save the current state of the Input files to convert list and the output
programming file settings in a Conversion Setup File.

Convert the file. If you want, you can also specify a Memory Map File
to be created.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
USING THE QUARTUS Il SOFTWARE TO PROGRAM VIA A REMOTE JTAG SERVER

“ ._ Py For Information About Refer To

In-system programmability and In- Configuration Handbook on the Altera web
circuit reconfigurability site

Application Note 100 (In-System
Programmability Guidelines) on the Altera
web site.

Application Note 95 (In-System
Programmability in MAX Devices) on the
Altera web site.

Application Note 88 (Using the Jam
Language for ISP & ICR via an Embedded
Processor) on the Altera web site.

Application Note 122 (Using Jam STAPL for
ISP & ICR via an Embedded Processor) on
the Altera web site.

Application Note 298 (Reconfiguring
Excalibur Devices under Processor Control)
on the Altera web site

In-system programming The Programming module of the Quartus Il
Tutorial
Remote system configuration Chapter 15, “Using Remote System

Configuration with Stratix & Stratix GX
Devices” of the Stratix Device Handbook,
vol. 2, on the Altera web site

Using the Quartus |1l Software to
Program Via a Remote JTAG Server

In the Hardware Setup dialog box, which is available from the Hardware
button in the Programmer window or from the Edit menu, you can add
remote JTAG servers, which you can connect to, for example, to use
programming hardware that is not available on your computer, and
configure local JTAG server settings so remote users can connect to your
local JTAG server.

You can specify that remote clients should be enabled to connect to the JTAG

server in the Configure Local JTAG Server dialog box, which is available
from the JTAG Settings tab of the Hardware Setup dialog box.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 153

CHAPTER 9: PROGRAMMING & CONFIGURATION
USING THE QUARTUS Il SOFTWARE TO PROGRAM VIA A REMOTE JTAG SERVER

You can specify the remote server you want to connect to in the Add Server
dialog box, which is available from the JTAG Settings tab of the Hardware
Setup dialog box. When you connect to a remote server, the programming
hardware that is attached to the remote server will be displayed in the
Hardware Settings tab.

“ .. - For Information About Refer To

Using a Local JTAG Server “Configuring Local JTAG Server Settings,”
and “Adding a JTAG Server” in Quartus Il
Help

154 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 10:

Introduction

Using the SignalTap Il Logic Analyzer
Using SignalProbe

Using the RTL Viewer

Using the Chip Editor

156
157
163
165
165

Chapter
Ten

Debugging

CHAPTER 10: DEBUGGING

INTRODUCTION

Introduction

4

The Quartus® II SignalTap® II Logic Analyzer and the SignalProbe™ feature
analyze internal device nodes and I/O pins while operating in-system and
at system speeds. The SignalTap II Logic Analyzer uses an embedded logic
analyzer to route the signal data through the JTAG port to either the
SignalTap II Logic Analyzer or an external logic analyzer or oscilloscope,
based on user-defined trigger conditions. The SignalProbe feature uses
incremental routing on unused device routing resources to route selected
signals to an external logic analyzer or oscilloscope. Figure 1 and Figure 2
show the SignalTap II and SignalProbe debugging flows.

Figure 1. SignalTap Il Debugging Flow

Quartus Il Fitter Quartus Il Assembler
quartus_fit quartus_asm

\/

Programming
Files

SignalTap Il
File (.stp)

— Quartus Il Assembler

Quartus Il
Programmer
quartus_pgm

Altera Device

A

quartus_asm

Y Y

External Logic SignalTap Il

Ana}lyzer or Logic Analyzer
Oscilloscope

Figure 2. SignalProbe Debugging Flow

from Quartus Il

Compiler —

(full compilation)

156 m INTR

: ; Full Compilation
As_S|gn Pins orp Quartus Il Assembler
Dialog Box SignalProbe Compilation quartus_asm
Programming
Files
External Logic P Quartus Il
Analyzer or < Altera Device < Programmer
Oscilloscope quartus_pgm

ODUCTION TO QUARTUS I ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

Using the SignalTap Il Logic
Analyzer

The SignalTap II Logic Analyzer is a second-generation system-level
debugging tool that captures and displays real-time signal behavior,
allowing you to observe interactions between hardware and software in
system designs. The Quartus II software allows you to select the signals to
capture, when signal capture starts, and how many data samples to capture.
You can also select whether the data is routed from the device’s memory
blocks to the SignalTap II Logic Analyzer via the JTAG port, or to the I/O
pins for use by an external logic analyzer or oscilloscope.

You can use a MasterBlaster™, ByteBlasterMV™, ByteBlaster™ II, or
USB-Blaster™ communications cable to download configuration data to the
device. These cables are also used to upload captured signal data from the
device’s RAM resources to the Quartus II software. The Quartus II software
then displays data acquired by the SignalTap II Logic Analyzer as
waveforms.

Setting Up & Running the SignalTap Il
Logic Analyzer

To use the SignalTap II Logic Analyzer, you must first create a

SignalTap II File (.stp), which includes all the configuration settings and
displays the captured signals as a waveform. Once you have set up the
SignalTap II File, you can compile the project, program the device, and the
use the logic analyzer to acquire and analyze data.

Each logic analyzer instance is embedded in the logic on the device. The
SignalTap II Logic Analyzer supports up to 1,024 channels and 128K

samples on a single device.

After compilation, you can run the SignalTap II Logic Analyzer by using the
Run Analysis command (Processing menu). See Figure 3.

The following steps describe the basic flow to set up an SignalTap II File and
acquire signal data:

1. Create a new SignalTap II File.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 157

CHAPTER 10: DEBUGGING

USING THE SIGNALTAP

Il LOGIC ANALYZER

2.

Add instances to the SignalTap II File and nodes to each instance. You
can use the SignalTap I filters in the Node Finder to find all pre-
synthesis and post-fitting SignalTap Il nodes.

Assign a clock to each instance.

Set other options, such as sample depth and trigger level, and assign
signals to the data/trigger input and debug port.

If necessary, specify Advanced Trigger conditions.
Compile the design.
Program the device.

Acquire and analyze signal data in the Quartus II software or using an
external logic analyzer or oscilloscope.

Figure 3. The SignalTap Il Logic Analyzer

B clock stp _[O]%]
Instance Manager: Mg b B Fieady to acquire @ JTAG Chain Configuration: |JTAE ready) x
nstance | Status | LEsi8SS| Memen: 5056 |
auto_signaltap_0 Mot unning 1563 cells 3904 bits Hardware: | ByteBlasteill [LF" ¥ Setup.
2. auto_signaap_1 Mot nning 232 cells 1152 tits Devine lm Sean Chain
File: o [clock.saf]
trigger: 2003/10/30 18:11:06 #0 | Lock made: |é‘A||nw 3l changes =l Signal Configuration: x
Hode Incr... [Debu...| Data .. [Trigger. Trigger Levels Clock: el |:| =
Type [Aljs Name Route | Out 161 | 6161 |15 [Basic |21 [Ease - |[30] advanced - | B
i foocinstioycles: | [T ~ P | St [o
- Sampledepth: | Modes locatedt |
5 foatinstitemy r 4 2 OO MMM, [
——— 64 > | oaue @ Manual [51
o =) fociinstisin r 4 F 30h KRHFHHHOR
P instisinta] F|F o RAM ype
o instisin(7]] [2 ~ o MK -
< nstisins]] T~ F|F T
e = v — ~Buffer acquisition mode:
Py instjsin g v]
& = -
=y rstisinid]| I I T Circular rPle igger pasition J
Bt Lanstising3l| I = L © Segmentect [3 & bil shoments = =
ES instisniz| [[o
- instisini1]| [rd [o ~Tigger
o foo:instiweight | [~ ~ ¥ HHCHHKD | R Tiigger levels: [~ Nodes pllocated
[3 = Coaub & Manual [T A
rr Trigger In 1| =l
B Dats | 21 Setup |51 Advanced Triggér 3
Hierarchy Dfisplay: X | Datalop Al &2
=-E® dock =[] auto_signaltan_0 3
» foainst EHEp signal_set: 2002¢08/29 11:21:15 #0
1Y tigoer 200/08/23 112115 #1 =l
(] aulo_siraliap_0 | #, auto_signaltep_1 .
: Signal Configuration ~ JTAG Chain
Instance Setup View Pagn ol g Confiaurati
oniiguration
Manager g

158 =m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

You can use the following features to set up the SignalTap II Logic Analyzer:

B Multiple Logic Analyzers: The SignalTap II Logic Analyzer supports
multiple embedded instances of the logic analyzer in each device. You
can use this feature to create a separate and unique logic analyzer for
each clock domain in the device, and apply different settings to
multiple embedded logic analyzers.

B Instance Manager: The Instance Manager allows you create and
perform SignalTap II logic analysis on multiple instances. You can use
it to create, delete, and rename instances in the SignalTap II File. The
Instance Manager displays all instances in the current SignalTap II File,
the current status of each associated instance, and the number of logic
elements and memory bits used in the associated instance. The Instance
Manager helps you to check the amount of resource usage that each
logic analyzer requires on the device. You can start multiple logic
analyzers at the same time by selecting them and selecting Run
Analysis (Processing menu).

B Triggers: A trigger is a pattern of logic events defined by logic levels,
clock edges, and logical expressions. The SignalTap II Logic Analyzer
supports multi-level triggering, multiple trigger positions, multiple
segments, and external trigger events. You can set trigger options using
the Signal Configuration panel in the SignalTap II Logic Analyzer
window and specify advanced triggers by selecting Advanced in the
Trigger Levels column in the Setup tab of the SignalTap II Logic
Analyzer window.

Advanced triggers provide the ability to build flexible, user-defined
logic expressions and conditions based on the data values of internal
buses or nodes. Using the Advanced Trigger tab, you can drag and
drop symbols from the Node List and the Object Library to create a
logical expression composed of logical, comparison, bitwise, reduction,
and shift operators. Figure 4 shows the Advanced Trigger tab of the
SignalTap II window.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 159

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

Figure 4. Advanced Triggers Tab of the SignalTap Il Window

Riclock.stp

- ol x|
Instance Manager. ’Q o n Ready to acquire EI x | JTAG Chain Configuration; IJTAG Ieady EI X
Instance | Status | LEs: 1655| Memony: 5055|
auto_signaktap_ 0 Not wunring 1563 cells 3904 bits IR Byteblastell [LP i SELI
2. auto_signaltap_1 Mot running 292 cells 1152 bits Devices @1 EF20K200C = Sean Chain
File: gg clock, sof |]
Nocle List 21| Advanced Trigger Condition Editor: Level 2
Type |Alias Hame Result: cycles<lahss (2in<=7||=in>10) Al
o fogiinstjcycles m
= fooinsttemp al] -
o) =) i o:’vﬂ\.smm " — 25 g[] ah
% LESS ogical_0
hod fooinstisin(7] B comparisan_1 THAN
Py .. fomcinst/sin[g] al]
" " .. 3n = = 1t
.. fominstlsin(5] =] tesu
;:' 4 Liby e [ﬁLE[] B logical 1
L E‘d"*"“& —— o[LESS THAN A
~ Edge & Level Detectar OR EQUAL TO
#-# Input Objects _ E_"\rﬂ _
Caomparizon Operators B comparisan_2 data[0]
Bitwise Operators Elll
Logical Operators i) E = result M
FReduction Operators 5[] o> b
[0 g
w4 Shift Dperalors i T | GREATER
THARN

Bl Data el Setup | 5] Advanced Trigger 3 |

Hierarchy Display:

X |I” Datalog {3

= [FA# olock
» fooinst

£ [auto_signaliap_0
Bl b signal_set: 2002/08/23 11:21:15 40
- 2 tioger 2002/08/23 11:21:15 #1

Jg_‘ auto_signaltap_0 ‘3; auto_signalap_1 |

4
[
4

160 =m

INTRODUCTION TO QUARTUS Il

You can configure the logic analyzer with up to ten trigger levels,
helping you to view only the most significant data. You can specify four
separate trigger positions: pre, center, post, and continuous. The trigger
position allows you to specify the amount of data that should be
acquired before the trigger and the amount that should be acquired
after the trigger in the selected instance.

Segmented mode allows you to capture data for periodic events
without allocating a large sample depth by segmenting the memory
into discrete time periods.

Incremental Routing: The incremental routing feature helps to shorten
the debugging process by allowing you to analyze post-fitting nodes
without performing a full recompilation.

Before using the SignalTap II incremental routing feature, you must
perform a smart compilation by turning on Automatically turn on
smart compilation if conditions exist in which SignalTap II with
incremental routing is used, in the SignalTap II Logic Analyzer page
of the Settings dialog box (Assignments menu). Also, you must reserve

ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

trigger or data nodes for SignalTap II incremental routing using the
Trigger Nodes allocated and Data Nodes allocated boxes before
compiling the design. You can find nodes for SignalTap II incremental
routing sources by selecting SignalTap II: post-fitting in the Filter list
in the Node Finder.

Analyzing SignalTap Il Data

When you use the SignalTap II Logic Analyzer to view the results of a logic
analysis, the data is stored in the internal memory on the device and then
streamed to the waveform view in the logic analyzer, via the JTAG port.

In the waveform view, you can insert time bars, alignh node names, and
duplicate nodes; create, rename, and ungroup a bus; specify a data format
for bus values; and print the waveform data. The data log that is used to
create the waveform shows a history of data that is acquired with the
SignalTap II Logic Analyzer. The data is organized in a hierarchical manner;
logs of captured data using the same trigger are grouped together in Trigger
Sets. Figure 5 shows the waveform view.

Figure 5. SignalTap 1l Waveform View

-Ioix
Instance Manager: Mg kD B Fieady to anquiis i) x |JTAE Chain Configuration: [JTAG ready) x

Instance | Status | LEstgea| Memen: 5056 |

auto_signaltap_0 Mot unning 1658 cells 390d bits Hardware: | ByteBlasterl [LF ~ Setup

to_signaltap_1 Mot rwnri 231 cell 1162 bit
B, auto_signaltap_ ot iunring cells its Bctis @ era (I
Fil: & [clocksof Ll
- 2 P
log: 2003/05005 16:52:12 #0 E = i =
Type | Alias Node Name v

[S T T T SO T SN N U I

i
& [owks | @ fooinsticycies (werve) OCOCCOCOCOCRCGCAC0000C000C0C0000Y

sin fom:instisin 03

- LTI OEETTINRTHEERLEY
A g nttll
o | sndup | @ fooinstisn _Ezn) 000C00C0COADO0000000000Em0 I0CC0C0C00CACC00CCA00C0000C000
o fooinstlweight a0 78 a0 |—
=) = fowiinsthemp (ExeetyyOC00C0C0OCOCDCO00C00C00000C000000N00C000CT0C00AC00000000C0000000]
=) - fooiinstemp[19] o
R f'DU instiemp(18] 1]
o fooinstitemp[17] 0
=y toa nsttempl16] 0
= foo:insthemp[15] o
=) - toaiinsthemp(14] o
= - foinstemp[13] o .|
B Dete [fl Setup [Advanced Trigger 3 |
Hierarchy Display: X | [" Datalog (Rl x
E-[F# clock |2] auto_signaltap_0)
[#* foo:inst =g signal_set: 2002/08/2311:21:15 #0
=My trigger: 2002/08/29 11:21:15 #1
@ log: 2002/08/2911:21:15 #2
£ g signal_set 2002/11/07 17:40:48 #0 =l

] aulo_signaliap_0 | #, auto_signaltep_1

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 161

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

The Waveform Export utility allows you to export the acquired data to the
following industry-standard formats that can be used by EDA tools:

Comma Separated Values File (.csv)
Table File (.tbl)

Value Change Dump File (.ved)
Vector Waveform File (.vwf)

You can also configure the SignalTap II Logic Analyzer to create mnemonic
tables for a group of signals. The mnemonic table feature allows a

predefined name to be assigned to a set of bit patterns, making captured data
more meaningful. See Figure 6.

Figure 6. Mnemonic Table Setup Dialog Box

Table: |[aRR=e
Entries:
Pattern | tnemanic -
00aooag 0'Clock
000 0'One
ooaoia 0'Two
ooaoit 0'Three
0ooioa0 O'Four
oo O'Five
oooi0 0'Six
oo 0'Seven
007 oo O'Eight i
00 0o O'hine
ooioia Ten
00011 Eleven
o100 Twelve
oo11m Thirteen
om0 Fourteen
0111 Fifteen
010000 Sixteen
010001 Seventeen
momo Eighteen
moo Mineteen
omoion Twenty
oMo Twenty-One
om0 Twenty-Two -
4| | »

x|
&dd Table... |
Impart Table. . |
Delete Table |
Add Entry... |
Delete Entry |

— Pattern Legend—
1 - High
0-Low
- High

- Low

- Falling Edge

H
L
R - Rising Edge
F
E - Either Edge
=

-Don't Care

Ok I Cancel

4

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING SIGNALPROBE

“ ._ Py For Information About Refer To

Using the SignalTap Il Logic Analyzer Chapter 9, “Design Debugging Using
SignalTap Il Embedded Logic Analyzer,” in
the Quartus Il Handbook, vol. 3, on the
Altera web site

“Overview: Using the SignalTap Il Logic
Analyzer” in Quartus Il Help

Using SignalProbe

1L The SignalProbe feature allows you to route user-specified signals to output
pins without affecting the existing fitting in a design, so that you can debug
signals without needing to perform another a full compilation. Starting with
a fully routed design, you can select and route signals for debugging
through I/O pins that are either previously reserved or currently unused.

The SignalProbe feature allows you to specify which signals in the design to
debug, and then perform a SignalProbe compilation that connects those

signals to unused or reserved output pins, and then sends the signals to an
external logic analyzer. You can use the Node Finder when assigning pins to
find the available SignalProbe sources. A SignalProbe compilation typically
takes approximately 20 to 30% of the time required for a normal compilation.

To use the SignalProbe feature to reserve pins and perform a SignalProbe
compilation on a design:

1. Perform a full compilation of the design.

2. Select signals for debugging and the I/O pins to route the signals, and
turn on the SignalProbe feature in the Assign Pins dialog box, which is
available from the Device page of the Settings dialog box
(Assignments menu). See Figure 7.

3. Perform a SignalProbe compilation. A SignalProbe compilation
compiles a design without affecting the design's fit and routes the
SignalProbe signals faster than a normal compilation. Alternatively,
you can turn on Automatically route SignalProbe signals during
compilation in the SignalProbe page of the Settings dialog box and

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 163

CHAPTER 10: DEBUGGING
USING SIGNALPROBE

then choose Start Compilation (Processing menu) to include
SignalProbe connections in a full compilation, which may affect the
placement and routing of the design.

4. Configure the device with the new programming data to examine the

signals.

Figure 7. Assign Pins Dialog Box

Select a device pin and the type of assighment pou wizh ko make. You can also make pin assighments in the Azzighment Editar and the
Floorplan Editor. You can reserve unused ping on a device-wide basiz with the Unuzed Pinz tab in the Device & Pin Options dislog bos.
“f'ou must perform a smart compilation on the design befare routing SignalProbe signals.

Changes apply to Compiler settings 'filtref'

Available Pins & Existing Assignments:

I Mu... | Mame: | 1/0 | 1/0 St...l Type: | SignalProbe Source .. | Enabled | Statuz ﬂ
b2 2 LYTTL Rowl/0, DIFFIO_R... Off
E3 2 LYTTL Row /0, DIFFIO_T... Off
E4 2 LYTTL Row /0, DIFFIO_T... O
K4 2 LYTTL Row /0, DIFFIO_R... 0
Ki! 2 LYTTL Rew!/0, DIFFIO R.. Ii'ff _lﬂ
4 »
[Show 'no connect’ ping [V Show current and patential SignalProbe pins
— Azzignment
Firn name: IC‘I J SighalProbe source: Iaccel J
¥ SignalProbe enable
10 standard: [LVTTL =] S
LClock: I J
V¥ Beserve pin [even if it doss not exist in the design Fils):
I.t’-\s SignalProbe output j Reqisters: I
LChange Delete | Enable &l SignalProbe Routing I Dizable 4l SignalProbe Routing |

Ok I Cancel |

When reserving SignalProbe pins, you can also use the register pipelining

feature to ignore jitter, to force signal states to output on a clock edge, or to

delay a signal output. You can also use register pipelining to synchronize
multiple SignalProbe outputs from a bus of signals, or to prevent
SignalProbe routing from becoming the critical path because of fyax
changes.

You can keep or remove all or some of the SignalProbe routing after
debugging. If you keep SignalProbe routing in a design, you can
automatically route SignalProbe routing during a full compilation.

164 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE RTL VIEWER

You can also use the SignalProbe feature with Tcl. With Tcl commands, you
can add and remove SignalProbe assignments and sources, perform a
SignalProbe compilation on a design, and compile routed SignalProbe
signals in a full compilation.

“ .. - For Information About Refer To

Using the SignalProbe feature Chapter 8, “Quick Design Debugging Using
SignalProbe,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

“SignalProbe Introduction” in Quartus I

Help
Using TCL commands with the Application Note 195 (Scripting with Tcl in
SignalProbe feature the Quartus Il Software) on the Altera web
site

Using the RTL Viewer

You can use the RTL Viewer to analyze your design after analysis and
elaboration has been performed. The RTL Viewer provides a gate-level
schematic view of your design and a hierarchy list, which lists the instances,
primitives, pins, and nets for the entire design netlist. You can filter the
information that appears in the schematic view and navigate through
different pages of the design view to examine your design and determine
what changes should be made. For more information refer to “Analyzing
Synthesis Results with the RTL Viewer” on page 66 in Chapter 3,
“Synthesis.”

Using the Chip Editor

You can use the Chip Editor in conjunction with the SignalTap II and
SignalProbe debugging tools to speed up design verification and
incrementally fix bugs uncovered during design verification. After you run
the SignalTap II Logic Analyzer or verify signals with the SignalProbe
feature, you can use the Chip Editor to view details of post-compilation
placement and routing. You can also use the Resource Property Editor to
make post-compilation edits to the properties and parameters of logic cell,

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 165

CHAPTER 10: DEBUGGING
USING THE CHIP EDITOR

I/0O element, or PLL atoms, without requiring a full recompilation. For more
information on using the Chip Editor, refer to the next chapter, Chapter 11,
“Engineering Change Management.”

166 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 11:

Introduction

Identifying Delays & Critical Paths
with the Chip Editor

Modifying Resource Properties with
the Resource Property Editor

Viewing & Managing Changes with
the Change Manager

Verifying the Effect of ECO Changes

168

169

172

174
176

Chapter
Eleven

Engineering Change
Management

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT

INTRODUCTION

Introduction

The Quartus® II software allows you to make small modifications, often
referred to as engineering change orders (ECO), to a design after a full
compilation. These ECO changes can be made directly to the design
database, rather than to the source code or the Quartus II Settings and
Configuration File (.qsf). Making the ECO change to the design database
allows you to avoid running a full compilation in order to implement the
change. Figure 1 shows the engineering change management design flow.

Figure 1. Engineering Change Management Design Flow

From Quartus Il
Compiler (full —»
compilation)

I Quartus Il > Resource - Change

Chip Editor Property Editor Manager
Compiler
Database
Files (.cdb)

to Assembler, EDA
Netlist Writer, or
Timing Analyzer

The following steps outline the design flow for engineering change
management in the Quartus II software.

After a full compilation, use the Chip Editor to view design placement
and routing details and identify which resources you want to change.
If you want, you can use the Netlist Explorer to filter and highlight
resources.

Use the Resource Property Editor to edit internal properties of
resources and to edit or remove connections.

Use the Check Resource Properties command (Edit menu) to check the
legality of the change for the resource.

View the summary and status of your changes in the Change Manager
and control which changes to resource properties are implemented
and/or saved. You can also add comments to help you reference each
change.

Use the Check and Save All Netlist Changes command (Edit menu) to
check the legality of the change for all of the other resources in the
netlist.

168 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
IDENTIFYING DELAYS & CRITICAL PATHS WITH THE CHIP EDITOR

6. Runthe Assembler to generate a new programming file or run the EDA
Netlist Writer again to generate a new netlist. If you want to verify
timing changes, you can run the Timing Analyzer.

Identifying Delays & Critical Paths
with the Chip Editor

You can use the Chip Editor to view details of placement and routing. The
Chip Editor reveals additional details about design placement and routing
that are not visible in the Quartus II Floorplan Editor. It shows complete
routing information, showing all possible and used routing paths between
each device resource. See Figure 2.

Figure 2. Chip Editor

Shows routing
delays

Displays
resource usage

== | L 1 | T
A o P p O N , ,
ot 1o e || 3o 1 L. — 1 Displays fan-in
L1 L1 L L L ’ and fan-out
X

connections of a

p— selected resource
= | L R R |-
<] | v s

The Chip Editor displays all the resources of the device, such as
interconnects and routing lines, logic array blocks (LABs), RAM blocks, DSP

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 169

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
IDENTIFYING DELAYS & CRITICAL PATHS WITH THE CHIP EDITOR

170 =

blocks, I/0Os, rows, columns, and the interfaces between blocks and
interconnects and other routing lines.

You can control the level of detail of the Chip Editor display by zooming in
and out, selecting specific paths you want to display, and displaying a
separate Bird’s Eye View window, which shows magnification of the device
view. You can also set options that control the display of different resources,
as well as fan-in and fan-out, critical paths, and delay estimates on signals.
You can then use this information to determine which properties and
settings you may want to edit in the Resource Property Editor. You can
select a resource in the Chip Editor and choose Locate in Resource Property
Editor (right button pop-up menu) to open the Resource Property Editor
and edit that resource. Refer to “Modifying Resource Properties with

the Resource Property Editor” on page 172 for more information.

The Chip Editor also includes a Netlist Explorer window that allows you to
highlight and select netlist elements in the Chip Editor. See Figure 3.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
IDENTIFYING DELAYS & CRITICAL PATHS WITH THE CHIP EDITOR

Figure 3. Netlist Explorer

Ioutput term fanouts j Bun Carmmand |
Index | Mame Locate I

] il Clear Highlights |
ke | 2 esult[0] cRREL L
3 esult[2] Irveert Selection |
4 ezltf3]
3 s buffer[0]™12 Remove |
G Fa_buffer[0]713 s
7 bs buffer0]714 Clean Duplicates |
2 bz buffer[0]715
e | 3 bz buffer[0]™16 Accumulate
L 10 Es bufferd[0]™17 [Highlights
[Auto Locate
W fwta Zoom

*

d P

The Netlist Explorer allows you to filter and highlight resources in the Chip Editor

When you select elements in the Chip Editor, they will be displayed in the
list in the Netlist Explorer. You can then apply different filters and
commands, such as commands to find fan-outs or routing elements, or
options to filter the list based on certain criteria, such as slack, name, and so
on. The list will be updated and filtered based on the options you select. You
can keep “exploring” the netlist by repeating these steps and applying
different commands.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 171

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
MODIFYING RESOURCE PROPERTIES WITH THE RESOURCE PROPERTY EDITOR

For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Chip Editor Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Chip Editor “Overview: Using the Chip Editor” and
“Making Post-Compilation Changes
Introduction” in Quartus Il Help

Modifying Resource Properties with
the Resource Property Editor

The Resource Property Editor allows you to make post-compilation edits to
the properties and parameters of logic cell, I/O element, or PLL resources,
as well as edit or remove connections for individual nodes. You can use the
toolbar buttons that allow you to navigate forward and backward among the
resources. You can also select and change multiple resources at one time.
You can follow the fan-in and fan-out of a resource and can view the
resource in the Resource Property Editor.

The Resource Property Editor contains a viewer that shows a schematic
diagram of the resource you are modifying, a port connection table that lists
all the input and output ports and their connected signals, and a property
table that displays the properties and parameters that are available for that
resource. If the port connection or property tables are not visible, you can
display them with the View Port Connections command and View
Properties command (View menu). Figure 4 shows the Resource Property
Editor.

172 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
MODIFYING RESOURCE PROPERTIES WITH THE RESOURCE PROPERTY EDITOR

Figure 4. Resource Property Editor

Viewer shows schematic diagram of resource

- O] x

hode name:

LC_%30_¥27 M3~

[filtreflrmwalt: instBllprn_rmult:lprm_mult_componentimultcors: mult_corelmpar_add: padderdmpar_add: sj

37y

[

Y

[i

v,

—

TRTTT]

g h

LI

Input Port name | Signal name :I Output Port name

dataa Ifiltreflrmalt:ingtEllpr_rult: lpm_malt_compe carmyout

datab Ifiltreflralt: intEllprn_ it |pn_mul_cormpe cascadeout

datac <Digconnected: J combout [filtreflrult: instBliprm_mult: lprm_mult_componentimultcc
datad <Disconnected: regout

labclkena <Dizconnected:

lapelr <Disconnected: it

4 3| 1] | |
Froperties/Modes Walues LUT eduation

LUT Mazk 9617 -

©Gum LUT Mask 59655 Sum equation: 4§ §C

- Camy LUT Maszk 1717 _

Operation|Mods Arithretic Carry gquatian: IA LIB&ICH AL CHIB)

Synchronpus kMode (u];

Reqister Jascade Mode| O ml

Property table displays the properties and values for the
selected resource and allows you to make changes

ALTERA CORPORATION

Port connection table shows
the input and output ports

You can make changes to the resource in the schematic or in the property
table. If you make a change in the property table, that change is reflected
automatically in the schematic diagram.

The Resource Property Editor also allows you to select a node in the
schematic or in the port connection table and choose Edit Connection (right
button pop-up menu) to specify a new signal for the connection. If you want
to remove the connection, you can select the node and choose Remove

INTRODUCTION TO QUARTUS Il m 173

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VIEWING & MANAGING CHANGES WITH THE CHANGE MANAGER

Connection (right button pop-up menu). In the port connection table, you
can create new output ports by choosing Create (right button pop-up menu).

Once you have made a change, you can use the Check Resource Properties
command (Edit menu) to perform simple design-rule checking on the
resource. You can also view a summary of your changes in the Change
Manager. Refer to the next section, “Viewing & Managing Changes with
the Change Manager,” for more information.

“ .- - For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Resource Property Editor Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Resource Property Editor “Overview: Using the Resource Property
Editor” and “Making Post-Compilation
Changes Introduction” in Quartus Il Help

Viewing & Managing Changes with
the Change Manager

The Change Manager window lists all the ECO changes that you have made.
It allows you to select each ECO change in the list and specify whether you
want to apply or delete the change. It also allows you to add comments for
your reference. You can open the Change Manager by choosing Utility
Windows > Change Manager (View menu). See Figure 5.

174 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VIEWING & MANAGING CHANGES WITH THE CHANGE MANAGER

Figure 5. Change Manager

Mode Name Change Tywpe Old%alue | TargetValue | Current Yalue | Disk Yalue Status Comment
1| lfilrefitaps:instln[0] ~“regl: CLE:O Madify Source ffilreflclk. | Disconnected | [filtreflreset [filtreflcik Pending
2| lfilreftaps:instlzn[0] “regl: CLE:O Modify Source Dizconnected | [filreflreset Ifiltreflreset [filtreflcik Pending
3| lilreftaps:instin[0]regl:COUT:0 | Output Port Modific... MHone [iltrefltaps:in.. | [fiktrefltapsin... MHone Pending
4| lfilreftaps:instln(0] “regh:EMAD Modify Source [filrefinewt | Dizconnected | Disconnected | [fleflnewt | Pending
| | +]
Change M, Netlist chech required /

The log view of the Change Manager displays the following information for
each ECO change:

Change number

Node name

Change type

Old value

Target value

Current Value

Disk Value

Comments , which are comments you have added about the ECO

chan

ge.

Status, which can be one of the following indicators:

ALTERA CORPORATION

Pending: You have made a change in the Resource Property
Editor, but it has not been saved.

Committed: You have made a change in the Resource Property
Editor, saved the change, and checked it with the Check and Save
All Netlist Changes command (Edit menu). The change is
available for use in the Assembler, Timing Analyzer, EDA Netlist
Writer, and Simulator. The Current Value is equal to both the
Target Value and the Disk Value.

Applied: You have made a change in the Resource Property
Editor, saved the change, but have not checked it with the Check
and Save All Netlist Changes command (Edit menu). The change
is not available for use in the Assembler, Timing Analyzer, EDA
Netlist Writer, and Simulator. The Current Value is equal to the
Target Value but is not equal to the Disk Value, and the Disk
Value is not necessarily equal to the Old Value.

Not Applied: The Current Value is equal to the Old Value, and the
Disk Value is not necessarily equal to the Old Value.

INTRODUCTION TO QUARTUS Il ®m 175

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VERIFYING THE EFFECT OF ECO CHANGES

- Not Valid: The target node may not exist in the netlist. The
Current Value is not equal to the Old Value or the Target Value,
and the Disk Value is not necessarily equal to the Old Value.

After you have committed the changes you want, you should choose Check
and Save All Netlist Changes (Edit menu) to check the legality of the
change for all of the other resources in the netlist. You can then perform the
following actions on the ECO changes in the list by using commands from
the right button pop-up menu:

Apply Target Value to Preceding and Current Changes
Restore Old Value to Current and Subsequent Changes
Delete Current and Subsequent Changes

Export Preceding and Current Changes to Tcl

Export All Changes to Tcl

For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Change Manager Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Change Manager “Overview: Using the Change Manager” and
“Making Post-Compilation Changes
Introduction” in Quartus Il Help

Verifying the Effect of ECO Changes

After you have made an ECO change, you should run the Assembler module
of the Compiler in order to create a new POF. You may also want to run the
EDA Netlist Writer again to generate a new netlist, or run the Timing
Analyzer or Simulator again to verify that the change results in the
appropriate timing improvement. You can run each of these modules
separately by using the Compiler Tool window, or by using the
quartus_asm or quartus_eda, and quartus_tan executables at the command
line or in a script. Performing a full compilation, however, will change the
values of the ECO changes.

176 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 12:

Introduction 178
Creating SOPC Designs with
SOPC Builder 179

Creating DSP Designs with the
DSP Builder 182

Chapter
Twelve

System-Level Design

CHAPTER 12: SYSTEM-LEVEL DESIGN

INTRODUCTION

Introduction

The Quartus® II software supports the SOPC Builder and DSP Builder
system-level design flows. System-level design flows allow engineers to
rapidly design and evaluate system-on-a-programmable-chip (SOPC)
architectures and design at a higher level of abstraction.

The SOPC Builder is an automated system development tool that
dramatically simplifies the task of creating high-performance SOPC designs.
The tool automates the system definition and integration phases of SOPC
development completely within the Quartus II software. The SOPC Builder
allows you to select system components, define and customize the system,
and generate and verify the system before integration. Figure 1 shows the
SOPC Builder design flow.

Figure 1. SOPC Builder Design Flow

Select components

Customize & Integrate

System verification &

construction

178 =

INTRODUCTION TO QUARTUS Il

Intellectual

Processors property (IP)

S

OS/RTOS

System definition, customization,
and automatic system generation

&

Header files, generic
peripheral drivers,

custom software libraries &
OS/RTOS kernels

SOPC Builder

Es

Simulation test
benches, ESS model
files & object code
compiled to
memory models

Verilog & VHDL
design files
(.v, .vhd)

The Altera® DSP Builder integrates high-level algorithm and HDL
development tools by combining the algorithm development, simulation,
and verification capabilities of the MathWorks MATLAB and Simulink
system-level design tools with VHDL synthesis and simulation tools and the
Quartus II software. Figure 2 on page 179 shows the DSP Builder design
flow.

ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

Figure 2. DSP Builder Design Flow

Y

DSP Builder

A

MATLAB/ -
Simulink EE

\/

Signal
Compiler

Intellectual

property (IP)

v
EDA Synthesis FE‘ N
Tool é
Y

Quartus Il
Fitter

A

h

Verilog design F~ Simulation test

files, VHDL N benches & Tcl
design files é Script Files to run
(v, .vhd) & Tcl the ModelSim

DSP block ready
for SOPC Builder

Script Files (.tcl) Software
ModelSim/
) SOPC
ModelSim-Altera Builder
Software

Quartus Il

Analysis & Synthesis

Creating SOPC Designs with

SOPC Builder

m The SOPC Builder, which is included with the Quartus II software, provides
a standardized, graphical environment for creating SOPC designs
P composed of components such as CPUs, memory interfaces, standard
I peripherals, and user-defined peripherals. The SOPC Builder allows you to
select and customize the individual components and interfaces of your
system module. SOPC Builder combines these components and generates a
single system module that instantiates these components, and automatically

generates the necessary bus logic to connect them together.

The SOPC Builder library includes the following components:

B Processors

B Intellectual property (IP) and peripherals

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il =m 179

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

B Memory interfaces

Communications peripherals

Buses and interfaces, including the Avalon™ bus and AMBA™ high-
performance bus (AHB)

Digital signal processing (DSP) cores

Software

Header files

Generic C drivers

Operating system (OS) kernels

You can use SOPC Builder to construct embedded microprocessor systems
that include CPUs, memory interfaces, and I/O peripherals; however, you
can also generate dataflow systems that do not include a CPU. It allows you
to specify bus topologies with multiple masters and slaves. SOPC Builder
can also import or provide an interface to user-defined blocks of logic that
are connected to the system as custom peripherals.

Creating the System

When building a system in SOPC Builder, you can choose either user-
defined modules or modules available from the module pool component
library.

SOPC Builder can import or provide an interface to user-defined blocks of
logic. There are four mechanisms for using an SOPC Builder system with
user-defined logic: simple PIO connection, instantiation inside the system
module, bus interface to external logic, and publishing a local SOPC Builder
component.

SOPC Builder provides library components (modules) for download,
including processors, such as the Excalibur embedded processor stripe and
NIOS processor, a UART, a timer, a PIO, an Avalon tri-state bridge, several
simple memory interfaces, and OS/RTOS kernels. In addition, you can
choose from an array of MegaCore® functions, including those that support
the OpenCore® Plus hardware evaluation feature.

You can use the System Contents page of SOPC Builder to define the
system. You can select library components in the module pool and display
the added components in the module table. You can use the information in
the module table or in a separate wizard to define the following component
options:

180 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

System components and interfaces
Master and slave connections

System address map

System IRQ assignments

Arbitration priorities for shared slaves
System clock frequency

Generating the System

Each project in SOPC Builder contains a system description file (PTF File),
which contains all the settings, options, and parameters entered in the SOPC
Builder. In addition, each module has a corresponding PTF File. During
system generation, the SOPC Builder uses these files to generate the source
code, software components, and simulation files for the system.

Once system design is complete, you can generate the system using the
System Generation page of SOPC Builder or using the command line.

The SOPC builder software automatically generates all necessary logic to
integrate processors, peripherals, memories, buses, arbitrators, and IP cores,
and interfaces to logic and memory outside the system, and creates HDL
source code that binds the components together.

SOPC Builder can also create software development kit (SDK) software
components, such as header files, generic peripheral drivers, custom
software libraries, and OS/real-time operating system (RTOS kernels), to
provide a complete design environment when the system is generated.

For simulation, SOPC Builder creates a Model Technology™ ModelSim®
simulation directory that contains a ModelSim project file, the simulation
data files for all memory components, macro files to provide setup
information, aliases, and an initial set of bus-interface waveforms. It also
creates a simulation test bench that instantiates the system module, drives
clock and reset inputs, and instantiates and connects simulation models.

A Tcl script that sets up all the files necessary for compilation of the system
in the Quartus II software is also generated.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 181

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

“ ._ Py For Information About Refer To

Using SOPC Builder SOPC Builder Data Sheet on the Altera web
site

Chapter 3, “System Design Using SOPC
Builder,” in the Quartus Il Handbook, vol. 1,
on the Altera web site

“Overview: Using SOPC Builder” in
Quartus Il Help

Application Note 308 (Building Embedded
Processor Systems Using SOPC Builder &
Excalibur Devices) on the Altera web site

Creating DSP Designs with the
DSP Builder

The DSP Builder shortens DSP design cycles by helping you create the
hardware representation of a DSP design in an algorithm-friendly
development environment. The DSP Builder allows system, algorithm, and
hardware designers to share a common development platform. The DSP
Builder is an optional software package available from Altera, and is also
included with DSP Development Kits.

The DSP Builder also provides support for system-level debugging using
the SignalTap® Il Logic Analyzer. You can synthesize, compile and
download the design, and then perform debugging, all through the
MATLAB/Simulink interface.

Instantiating Functions

You can combine existing MATLAB functions and Simulink blocks with
Altera DSP Builder blocks and MegaCore functions, including those that
support the OpenCore Plus hardware evaluation feature, to link system-
level design and implementation with DSP algorithm development.

182 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

To use MegaCore functions that support the OpenCore Plus feature in your
design, you must download them before running the MATLAB/Simulink
environment.

Generating Simulation Files

You can use the Simulink software to simulate your design, or use the
SignalCompiler in the Simulink software generate files for simulating the
design in EDA simulation tools.

The SignalCompiler generates a Tcl script for RTL simulation in the
ModelSim software, and a VHDL test bench file that imports the Simulink
input stimuli. You can use the Tcl script for automated simulation in the
ModelSim software, or simulate in another EDA simulation tool with the
VHDL test bench file.

Generating Synthesis Files

After simulation, you can perform synthesis on the SOPC design using an
automated flow in the Quartus II, Mentor Graphics LeonardoSpectrum, or
Synplicity Synplify software, or a manual flow in other synthesis tools. If the
DSP Builder design is the top-level design, you can use either the automated
or manual synthesis flows. If the DSP Builder design is not the top-level
design, you must use the manual synthesis flow.

You can use the automated flow to control the entire synthesis and
compilation flow from within the MATLAB/Simulink design environment.
The SignalCompiler block creates VHDL Design Files and Tcl scripts,
performs synthesis in the Quartus II, LeonardoSpectrum, or Synplify
software, compiles the design in the Quartus II software, and can also
optionally download the design to a DSP development board. You can
specify which synthesis tool to use for the design from within the Simulink
software.

In the manual flow, the SignalCompiler generates VHDL Design Files and
Tcl scripts that you can then use to perform manual synthesis in an EDA
synthesis tool, or the Quartus II software, which allows you to specify your
own synthesis or compilation settings. When generating output files, the
SignalCompiler maps each Altera DSP Builder block to the VHDL library.
MegaCore functions are treated as black boxes.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 183

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

ag .
gy For Information About Refer To

Using the DSP Builder DSP Builder User Guide on the Altera web
site

184 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 13:

Introduction 186
Using the Software Builder in the

Quartus Il Software 186
Specifying Software Build Settings 187

Generating Software Output Files 187

Chapter
Thirteen

Software Development

CHAPTER 13: SOFTWARE DEVELOPMENT

INTRODUCTION

Introduction

<.

The Quartus® II Software Builder is an integrated programming tool that
transforms software source files into a flash programming file or passive
programming files for configuring an Excalibur™ device, or files that contain
memory initialization data for the embedded processor stripe of an
Excalibur device. You can use the Software Builder to process software
source files for Excalibur designs, including designs created with the SOPC
Builder and DSP Builder system-level design tools.

Using the Software Builder in the
Quartus Il Software

The Software Builder uses the ADS Standard Tools or GNUPro for ARM®
software toolset to process software source files created by the Quartus II
Text Editor or other Assembly or C/C++ language development tools. You
can use the Software Builder to process the following software source files:

Assembly Files (.s, .asm)
C/C++ Include Files (.h)
C Source Files (.c)

C++ Source Files (.cpp)
Library Files (.a)

The Software Builder can perform a software build on software source files
with minimal assistance and allows you to customize processing for a
particular design. Once you have specified software build settings, you can
run the Software Builder by using the Start Software Build command
(Processing menu).

You can also run a program or process for an Excalibur device from within
the Quartus II software by using the Software Builder to run a command-
line command during or after a software build.

186 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
SPECIFYING SOFTWARE BUILD SETTINGS

[[Using the quartus_swb executable

You can also run the Software Builder separately at the command prompt or in a
script by using the quartus_swh executable.

If you want to get help on the quartus_swb executable, type one of the following
commands at the command prompt:

quartus_swb -h ¢
quartus_swb --help ¢
quartus_swb --help=<topic name> ¢

Specifying Software Build Settings

You can use the Software Build Settings wizard or the Software Build
Settings pages of the Settings dialog box (Assignments menu) to specify
software build settings before performing a software build.

Using the Software Build Settings wizard or the Settings dialog box, you
can specify the following settings:

B The name of the software build settings for the project, toolset
directory, architecture and software toolset, byte order, output file
name, custom-build and post-build command-line commands, and
programming file generation options

B C/C++ Compiler options: optimization levels, preprocessor definitions
and include directories, and command-line commands

B Assembler options: preprocessor definitions, additional include
directories, and command-line commands

B Linker options: object files, Library Files, library directories, link type,
and command-line commands

Generating Software Output Files

You can process designs and generate files that contain memory
initialization data, passive programming files, and flash programming files
by performing a software build in the Quartus II software. You can also use

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 187

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

the makeprogfile utility (which is also used during a software build by the
Quartus Il software) and the stand-alone MegaWizard® Plug-In Manager to
generate passive programming files and flash programming files outside the
Quartus II software.

For more information on using the makeprogfile utility, type
makeprogfile -h ¢ at a command prompt.

[[Using the Stand-Alone MegaWizard Plug-In Manager

You can use the MegaWizard Plug-In Manager from outside the Quartus Il
software by typing the following command at a command prompt:

gqmegawiz ¢

The Software Builder automatically creates simulator initialization files
every time you generate flash programming files with the Software Builder,
or passive programming files with the Compiler or Software Builder.
Simulator initialization files specify the initialization data for each address
in the memory regions in the Excalibur embedded processor stripe.

Table 1. Simulator Initialization Files

File Name File Contents

memory.regs Register initialization data
memory.sramO0 SRAMO initialization data
memory.sraml SRAMT1 initialization data
memory.dpram0 DPRAMO initialization data

memory.dpram1 DPRAMI initialization data

Generating Flash Programming Files

A flash programming file is a Hexadecimal (Intel-Format) File (.hex) that
programs the flash memory from which an Excalibur device loads
configuration and memory initialization data. The following steps describe
the basic flow for creating a flash programming file with the Software
Builder:

188 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

5.

Create the software source files and add them to the project.

Run the ARM-based Excalibur MegaWizard Plug-In to generate a
System Build Descriptor File (.sbd).

If you want the flash programming file to contain configuration data for
the programmable logic device (PLD) portion of the Excalibur device,
compile the design to generate a Slave Binary Image File (.sbi).

Specify the toolset directory and software build settings. To generate a
flash programming file, you must specify the output file type and file
name, turn on Flash memory configuration, and, if you are using a
Slave Binary Image File, specify the optional Slave Binary Image File in
the Software Build Settings page of the Settings dialog box
(Assignments menu).

Start the software build.

Figure 1. Flash Programming Files Flow

MegaWizard Plug-In
Manager

Software source files

include Assembly Files (.s, .asm),
C/C++ Include Files (.h),

C Source Files (.c),

C++ Source Files (.cpp) &
Library Files (.a)

from Quartus Il

Compiler =———9

(full compilation)

Quartus Il F‘ N to Quartus Il
| — . » Simulator or
> Software Builder [Eé other EDA
quartus_swhb simulation tools

System Build
Descriptor File (.sbd) & Simulator
initialization
—_ files

— \/

Flash programming
file (.hex)

Slave Binary
Image File (.sbi)

To generate the flash programming files, the Software Builder performs the
following steps:

ALTERA CORPORATION

An assembler, C/C++ compiler, linker, and code converter converts
software source files into a HEX File that contains Excalibur embedded
processor stripe memory initialization data for the Excalibur device.

A boot data object file is created from the HEX File, System Build
Descriptor File, and Slave Binary Image File.

INTRODUCTION TO QUARTUS Il = 189

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

B A linker links the boot data file with a binary bootloader file to create
an Executable and Linkable Format File (.elf).

B A code converter converts the Executable and Linkable Format File into
a flash programming file with the name <project name>_flash.hex.

You can then use the exc_flash_programmer utility to program the
information in the flash programming file into the flash memory for the
Excalibur device via Expansion Bus Interface zero (EBIO0).

Generating Passive Programming
Files

Passive programming files are used to configure Excalibur devices using the
Passive Parallel Asynchronous (PPA), Passive Parallel Synchronous (PPS),
or Passive Serial (PS) configuration schemes. You can use the Software
Builder, the makeprogfile utility, or the Compiler to generate the following
passive programming files:

Hexadecimal (Intel-Format) Output Files (.hexout)
Programmer Object Files (.pof)

Raw Binary Files (.rbf)

SRAM Object Files (.sof)

Tabular Text Files (.ttf)

The following steps describe the basic flow for using the Software Builder to
create a passive programming file:

1. Create the software source files and add them to the project.

2. Runthe ARM-based Excalibur MegaWizard Plug-In to generate a
System Build Descriptor File.

3. Compile the design to generate a programmable logic Partial SRAM
Object File (.psof).

190 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

4.

5.

Specify the software toolset directory and software build settings. To
generate a flash programming file, you must specify the output file type
and file name, turn on Passive configuration, and specify the PSOF in
the Software Build Settings page of the Settings dialog box
(Assignments menu).

Start the Software Builder.

Figure 2. Passive Programming Files Flow

Software source files
B include Assembly Files (.s, .asm),
E D C/C++ Include Files (.h),
é C Source Files (.c),

C++ Source Files (.cpp) &
Library Files (.a)

MegaWizard Plug-In
Manager

— Quartus Il to Quartus Il
-l Software Builder Simulator or
. quartus_swhb other EDA
System Build simulation tools

from Quartus Il

Compiler ———| —/—

(full compilation)

Descriptor A Simulator
File (.sbd) initialization
files

Passive programming files

include Hexadecimal (Intel-Format)
Output Files (.hex), Programmer
—— | Object Files (.pof), Raw Binary
Partial SRAM ——1 Files (.rbf), SRAM Object Files (.sof) &
Object File (.psof) Tabular Text Files (.ttf)

_ to Quartus Il
Programmer

To generate the passive programming files, the Software Builder performs
the following steps:

ALTERA CORPORATION

An assembler, C/C++ compiler, linker, and code converter converts the
software source files into a HEX File that contains Excalibur embedded
processor stripe memory initialization data for the Excalibur device.

The makeprogfile utility processes the HEX File, System Build

Descriptor File, and PSOF to create one or more passive programming
files.

INTRODUCTION TO QUARTUS Il = 191

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

Generating Memory Initialization Data
Files

Binary Files (.bin), HEX Files, and Library Files (.a) contain the memory
initialization data for the Excalibur embedded processor stripe. The
following steps describe the basic flow for creating BIN Files, HEX Files, and
Library Files with the Software Builder:

1.

2.

Create the software source files and add them to the project.

Specify the software toolset directory and software build settings. Use
the Software Build Settings page of the Settings dialog box
(Assignments menu) to specify the output file type and file name. If you
selected a HEX File in the Output file format list, and you do not want
to generate a flash programming file or generate passive programming
files, select None under Programming file generation.

Start the software build.

Figure 3. Memorvy Initialization Data Files Flow

Software source files

include Assembly Files (.s, .asm),
C/C++ Include Files (.h),

C Source Files (.c),

C++ Source Files (.cpp) &
Library Files (.a)

E " . Quartus Il - A to Quartus I
é Software Builder > % Programmer
quartus_swhb

Memory initialization

data files include

Binary Files (.bin), Hexadecimal
(Intel-Format) Output Files (.hex) &
Library Files (.a)

To generate the memory initialization files, the Software Builder performs
the following steps:

An assembler and C/C++ compiler generates intermediate object files
from the design’s software source files.

If you are generating BIN Files or HEX Files, the linker links the object
files and generates an intermediate ELF File, and the code converter
converts the ELF File into a BIN File or HEX File.

192 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

m If you are generating a Library File, the Software Builder uses the
Software Builder Archiver to process the object files into a Library File.

“ .. - For Information About Refer To

Performing a Software Build “Overview: Using the Software Builder” in
Quartus Il Help

Application Note 299 (System Development
Tools for Excalibur Devices) on the Altera
web site

Generating passive programming files, “Generating Passive Programming Files” in
and optional programming files for Quartus Il Help
POFs and SOFs

Generating BIN Files, HEX Files, and “Generating Binary Files, Hexadecimal
Library Files and generating debugging (Intel-Format) Files, Library Files & Motorola
information S-Record Files” in Quartus Il Help

“Overview: Checking Software Source Files
and Output Files” in Quartus Il Help

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 193

Chapter
Fourteen

Installation, Licensing
& Technical Support

What’s in Chapter 14:
Installing the Quartus Il Software 196
Licensing the Quartus Il Software 196
Getting Technical Support 199

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
INSTALLING THE QUARTUS || SOFTWARE

Instal

ling the Quartus Il Software

You can install the Quartus® II software on the following platforms:

B Pentium PC operating at 400 MHz or faster, running one of the
following operating systems:

— Microsoft Windows NT version 4.0 (Service Pack 4 or later)
— Microsoft Windows 2000
— Microsoft Windows XP

® Pentium IIl or IV PC operating at 400 MHz or faster, running Red Hat
Linux version 7.3 or 8.0

B Sun Ultra workstation running Solaris version 7 or 8

m HP 9000 Series 700/800 workstation running HP-UX version 11.0 with
ACE dated November, 1999 or later

For Information About Refer To

System requirements and installation Quartus Il Installation & Licensing for PCs
instructions manual

Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual

Altera CD Installation Guide

Specific information about disk space Quartus Il readme.txt file
and memory

Latest information on new features, Quartus Il Software Release Notes on the
device support, EDA interface support Altera web site

Licensing the Quartus Il Software

To use Altera®-provided software, you need to set up and obtain an Altera
subscription license. An Altera subscription enables the following software:

m Altera Quartus II software
B Model Technology™ ModelSim®-Altera software

196 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
LICENSING THE QUARTUS Il SOFTWARE

Altera offers several types of software subscriptions. Table 1 shows the
different license and subscription options that are available.

Table 1. Altera License and Subscription Options

License Name Description

FIXEDPC A stand-alone PC license tied to a software guard
(T-guard or “dongle”)

FLOATPC A floating network license for PC users with
either a PC or UNIX license server
FLOATNET A floating network license for PC, Solaris, and

HP-UX users that are using a PC, Solaris, or HP-UX
license server

FLOATLNX A floating network license for PC users that are
running Red Hat Linux and using either a PC,
UNIX, or Linux license server

Quartus Il Web Edition A free, entry-level version of the Quartus I
software that supports selected devices. The
Quartus Il Web Edition software is available from
the Altera web site at www.altera.com.

Customers who purchase selected development kits receive a free version of
the Quartus II software for the PC and are given instructions on how to
obtain a license for the software.

The following steps describe the basic flow for licensing your software:

1. When you start the Quartus II software, if the software cannot detect a
valid ASCII text license file, license.dat, you will see a prompt with the
following options:

— Enable 30-day evaluation period with no license file (no
programming file support). This option allows you to evaluate
the Quartus II software, without programming file support, for 30
days. After the 30-day grace period is over, you must obtain a
valid license file from the Licensing section of the Altera web site
atwww.altera.com/licensing, and then follow the remaining steps
in this procedure.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 197

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
LICENSING THE QUARTUS Il SOFTWARE

— Perform automatic web license retrieval. Selecting this option
requests a valid license file automatically from the Altera web site.
If you are using a node-locked (FIXEDPC) license and the
Quartus II software is able to retrieve a license file successfully
from the web site, you can skip the remaining steps of this
procedure. If you are using a network (multiuser) license, or if the
Quartus II software is not able to retrieve a license file, you are
guided through the licensing procedure.

— Specify valid license file. If you have a valid license file but have
not specified the location of the license file, selecting this option
displays the License Setup page of the Options dialog box (Tools
menu). It will give you an option to Specify valid license file or
Use LM_LICENSE_FILE variable. You can also specify the license
file or LM_LICENSE_FILE variable in your System control panel
for Windows NT, Windows 2000, or Windows XP, or in your
.cshrc file for UNIX and Linux workstations. If you select this
option, you can skip the remaining steps of the procedure.

2. If you are requesting a new license file, in the Licensing section of the
Altera web site, choose the link for the appropriate license type. Refer
to Table 1 on page 197.

3. Specify the requested information.

4. After you receive a license file by e-mail, save it to a directory on your
system.

5. Ifnecessary, modify the license file for your license.

6. Setup and configure the FLEXIm license manager server for your
system.

198 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
GETTING TECHNICAL SUPPORT

“ ._ Py For Information About Refer To

Detailed information about licensing Quartus Il Installation & Licensing for PCs

the Quartus Il software, modifying the manual

license file, and specifying the license

file location Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual

General information about Quartus Il “Overview: Obtaining a License File” and
licensing “Specifying a License File” in Quartus Il Help
Altera software licensing Application Note 340 (Altera Software

Licensing) on the Altera web site

Getting Technical Support

The easiest way to get technical support is to use the mySupport web site
and register for an Altera.com account. Your copy of the Quartus I software
is registered at the time of purchase; however, in order to use the mySupport
web site to view and submit service requests, you must also register for an
Altera.com account. An Altera.com account is required only for using the
mySupport web site; however, having an Altera.com account will also make
it easier for you to use many other Altera web site features, such as the
Download Center, Licensing Center, Altera Technical Training online class
registration, or Buy On-Line-Altera eStore features.

To register for an Altera.com account user name and password, follow these
steps:

1. Go to the mySupport web site:
v/ To start your web browser and connect to the mySupport web site
while running the Quartus II software, choose Altera on the
Web > Quartus II Home Page (Help menu).

or

v/ Point your web browser to the mySupport web site at
www.altera.com/mysupport.

2. Follow the instructions on the mySupport web site to register for an
Altera.com account.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 199

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
GETTING TECHNICAL SUPPORT

If you are not a current Altera subscription user, you can still register for an
Altera.com account.

For information about other technical support resources, refer to Table 2.

Table 2. Quartus Il Technical Support Resources

Resource Description

Altera web site www.altera.com

The Altera web site provides information on Altera and all
of its products.

Support Center www.altera.com/support

The Support Center section of the Altera web site gives you
access to the mySupport web site, and also provides Altera
Find Answers. In addition, it provides software and device
support information as well as design examples that you
can integrate into your design.

mySupport web site www.altera.com/mysupport or choose Altera on the
Web > Quartus Il Home Page (Help menu) in the
Quartus Il software.

The mySupport web site allows you to submit, view, and
update technical support service requests.

Altera Find Answers www.altera.com/answers

Altera Find Answers uses natural language processing
technology (NLP) to analyze the meaning and context of
your question and provide an answer. Unlike simple search
engines that return lists of documents in response to
keyword queries, Altera Find Answers delivers the actual
answer.

Telephone (800) 800-EPLD
(7:00 a.m. to 5:00 p.m. Pacific time, M-F)
You will need your 6-digit Altera ID to access the hotline.

(408) 544-7000
(7:00 a.m. to 5:00 p.m. Pacific time, M-F)

200 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 15:
Getting Online Help 202
Using the Quartus Il Online Tutorial 203

Other Quartus Il Software
Documentation 204

Other Altera Literature 205

Chapter
Fifteen

Documentation &
Other Resources

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
GETTING ONLINE HELP

Getting Online Help

The Quartus® Il software includes a platform-independent Help system that
provides comprehensive documentation for the Quartus II software and
more details about the specific messages generated by the Quartus II
software. You can view Help in one of the following ways:

To search through a list of Help topics Choose Index (Help
menu) to perform a search by using the Index tab.

To search through the full text of the Help system Choose
Search (Help menu) to perform a search by using the Search tab.

To search an outline of Help topic categories Choose Contents
(Help menu) to view the Contents tab.

To view help on a message Select the message on which you want to
receive Help, and choose Help (right button pop-up menu). You can also
choose Messages (Help menu) for a scrollable list of all messages.

To get Help on a menu command or dialog box Press F1 from a
highlighted menu command or active dialog box for context-sensitive Help
on that item.

To find a definition of a term Choose Glossary (Help menu) to
view the Glossary list.

Working with Help Topics

To print Help topics from the Contents tab, select the Help folder or individual Help
topic that you want to print, and choose Print (right button pop-up menu) or click
the Print button on the toolbar. If you select a Help folder to print, you can choose
to print all the topics in the folder. You can also use the Print command or Print
button to print any individual Help topic you are viewing.

To search for a keyword in an open Quartus Il Help topic, press Ctrl+F to open the
Find dialog box, and type the search text, and then click Find Next.

202 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
USING THE QUARTUS Il ONLINE TUTORIAL

“ ._ Py For Information About Refer To

Using Quartus Il Help “Using Quartus Il Help Effectively” and
“Help Menu Commands” in Quartus Il Help

“Using Quartus Il Help” in the Quartus Il
Installation & Licensing for PCs manual and
Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual

Using the Quartus Il Online Tutorial

The online tutorial introduces you to the features of the Quartus II design
software. It shows you how to create and process your own logic designs
quickly and easily. The modular design of the Basic tutorial modules and
Optional tutorial modules allows you to choose the areas of the Quartus II
software that you want to learn about:

B The Basic tutorial modules guide you through the steps required to
create, perform timing analysis on, simulate, and program a sample
finite impulse response (FIR) filter design, called fir_filter.

B The Optional tutorial modules focus on topics such as migration from
the MAX+PLUS® Il software, using the LogicLock™ feature, and using
Stratix™ device features. You do not need to complete the Basic tutorial
to begin any of the Optional tutorial modules.

To start the Quartus II tutorial after you have successfully installed the
Quartus II software:

v/ Choose Tutorial (Help menu).

After you start the tutorial, the Quartus II window resizes to allow you to
view the Tutorial window and the Quartus II software simultaneously.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 203

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER QUARTUS Il SOFTWARE DOCUMENTATION

More Information About Using the Quartus Il Tutorial

You must have installed support for the APEX 20K EP20K100E device if you want to
complete the Basic or LogicLock tutorial. In addition, you must have installed
support for the Stratix EP1S25 devices if you want to complete the Optional
MAX+PLUS Il Conversion and Stratix tutorial modules.

The tutorial is designed for display online. However, if you want to print one or more
of the tutorial modules, click the Printing Options button located at the beginning
of each module and then click the link to open the appropriate printable version.

Other Quartus Il Software
Documentation

Table 1 shows the additional software documentation that is available for
the Quartus II software:

Table 1. Additional Quartus Il Documentation (Part 1 of 2)

Document Description Where to Find It
Quartus Il Software Release Provides late-breaking The Altera® web site
Notes information about new

features, device support,
EDA interface support, and
known issues and

workarounds
Quartus Il Installation & Provides detailed In Quartus Il subscription
Licensing for PCs manual information about software packages and on the Altera
requirements, installation, web site
and licensing for PCs
Quartus Il Installation & Provides detailed In Quartus Il subscription
Licensing for UNIX and information about software packages and on the Altera

Linux Workstations manual requirements, installation, web site
and licensing for UNIX and
Linux workstations

204 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER ALTERA LITERATURE

Table 1. Additional Quartus Il Documentation (Part 2 of 2)

Document Description Where to Find It

Altera CD Installation Guide Provides basic installation In Quartus Il subscription
instructions for all of the packages and on the Altera
Altera CD-ROMs that are web site

included in Quartus I
subscription packages

Quartus |l readme.txt file Provides information about On Quartus Il software

memory, disk space, and CD-ROMs and installed with

system requirements the Quartus Il software
Quartus Il Software Quick Shows how to set up your In Quartus Il subscription
Start Guide project, set timing packages and on the Altera

Other A

requirements, and compile web site
your project for a target
device

Itera Literature

The Literature section of the Altera web site at www.altera.com provides
documentation on many subjects that are related to the Quartus II software.
Many of these documents are also available on the Altera Documentation
Library CD or from Altera Literature Services. You can also purchase
printed sets of documentation from the ShopAltera web site at
www.shopaltera.com.

Altera provides literature that includes some of the following topics:

ALTERA CORPORATION

Quartus II features and guidelines on using these features with your
design flow

Altera device features, functions, structure, specifications,
configuration, and pin-outs

Design solutions and methodologies

Implementing device features

Altera programming hardware features, use, and installation
Using the Quartus II software with other EDA tools

Using other Altera software tools

Implementing IP MegaCore® functions and Altera megafunctions
Optimizing designs or improving performance

Synthesis, simulation, and verification guidelines

Product updates and notifications

INTRODUCTION TO QUARTUS Il = 205

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER ALTERA LITERATURE

The literature that is available from the Altera web site is the most current
information about Altera products and features; it is updated frequently,
even after a product has been released. Altera continues to add new
literature in order to provide more information on the latest features of
Altera tools and devices, and to provide additional information that Altera
customers have requested.

Searching through Altera Literature with Altera Find Answers

You can use Altera Find Answers, which is available from the Support Center section
of the Altera web site at www.altera.com/answers, to search through all the
literature that is available on the Altera web site. Altera Find Answers uses natural
language processing technology (NLP) to analyze the meaning and context of your
question and provide an answer. Unlike simple search engines that return lists of
documents in response to keyword queries, Altera Find Answers delivers the actual
answer.

206 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

Index

A

ADS Standard Tools software toolset 186
AHDL 38
AHDL Include Files (.inc) 35
Altera Find Answers 200
Altera Hardware Description Language
(AHDL) 38
Altera Megafunction Partners Program
(AMPP) 40
Altera on the Web command 199
Altera Programming Unit (APU) 143
Altera web site 200
Altera.com account 200
AMBA high-performance bus (AHB) 180
AMPP 40
Analysis & Elaboration 54, 66
Analysis & Synthesis 4
design flow 54
netlist optimization 61
performing with EDA tools 58
VHDL and Verilog HDL support 55
Analysis & Synthesis Settings page 62,
135
APU 143
ARM-based Excalibur MegaWizard
Plug-In 189, 190
Assembler 4, 142,143
Assembly Files (.s, .asm) 186
Assign Pins dialog box 48, 163
Assignment Editor 46, 93,117, 124
assignments
location 93
making 46, 133
path-based 137
verifying 50
viewing 131
attributes 61
Avalon bus 180

ALTERA CORPORATION

Back-Annotate Assignments
command 110, 133

back-annotation 99, 110, 133

batch files 21

Binary Files (.bin) 192

black-box methodology 43

Block Design Files (.bdf) 35

Block Editor 35

Block Symbol Files (.bsf) 35, 37

block-based design 51, 105

Board-Level page 126

bus functional model 81

ByteBlaster II download cable 143, 157

ByteBlasterMV download cable 143, 157

C

C Source Files (.c) 186
C++ Source Files (.cpp) 186
Chain Description Files (.cdf) 144, 146
change management design flow 168
Check Resource Properties command 174
Chip Editor 92, 165, 169
clear box methodology 44
Comma Separated Values Files (.csv) 162
command-line executables 15
compilation flows 5, 20
Compilation Process page 109
Compiler

compilation flows 5, 20

modules 4

specifying settings 48

starting 4

status 87
Compiler Database Interface 4
compiler directives 61
Compiler Settings wizard 46
configuring 142
Convert MAX+PLUS II Project

command 33

INTRODUCTION TO QUARTUS Il m 207

INDEX

Convert Programming Files command 147
Create command 173

Create Jam, SVF, or ISC File command 147
Create/Update command 36, 37

critical paths 132

Customize 6

Customize dialog box 6

D

Design Assistant 4, 65, 93

Design Assistant page 65

design constraints 46

design entry 30

design partitioning 51

Design Space Explorer 96

devices, programming and configuring 142

documentation conventions ix

DSE 96

dse.tcl Tcl script 96

DSP Builder 178, 182
creating designs 182
design flow 179
generating simulation files 183
generating synthesis files 183
instantiating functions 182
SignalCompiler 183
using with other EDA tools 183

E

ECOs 168
creating 172
verifying 176

EDA interfaces 10, 23
EDA Netlist Writer 4,71, 73,126
EDA Tool Settings page 13, 59
EDA tools
functional simulation 74
minimum timing analysis 126
power estimation 73
simulation 71
specifying settings 13, 48, 59, 72
starting synthesis tools 60
supported tools 11, 58, 71, 126

208 = INTRODUCTION TO QUARTUS Il

EDA tools (continued)
synthesis 58
timing analysis 126
timing simulation 75
using LogicLock 113
EDIF Input Files (.edf) 35
EDIF netlist files (.edf) 54, 58
Edit Connection command 173
engineering change orders see ECOs
Equations window 132
ESS model 82
exc_flash_programmer utility 190
Excalibur designs, simulating 80
Excalibur Stripe Simulator (ESS) model 82
Executable and Linkable Format Files
(.elf) 190
executables 15
Export LogicLock Regions command 110,
111

F

Field View command 131
Files Page 31
Fitter 4, 86
Fitter Settings page 94
fitting

analyzing 88

design flow 86

incremental fitting 99

optimization 93, 136
flash programming files 188, 189
Floorplan Editor 91, 92
flows for compilation 5, 20
full compilation 4
functional simulation

EDA tools 74

Quartus II Simulator 77

G

GNUPro for ARM software toolset 186
Graphic Design Files (.gdf) 35

Graphic Editor see Block Editor
graphical user interface 3

ALTERA CORPORATION

INDEX

H

Help, getting 202
Hexadecimal (Intel-Format) Files
(-hex) 150, 188
Hexadecimal (Intel-Format) Output Files
(-hexout) 143,147,149, 190
Hierarchy Display see Project Navigator

Import Assignments command 49

Import LogicLock Regions command 110,
111

In System Configuration Files (.isc) 143,
147

incremental fitting 99

Integrated Synthesis 55

Intellectual Property (IP) functions 39

J

Jam Byte-Code Files (.jbc) 143, 146, 147

Jam Files (.;jam) 143, 146, 147

Jam STAPL Byte Code Format File (.jbc) see
Jam Byte-Code Files (.jbc)

JEDEC STAPL Format File (.jam) see Jam
Files (.jam)

JTAG port 156

L

Last Compilation floorplan 91, 92

layout, customizing 6

Library Files (.a) 186, 192

Library Mapping Files (1mf) 55

library of parameterized modules (LPM)
functions 38

List Paths command 124

list_paths Tcl command 125

LMFs 55

Locate in Timing Closure Floorplan
command 124

location assignments 93

logic options 62, 95

ALTERA CORPORATION

LogicLock 104, 106
saving intermediate synthesis
results 109
using with other EDA tools 113
using with Tcl 108
LogicLock Region Properties dialog
box 93
LogicLock regions 106
achieving timing closure 137
exporting 111
importing 111
path-based assignments 137
properties 106
soft LogicLock regions 137
viewing connectivity 132
viewing intra-region delay 132
LogicLock Regions window 107
LogicLock Regions window 107
look and feel, customizing 6
LPM 38

makefile support 26
makeprogfile utility 188
MasterBlaster download cable 143, 157
MATLAB/Simulink environment 183
MAX+PLUS II Assignment &
Configuration Files (.acf) 49
MAX+PLUS Il layout 6
MAX+PLUS II look and feel 6
MAX+PLUS II quick menu 7
MAX+PLUS II Simulator Channel Files
(.scf) 79
MAX+PLUS II Symbol Files (.sym) 37
MegaCore functions 40
megafunctions 38
inferring 43, 44
instantiating 42, 56
instantiating in other EDA tools 43, 56
using 38
MegaWizard Plug-In Manager 38, 188
qmegawiz executable 17
stand-alone version 17

INTRODUCTION TO QUARTUS Il = 209

INDEX

MegaWizard Plug-In Manager (continued)
using with black-box methodology 43
using with clear box methodology 44

Memory Editor 74

memory initialization data files 192

Memory Initialization Files (.mif) 74

Messages window 88

minimum timing analysis 116, 120

modules of the Compiler 4

mySupport web site 199, 200

NativeLink 74, 127

Netlist Explorer 170

netlist optimization
achieving timing closure 134
fitting 136
physical synthesis 136
synthesis 61, 64, 135

New Project Wizard 31

o

OpenCore hardware evaluation feature 40
OpenCore Plus hardware evaluation
feature 40

P

partitioning 51
passive programming files 190, 191
Path dialog box 138
path-based assignments 137
Perl scripts 21
Physical Synthesis Optimizations
page 94, 134
physical synthesis, optimization 94, 136
physical timing estimates 132
place and route
see also fitting
design flow 86
incremental fitting 99
POFs 142, 146, 147
power estimation 73, 79

210 m INTRODUCTION TO QUARTUS Il

Power Input Files (.pwf) 73
PowerFit Fitter 86
Priority dialog box 108
programmable logic Partial SRAM Object
Files (.psof) 190
Programmer 142
quartus_pgmw executable 17
stand-alone version 17, 144
Programmer Object Files (.pof) 142, 146,
147,190
programming 142
design flow 142
programming hardware 143
programming files
converting 147
creating secondary 147
Programming Files tab 147
Project Navigator window 32

Q

qmegawiz executable 17
QSF 31, 107,119
Quartus 95
Quartus II Default Settings Files (.qdf) 31
Quartus II look and feel 6
Quartus II Project Files (.qpf) 31
Quartus II quick menu 7
Quartus II Settings Files (.qsf) 31, 107, 119
Quartus II software
command-line design flow 15
EDA tool design flow 10, 23
general design flow 2
GUI design flow 3
Quartus II Tutorial 203
Quartus II Workspace Files (.qws) 31
quartus_asm executable 17, 143
quartus_cdb executable 18, 110
quartus_cpf executable 18, 151
quartus_drc executable 17, 66
quartus_eda executable 18,73, 126
quartus_fit executable 17, 87
quartus_map executable 17, 55
quartus_pgm executable 18
quartus_pgmw executable 17

ALTERA CORPORATION

INDEX

quartus_sh executable 18
quartus_sim executable 18, 78
quartus_swb executable 18, 187
quartus_tan executable 17, 121
quick menus 7

R

RAM Initialization Files (.rif) 74
Raw Binary Files (.rbf) 143, 147, 190
Regions window 94
Remove Connection command 173
Report window 89, 122
Resource Property Editor 172
revisions 32
Revisions dialog box 32
routing 86

congestion 132

connection counts 131

critical paths 132

delays 131
RTL Viewer 66, 165
Run EDA Simulation Tool command 73
Run EDA Timing Analysis Tool

command 126

S

saving intermediate synthesis results 109
Serial Vector Format Files (.svf) 143, 147
settings
Compiler 48
Design Assistant 65
EDA tools 13, 59
Fitter optimization 136
HardCopy 48
physical synthesis optimization 94
Simulator 48
Software Builder 48
synthesis optimization 64, 135
Timing Analyzer 48
Verilog HDL input 55
VHDL input 55
Settings dialog box 48, 93, 117
shell, Tcl scripting 18

ALTERA CORPORATION

Shop Altera web site 205
SignalProbe feature 156, 163
compilation 163
design flow 156
reserving pins 164
using 163
SignalProbe settings page 163
SignalTap II Files (.stp) 157
SignalTap II Logic Analyzer 156, 157
analyzing data 161
design flow 156
incremental routing 160
Instance Manager 159
mnemonic tables 162
multiple analyzers 159
setting up and running 157
triggers 159
SignalTap II Logic Analyzer page 160
simulation
libraries 76
simulation flow 70
Simulation page 72
Simulator 77
specifying settings 48
using 77
simulator initialization files 188
Simulator Tool 79
Slave Binary Image File (.sbi) 189
SOFs 142, 146, 147
Software Build Settings page 187,189,191,
192
Software Build Settings wizard 187
Software Builder 186
flash programming files 188
generating output files 187
makeprogfile utility 188
memory initialization data files 192
passive programming files 190
simulator initialization files 188
specifying settings 48, 187
software development
see also Software Builder
SOPC Builder 178
creating designs 179
creating system 180

INTRODUCTION TO QUARTUS Il = 211

INDEX

SOPC Builder (continued)
design flow 178
generating system 181
System Contents page 180
System Generation page 181
using 179
SRAM Object Files (.sof) 142, 146, 147, 190
stand-alone Programmer 142
Standard Delay Format Output Files
(.sdo) 71
STAPL see Jam Files (.jam) and Jam Byte-
Code Files (.jbc
Start EDA Netlist Writer command 73, 126
Start EDA Synthesis command 60
Start I/O Assignment Analysis
command 50
Start Minimum Timing Analysis
command 120
Start Software Build command 186
Start Timing Analyzer command 120
Start VOM Writer command 110
Support Center 200
Symbol Editor 37
Synopsys Design Constraints (SDC)
file 127
synthesis
design flow 54
netlist optimization 61, 64, 135
performing with EDA tools 58
VHDL and Verilog HDL support 55
Synthesis Netlist Optimizations page 64,
134
System Build Descriptor Files (.sbd) 189
system debugging
see also SignalProbe feature
see also SignalTap II Logic Analyzer
system-on-a-programmable-chip
(SOPC) 178

T

Table Files (.tbl) 162

Tabular Text Files (.ttf) 143, 147, 190
Tcl 18, 21,23

technical support 199, 200

212 =m INTRODUCTION TO QUARTUS Il

test bench files 73
Text Design Files (.tdf) 35
Text Editor 37
timegroup assignments 119
timing analysis 116
design flow 116
performing 117, 120
performing with EDA tools 126
specifying settings 48
viewing delay paths 123
viewing results 122
Timing Analysis page 126
Timing Analyzer 4, 116
timing closure 130
design flow 130
making assignments 133
using LogicLock regions 137
using netlist optimization 134
viewing assignments 131
viewing routing 131
Timing Closure floorplan 91, 92, 130
timing requirements 117
individual 119
project-wide 118
specifying 117
timing simulation
EDA tools 75
Quartus II Simulator 77
Timing wizard 46, 117
tutorial 203

U

USB-Blaster download cable 143, 157

\%

Value Change Dump Files (.ved) 162
Vector Files (.vec), 79

Vector Table Output Files (.tbl) 79
Vector Waveform Files (.vwf) 79, 162
Verilog Design Files (.v) 35, 54, 58
Verilog HDL 37, 55

Verilog HDL Input page 55

Verilog Output Files (.vo) 71

ALTERA CORPORATION

INDEX

Verilog Quartus Mapping Files (.vqm) 35,
54, 58,109, 136

Verilog Test Bench Files (.vt) 73

VHDL 37, 55

VHDL Design Files (.vhd) 35, 54, 58

VHDL Input page 55

VHDL Output Files (.vho) 71

VHDL Test Bench Files (.vht) 73

View Port Connections command 172

View Properties command 172

VQM Files 54, 58

w

Waveform Editor 73, 78
Waveform Export utility 162

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il

m 213

	Introduction to Quartus II
	Contents
	Preface
	Documentation Conventions
	Chapter 1: Design Flow
	Introduction
	Graphical User Interface Design Flow
	EDA Tool Design Flow
	Command-Line Design Flow
	Command-Line Executables
	Using Standard Command-Line Commands & Scripts
	Using Tcl Commands
	Creating Makefile Scripts

	Chapter 2: Design Entry
	Introduction
	Creating a Project
	Using Revisions
	Converting MAX+PLUS II Projects

	Creating a Design
	Using the Quartus II Block Editor
	Using the Quartus II Text Editor
	Using the Quartus II Symbol Editor
	Using Verilog HDL, VHDL & AHDL

	Using Altera Megafunctions
	Using Intellectual Property (IP) Functions
	Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions in the Quartus II Software
	Instantiation in Verilog HDL and VHDL
	Using the Port and Parameter Definition
	Inferring Megafunctions

	Instantiating Megafunctions in EDA Tools
	Using the Black Box Methodology
	Instantiation by Inference
	Using the Clear Box Methodology

	Specifying Initial Design Constraints
	Using the Assignment Editor
	Using the Settings Dialog Box
	Importing Assignments
	Verifying Pin Assignments

	Design Methodologies & Design Planning
	Top-Down versus Bottom-Up Design Methodologies
	Block-Based Design Flow
	Design Partitioning

	Chapter 3: Synthesis
	Introduction
	Using Quartus II VHDL & Verilog HDL Integrated Synthesis
	Using Other EDA Synthesis Tools
	Controlling Analysis & Synthesis
	Using Compiler Directives and Attributes
	Using Quartus II Logic Options
	Using Quartus II Synthesis Netlist Optimization Options

	Using the Design Assistant to Check Design Reliability
	Analyzing Synthesis Results with the RTL Viewer

	Chapter 4: Simulation
	Introduction
	Simulating Designs with EDA Tools
	Specifying EDA Simulation Tool Settings
	Generating Simulation Output Files
	EDA Simulation Flow
	Functional Simulation Flow
	NativeLink Simulation Flow
	Manual Timing Simulation Flow
	Simulation Libraries

	Simulating Designs with the Quartus II Simulator
	Creating Waveform Files
	Performing PowerGauge Power Estimation
	Using the Simulator Tool

	Simulating Excalibur Designs
	Simulating Excalibur Designs in the Quartus II Software
	Using the Bus Functional Model with EDA Tools
	Using the Full-Stripe Model with EDA Tools
	Using the ESS Model with EDA Tools

	Chapter 5: Place & Route
	Introduction
	Analyzing Fitting Results
	Using the Messages Window to View Fitting Results
	Using the Report Window or Report File to View Fitting Results
	Using the Floorplan Editor to Analyze Results
	Using the Design Assistant to Check Design Reliability

	Optimizing the Fit
	Using Location Assignments
	Setting Options that Control Place & Route
	Setting Fitter Options
	Setting Physical Synthesis Optimization Options
	Setting Individual Logic Options that Affect Fitting

	Using the Design Space Explorer

	Performing Incremental Fitting
	Preserving Assignments through Back-Annotation

	Chapter 6: Block-Based Design
	Introduction
	Quartus II Block-Based Design Flow
	Using LogicLock Regions
	Saving Intermediate Synthesis Results
	Back-Annotating LogicLock Region Assignments
	Exporting & Importing LogicLock Assignments

	Using LogicLock with EDA Tools

	Chapter 7: Timing Analysis
	Introduction
	Performing Timing Analysis in the Quartus II Software
	Specifying Timing Requirements
	Specifying Project-Wide Timing Settings
	Specifying Individual Timing Assignments

	Performing a Timing Analysis

	Viewing Timing Analysis Results
	Using the Report Window
	Making Assignments & Viewing Delay Paths

	Performing Timing Analysis with EDA Tools
	Using the PrimeTime Software
	Using the BLAST and Tau Software

	Chapter 8: Timing Closure
	Introduction
	Using the Timing Closure Floorplan
	Viewing Assignments & Routing
	Making Assignments

	Using Netlist Optimizations to Achieve Timing Closure
	Using LogicLock Regions to Achieve Timing Closure
	Soft LogicLock Regions
	Path-Based Assignments

	Chapter 9: Programming & Configuration
	Introduction
	Programming One or More Devices by Using the Programmer
	Creating Secondary Programming Files
	Creating Other Programming File Formats
	Converting Programming Files

	Using the Quartus II Software to Program Via a Remote JTAG Server

	Chapter 10: Debugging
	Introduction
	Using the SignalTap II Logic Analyzer
	Setting Up & Running the SignalTap II Logic Analyzer
	Analyzing SignalTap II Data

	Using SignalProbe
	Using the RTL Viewer
	Using the Chip Editor

	Chapter 11: Engineering Change Management
	Introduction
	Identifying Delays & Critical Paths with the Chip Editor
	Modifying Resource Properties with the Resource Property Editor
	Viewing & Managing Changes with the Change Manager
	Verifying the Effect of ECO Changes

	Chapter 12: System-Level Design
	Introduction
	Creating SOPC Designs with SOPC Builder
	Creating the System
	Generating the System

	Creating DSP Designs with the DSP Builder
	Instantiating Functions
	Generating Simulation Files
	Generating Synthesis Files

	Chapter 13: Software Development
	Introduction
	Using the Software Builder in the Quartus II Software
	Specifying Software Build Settings
	Generating Software Output Files
	Generating Flash Programming Files
	Generating Passive Programming Files
	Generating Memory Initialization Data Files

	Chapter 14: Installation, Licensing & Technical Support
	Installing the Quartus II Software
	Licensing the Quartus II Software
	Getting Technical Support

	Chapter 15: Documentation & Other Resources
	Getting Online Help
	Using the Quartus II Online Tutorial
	Other Quartus II Software Documentation
	Other Altera Literature

	Index

