
No
t f

or
 D

ist
rib

ut
io

nLabVIEWTM Connectivity
Exercises

Course Software Version 2010
May 2011 Edition
Part Number 325628A-01

LabVIEW Connectivity Exercises

Copyright

© 2004–2011 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the USICopyrights.chm or the Copyrights topic in your software.

Xerces C++. This product includes software that was developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995–2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

b64. Copyright © 2004–2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995–2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999–2003 Boris Fomitchev

Trademarks
LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

No
t f

or
 D

ist
rib

ut
io

n
Worldwide Technical Support and Product Information
ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone
numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation iii LabVIEW Connectivity Exercises

Contents

Student Guide

Lesson 1
Calling Shared Libraries in LabVIEW Exercises

Exercise 1-1 Computer Name..1-1

Lesson 2
VI Server Exercises

Exercise 2-1 VI Server Options...2-1
Exercise 2-2 VI Statistics ..2-3
Exercise 2-3 Remote Run VI...2-11
Exercise 2-4 Dynamically Calling VIs..2-15

Lesson 3
Using .Net and ActiveX Objects in LabVIEW Exercises

Exercise 3-1 Font Dialog...3-1
Exercise 3-2 Word Processor ..3-8
Exercise 3-3 Auto Save ...3-24
Exercise 3-4 Browse to URL and Display VI Statistics Report3-32

Lesson 4
Connecting to Databases Exercises

Exercise 4-1 Viewing a Database..4-1
Exercise 4-2 Connect to a Theatre Database Using LabVIEW.............................4-3
Exercise 4-3 Select Data from a Table ..4-6
Exercise 4-4 Insert New Record..4-13
Exercise 4-5 SQL Query..4-18

Lesson 5
TCP/IP and UDP Exercises

Exercise 5-1 Simple Data Client VI and Simple Data Server VI..........................5-1
Exercise 5-2 TCP Signal Data Transfer ..5-6

Lesson 6
Web Services Exercises

Exercise 6-1 Create a LabVIEW Web Service to Add Two Numbers..................6-1
Exercise 6-2 Accept POST Data from an HTML Form..6-9
Exercise 6-3 Generate Image with Web Method...6-16
Exercise 6-4 Create an HTTP Client in LabVIEW ...6-21

No
t f

or
 D

ist
rib

ut
io

n

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation v LabVIEW Connectivity Exercises

Student Guide

Thank you for purchasing the LabVIEW Connectivity course kit. This kit
contains the materials used in the two-day, hands-on LabVIEW Connectivity
course.

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. Visit ni.com/training to register for a course and to
access course schedules, syllabi, and training center location information.

A. NI Certification
The LabVIEW Connectivity course is part of a series of courses designed to
build your proficiency with LabVIEW and help you prepare for exams to
become an NI Certified LabVIEW Developer and NI Certified LabVIEW
Architect. The following illustration shows the courses that are part of the
LabVIEW training series. Refer to ni.com/training for more
information about NI Certification.

Advanced User

LabVIEW Core 1*

LabVIEW Core 2*

Certified LabVIEW
Architect Exam

New User Experienced User

Advanced Architectures
in LabVIEW

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

Courses

Certifications

Other Courses

Certified LabVIEW
Associate Developer Exam

LabVIEW Instrument Control

LabVIEW Machine Vision

Modular Instruments Series

LabVIEW FPGA

LabVIEW Real-Time

LabVIEW DAQ and Signal Conditioning

Managing Software
Engineering in LabVIEW

LabVIEW Performance

Object-Oriented Design
and Programming

in LabVIEW

LabVIEW Connectivity

Certified LabVIEW
Developer Exam

LabVIEW Core 3*

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Exercises vi ni.com

B. Course Description
The LabVIEW Connectivity course teaches you how to use advanced
connectivity in VIs. This manual assumes you are familiar with Windows,
that you have experience writing algorithms in the form of flowcharts or
block diagrams, and that you have taken the LabVIEW Core 1 and LabVIEW
Core 2 courses or you are familiar with all the concepts contained therein.
This course also assumes that you have one year or more of LabVIEW
development experience.

In the course manual, each lesson consists of the following sections:

• An introduction that describes the purpose of the lesson and what
you will learn

• A discussion of the topics

• A summary or quiz that tests and reinforces important concepts and
skills taught in the lesson

In the exercise manual, each lesson consists of the following sections:

• A set of exercises to reinforce topics

• Self-study and challenge exercise sections or additional exercises

Note For course manual updates and corrections, refer to ni.com/info and enter the
Info Code lvconn.

C. What You Need to Get Started
Before you use this course manual, make sure you have the following items:

❑ Windows XP or later installed on your computer; this course is
optimized for Windows XP

❑ LabVIEW Professional Development System 2010 or later

❑ Microsoft Excel

❑ LabVIEW Connectivity course CD, containing the following folders:

Directory Description

Exercises Contains all the VIs and support files needed
to complete the exercises in this course

Solutions Contains completed versions of the VIs you
build in the exercises for this course

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation vii LabVIEW Connectivity Exercises

D. Installing the Course Software
Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Connectivity
Course Material Setup dialog box appears.

2. Click Install LabVIEW Connectivity.

3. Follow the onscreen instructions to complete installation and setup.

Exercise files are located in the <Exercises>\LabVIEW Connectivity
folder.

Tip Folder names in angle brackets, such as <Exercises>, refer to folders in the root
directory of your computer.

Repairing or Removing Course Material
You can repair or remove the course material using the Add or Remove
Programs feature on the Windows Control Panel. Repair the course
manual to overwrite existing course material with the original, unedited
versions of the files. Remove the course material if you no longer need the
files on your computer.

E. Course Goals
This course presents the following topics:

• Networking technologies

– External procedure call model

– Broadcast model

– Client/server model

– Publish/subscribe model

• Implementing the external procedure call model

– Calling shared libraries from LabVIEW

– Programmatically controlling VIs using the VI Server

• Using the VI Server functions to programmatically load and
operate VIs and LabVIEW itself

– Using ActiveX objects in LabVIEW

• Using LabVIEW as an ActiveX client

• Using LabVIEW as an ActiveX server

• ActiveX events

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Exercises viii ni.com

– Using .NET Objects in LabVIEW

• Using LabVIEW as a .NET client

• .NET events

• Implementing the broadcast model

– Using the UDP VI and functions to create a UDP multicast session

• Implementing the client/server model

– Using the TCP/IP VI and functions to communicate with other
applications locally and over a network

• Using LabVIEW Web services and HTTP Client VIs to create and
deploy Web services

This course does not present any of the following topics:

• Basic principles of LabVIEW covered in the LabVIEW Core 1 and
LabVIEW Core 2 courses

• Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

• Developing a complete VI for any student in the class; refer to the
NI Example Finder, available by selecting Help»Find Examples,
for example VIs you can use and incorporate into VIs you create

F. Course Conventions
The following conventions are used in this course manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
AO <3..0>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation ix LabVIEW Connectivity Exercises

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace Italic text in this font denotes text that is a placeholder for a word or value
italic that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

No
t f

or
 D

ist
rib

ut
io

n

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 1-1 LabVIEW Connectivity Exercises

1
Calling Shared Libraries in LabVIEW
Exercises

Exercise 1-1 Computer Name

Goal
Call a DLL function from the Windows API.

Scenario
Programmatically determining the Windows computer name is necessary in
a number of situations. For example, if you have several computers logging
data to a central server, you should identify the computer name for each set
of data in order to track the data. The computer name is also helpful for
storing or retrieving data over a Windows File Share and is a useful piece of
information to include when generating reports.

There is not a native function within LabVIEW to retrieve the computer
name. However, the Windows operating system provides an API, in the form
of DLLs, which allows you to interface with the operating system. One
common use of this API is retrieving useful information about the operating
system or computer, such as the computer name.

Call a Windows API DLL function to determine the name of the computer.
You should also handle any errors returned by the function in an appropriate
manner.

Note The Windows computer name is different from the network address of a computer.
You can determine a computer’s network address in LabVIEW by using the String to IP
and IP to String functions located on the TCP/IP palette.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-2 ni.com

Design

Inputs and Outputs

Program Structure
When you call functions from a DLL, the DLL often defines a method for
reporting errors. The Windows API returns a numeric value from each
function call indicating whether the function was executed correctly. In the
event of an incorrect execution, you can call additional Windows API
functions to identify the error code and convert the code to an
understandable string. To correctly identify the error, the error handling
functions must be called immediately after the original function call,
because the error information will be lost if any other Windows API calls
are made from the same program. This error handling mechanism works
differently than the normal error handling mechanism in LabVIEW, where
each subVI reports its own errors and errors can be chained together and
handled at the end of a program or section.

Get Computer Name
The Windows API provides a function called GetComputerName in
Kernel32.dll. You must allocate a string buffer large enough to store the
string returned by the function, fortunately, the Call Library Function Node
in LabVIEW Version 8.20 or later can automatically allocate the buffer
based on a size parameter passed to the function. If the buffer is too small to
store the computer name, or if another error occurs, this function returns a
value of zero. Use the return value from this function as well as the error out
cluster from the Call Library Function Node to control the transition logic
of the state machine.

Handle Errors
This program has the potential to generate normal LabVIEW errors, such as
a missing DLL file in a Call Library Function Node, as well as Windows
API errors, such as an insufficient buffer size for the GetComputerName
function to store the computer name. The handle errors case should handle
both types of errors.

Table 1-1. Computer Name Inputs and Outputs

Type Name Properties Default Values

Numeric Control Buffer Size 32-bit Unsigned
Integer

256

String Indicator Computer Name — Empty

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-3 LabVIEW Connectivity Exercises

Use the General Error Handler instead of the Simple Error Handler to allow
for custom messages generated by the Windows API error reporting calls.

In order to provide a meaningful error message for Windows API calls, you
must perform two steps. First, you must call the Windows API function
GetLastError. This function returns a numeric value that represents any
error encountered during the last function call, in this case,
GetComputerName. In order to translate the numeric code into a
meaningful message, you must call the FormatMessage Windows API
function. You can use this function many different ways. Control the
behavior of the function by setting one or more flags in a parameter called
dwFlags. In order to return a message for a system error, set the
FORMAT_MESSAGE_FROM_SYSTEM flag. Also set the
FORMAT_MESSAGE_IGNORE_INSERTS flag because you do not need to
include any additional parameters in your message. Setting this parameter
also allows you to ignore the arguments parameter of the function, thereby
simplifying the function call. For more information on setting flags, refer to
the Background: Windows API Reference section.

Tip All of the functions called in this exercise are in kernel32.dll. However,
Windows API functions are found in many other DLLs. Refer to the Windows API
Reference to determine in which DLL a given function is located.

Additional Information
The following sections describe some issues particular to Windows API
calls that you must address in order to implement a solution.

Background: Windows API Reference
You can find the Windows API definitions for each of the functions used in
this exercise in the <Exercises>\LabVIEW Connectivity\
Computer Name directory. Open each of the PDF files in this directory and
browse the reference material in them. As you proceed through the exercise,
refer to the references periodically to identify the meaning of each
parameter you pass to the functions.

Note The function information in this manual is from the Windows API Reference in the
MSDN library. You can access the full Windows API Reference at:
http://msdn.microsoft.com/en-us/library/Aa383749.

Bitmasked Flags
Some functions in the API contain a flags parameter that allows you to
enable one or more options by masking the bits in an integer. The dwFlags
parameter of the FormatMessage function is an example of this technique.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-4 ni.com

In order to set a flag in LabVIEW, pass an integer constant with the
appropriate size and value to the Call Library Function Node. Remember
that you can change the way a numeric constant is represented to make it
easier to enter the flag value. For example, the specification for the
FormatMessage function gives the flags in hexadecimal format. You can
set the format of your numeric constant to hexadecimal and then enter the
value directly.

If you need to set multiple flags in a flags parameter, you can use a Bitwise
Or function to combine multiple flags. In LabVIEW, the Or function is a
polymorphic function which automatically becomes a Bitwise Or if you
wire two integers to it.

Data Types
Windows API and other DLL function specifications often refer to many
data types which have different names in LabVIEW. Table 1-2 lists
LabVIEW types for some of the Windows data types used in this exercise.
For a more complete list, the Call DLL example in the NI Example Finder
provides a complete data type conversion list, as well as examples for each
data type. The Windows Data Type reference is also a useful reference. It
can be found at: http://msdn.microsoft.com/en-us/library/
Aa383751.

String Types
Many Windows API functions support two methods for representing strings.
The first method is ASCII, in which each character in a string is represented
by a single byte. Traditional ASCII has a 128 character set, which contains
all of the upper and lowercase letters, as well as other common symbols and
a set of control characters. LabVIEW typically uses ASCII to represent
strings.

Table 1-2. Data Type Conversion

Windows Data Type LabVIEW Data Type

LPTSTR String (Pass as C String Pointer)

DWORD U32

LPDWORD U32 (Pass by pointer)

BOOL I32

va_list* Varies (Use Adapt to Type)

LPCVOID Varies (Use Adapt to Type)

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-5 LabVIEW Connectivity Exercises

The second method uses “wide” strings, which is another term for Unicode
string representation (UTF-16 encoding). Unicode requires two bytes for
each character, and allows for a much larger character set than traditional
ASCII. Unicode is not natively supported in LabVIEW, but it is possible to
use Unicode through add on libraries or calls to external functions.

Windows API functions which deal with strings often have two versions
present in the DLL, marked with an A for ASCII and a W for wide. For
example, there are two GetComputerName functions in kernel32.dll,
GetComputerNameA and GetComputerNameW. In most cases, you should
use the “A” version of the function in LabVIEW.

Implementation
1. Create the front panel shown in Figure 1-1.

Figure 1-1. Computer Name Front Panel

❑ Create a blank VI and save the VI as Computer Name.vi in the
<Exercises>\LabVIEW Connectivity\Computer Name
directory.

❑ Create the Buffer Size control as described in Table 1-1.

❑ Create the Computer Name indicator as described in Table 1-1.

2. Call the GetComputerName function with the parameters shown in
Table 1-3.

Table 1-3. GetComputerName Parameters

Parameter Name Type Format/Data type Other

return type Numeric Signed 32-bit Integer

lpBuffer String C String Pointer Select lpnSize for
Minimum size

lpnSize Numeric Unsigned 32-bit
Integer

Select Pointer to
Value for Pass

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-6 ni.com

❑ Open the GetComputerName function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
getcomputername.pdf and identify the prototype and parameters
for the function.

❑ Place a Call Library Function Node.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Click the Function tab and configure the settings to match
Figure 1-2.

– Click the Browse button and navigate to \Windows\
System32\kernel32.dll or enter kernel32.dll.

– Select GetComputerNameA from the Function name
pull-down menu.

– Select Run in any thread from the Thread section.

Note Because the Windows API functions are reentrant (multi-threaded), calling
GetComputerNameA in UI thread functions correctly, except the error is not stored in
the proper memory location for GetLastError to access it.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-7 LabVIEW Connectivity Exercises

– Select stdcall (WINAPI) from the Calling convention section.

Figure 1-2. GetComputerNameA Call Library Function

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

– Select Numeric from the Type pull-down menu in the Current
parameter section.

– Verify the Data type pull-down menu is set to Signed 32-bit
Integer.

– Click the + button to add a parameter after the return type
parameter.

– Enter lpBuffer in the Name text box.

– Select String from the Type pull-down menu.

– Verify the String format pull-down menu is set to C String
Pointer.

Note You must declare an additional parameter before setting the minimum size for the
lpBuffer parameter. Leave Minimum size blank.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-8 ni.com

– Click the + button to add a parameter.

– Enter lpnSize in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Select Pointer to Value from the Pass pull-down menu.

– Select the lpBuffer parameter from the parameter list.

– Select lpnSize from the Minimum size pull-down menu.

– Confirm that the function prototype matches the following text.

int32_t GetComputerNameA(CStr lpBuffer,
uint32_t *lpnSize);

❑ Click the OK button.

3. Call the GetLastError function with the parameters shown in
Table 1-4.

❑ Open the GetLastError function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
getlasterror.pdf and identify the prototype and parameters for
the function.

❑ Place another Call Library Function Node after the call to
GetComputerName.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Click the Function tab.

– Click the Browse button and navigate to \Windows\
system32\kernel32.dll or enter kernel32.dll.

– Select GetLastError from the Function Name pull-down
menu.

Table 1-4. GetLastError Parameters

Parameter Name Type Format/Data type Other

return type Numeric Unsigned 32-bit Integer —

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-9 LabVIEW Connectivity Exercises

– Select Run in any thread from the Thread section.

– Select stdcall (WINAPI) from the Calling convention section.

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Type pull-down menu.

– Confirm that the function prototype matches the following text.

uint32_t GetLastError(void);

❑ Click OK.

4. Create the block diagram as shown in Figure 1-3 using the following
items:

Figure 1-3. Get Computer Name

❑ Flat Sequence structure—Place around the two Call Library
Function Nodes.

Note The Flat Sequence structure ensures that the VI checks for an error right after
calling the GetComputerNameA function from the DLL and does so in the same thread.

Because of the way the LabVIEW execution system works, it is possible for something
to run between the two DLL nodes. This could cause the GetLastError call to return an
incorrect result. The Flat Sequence structure with nothing but the two DLL nodes in it
reduces the likelihood that this would occur.

❑ Equal To 0?

❑ Computer Name indicator

❑ Buffer Size control

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-10 ni.com

5. Call the FormatMessage function with the parameters shown in
Table 1-5.

❑ Open the FormatMessage function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
formatmessage.pdf and identify the prototype and parameters
for the function.

❑ Place a Call Library Function Node after the Flat Sequence
structure.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Select the Function tab.

– Click the Browse button and navigate to \Windows\
System32\kernel32.dll or enter kernel32.dll.

– Select FormatMessageA from the Function Name pull-down
menu.

– Select Run in any thread from the Thread section.

– Select stdcall (WINAPI) from the Calling convention section.

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

Table 1-5. FormatMessage Parameters

Parameter Name Type Format/Data type Other

return type Numeric Unsigned 32-bit Integer —

dwFlags Numeric Unsigned 32-bit Integer Select Value for Pass

lpSource Adapt to Type Pointers to Handles —

dwMessageId Numeric Unsigned 32-bit Integer Select Value for Pass

dwLanguageId Numeric Unsigned 32-bit Integer Select Value for Pass

lpBuffer String C String Pointer Select nSize for
Minimum size

nSize Numeric Unsigned 32-bit Integer Select Value for Pass

Arguments Adapt to Type Pointers to Handles —

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-11 LabVIEW Connectivity Exercises

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Type pull-down menu.

– Click the + button to add a parameter.

– Enter dwFlags in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter lpSource in the Name text box.

– Select Adapt to Type from the Type pull-down menu.

– Select Pointers to Handles from the Data Format pull-down
menu.

– Click the + button to add a parameter.

– Enter dwMessageId in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter dwLanguageId in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter lpBuffer in the Name text box.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-12 ni.com

– Select String from the Type pull-down menu.

– Verify the String format pull-down menu is set to C String
Pointer.

Note You must declare an additional parameter before setting the Minimum Size
pull-down menu. Leave Minimum Size set to <None> for now.

– Click the + button to add a parameter

– Enter nSize in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter

– Enter Arguments in the Name text box.

– Select Adapt to Type from the Type pull-down menu.

– Select Pointers to Handles from the Data Format pull-down
menu.

– Select the lpBuffer parameter from the parameter list.

– Select nSize from the Minimum size pull-down menu.

– Confirm that the function prototype matches the following text.

– uint32_t FormatMessageA(uint32_t dwFlags, void
*lpSource, uint32_t dwMessageId, uint32_t
dwLanguageId, CStr lpBuffer, uint32_t nSize,
void *Arguments);

Note The terminals corresponding to the arguments with type Void are blank until
wired because void parameters accept any type of data.

❑ Click the OK button.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-13 LabVIEW Connectivity Exercises

6. Create the error handling code shown in Figure 1-4 using the following
items.

Figure 1-4. Error Handling Code

❑ Numeric constant

– Set the representation to U32.

– Right-click the numeric constant and select Visible Items»
Radix.

– Click the radix and select Hex.

– Set the value of the constant to 200.

– Label the constant Ignore Arguments.

❑ Numeric constant

– Create a copy of the Ignore Arguments constant.

– Change the label of the new constant to System Message.

– Set the value of the System Message constant to 1000.

❑ Or

❑ Numeric constant

– Set the representation to I32.

– Label the constant Null Value.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-14 ni.com

❑ Numeric constant

– Set the representation to U32.

– Label the constant String Size.

– Set the value of the String Size constant to 1000.

❑ Error Cluster From Error Code VI

– Right-click the error code input terminal of the Error Cluster
From Error Code VI and select Create»Constant.

– Set the value of the constant to 5000.

– Label the constant User Defined Error.

❑ Place a Case structure around the error handling code.

❑ General Error Handler VI.

Testing
1. Test the VI with an appropriate buffer size.

❑ Run the VI with the default Buffer Size (256).

❑ The name of your computer should display in the Computer Name
indicator.

2. Verify that the correct computer name displays.

❑ Locate My Computer on the desktop of your computer or in
Windows Explorer.

❑ Right-click My Computer and select Properties from the shortcut
menu.

❑ Select the Computer Name tab and verify that the Full Computer
Name matches the value the VI returns.

Note The case of the names does not need to match.

3. Test the error handling in the VI.

❑ Set the Buffer Size control to 1 and run the VI.

❑ Verify that the VI displays The file name is too long. as an
error message.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-15 LabVIEW Connectivity Exercises

Tip The error message that displays for this VI is the description for the Windows error
message ERROR_BUFFER_OVERFLOW (System Error 111). Refer to
http://msdn.microsoft.com/library/en-us/debug/base/
system_error_codes.asp for more information about system error codes and their
descriptions.

End of Exercise 1-1

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-16 ni.com

Notes

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 2-1 LabVIEW Connectivity Exercises

2
VI Server Exercises

Exercise 2-1 VI Server Options

Goal
Observe and set the VI server configuration options.

Description
VI Server presents a potential security risk because other programs and/or
computers can use it to call VIs, which can in turn be used to do almost
anything with a computer. To protect your computer, VI server contains
security options which allow you to select who can use VI server, which VIs
users can access, how the VIs can be used, and what communication
mechanisms can be used.

This exercise demonstrates the VI Server configuration options and sets
them to a configuration you can use to run the remaining exercises in the
course. The security configuration set in this exercise is very light.
Therefore, if you are completing these exercises on a development machine
or any other important machine, increase the security level by only allowing
certain machines to access VI Server or return the settings to the default
values when you finish the course.

Implementation
1. Configure VI Server.

❑ Select Tools»Options and select VI Server from the Category list.

❑ In the Protocols section, select TCP/IP. Note the Port number.

❑ Verify ActiveX is selected.

❑ Verify that all options under Accessible Server Resources are
selected.

2. Configure Machine Access.

❑ In the Machine Access section, enter * in the Machine
name/address field.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-2 ni.com

Tip Entering * in the Machine name/address field opens VI Server Access to all
computers. For security reasons, you should not do this on a production computer.
Instead, add the machine name or IP address of each computer that needs access to VI
server on this computer.

3. Configure Exported VIs.

❑ In the Exported VIs section, verify * is entered in the Exported VIs
list.

❑ Click the OK button to exit the Options dialog box.

End of Exercise 2-1

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-3 LabVIEW Connectivity Exercises

Exercise 2-2 VI Statistics

Goal
Open and use VI server references to Application and VI objects to gather
information about all open VIs.

Scenario
The Application VI Server object allows you to retrieve a list of all VIs in
memory. Using this list, you can determine information about the VIs in
memory. This information is useful for writing tools which track
information about the VIs on your system. In this exercise you track VI
usage statistics to identify the number of VIs running and the number of VIs
in memory at any given time. Because VI Server has the ability to access
application instances on remote machines, you can use this program to track
the VI usage on any computer which allows you VI Server access.

Design

Inputs and Outputs

Program Flow
1. Acquire a reference to the LabVIEW Application object by using the

Open Application Reference function.

2. Use this reference to access the ExportedVIs property, which gives you
a list of each VI in memory.

3. Use a For Loop and the Open VI Reference function to get a reference
to each VI in the list.

4. Using the VI reference, access the desired properties, in this case, Name,
VIType and Exec.State.

Table 2-1. VI Statistics Inputs and Outputs

Type Name Properties Default Value

String Control Machine Name String Empty (defaults to
local machine)

Numeric Indicator VIs Open Signed 32-bit Integer 0

Numeric Indicator VIs Running Signed 32-bit Integer 0

Table VI Report Table, Column
headers visible

Empty (Column
headers only)

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-4 ni.com

5. Close each VI reference.

6. Gather and display the data.

7. Close the application reference.

Property Descriptions
Use the following properties in this program:

ExportedVIs (Application Object)—This property returns an array of
strings, which represent the name of all VIs in memory, if run on the local
machine, or a list of all exported VIs in memory, if run on a remote machine.
You must use this property instead of the AllVIs property to run the program
on a remote machine. Notice that the strings contain only the names of the
VIs, and not their paths. However, because the VIs are already guaranteed
to be in memory, you only need the VI name to open a VI reference.

Name (VI Object)—This property accesses the name of the VI. You could
use the names from the ExportedVIs property in place of this property.
However, using the property provides a consistent technique for accessing
the VI data and also simplifies wiring.

VIType (VI Object)—This property returns an enumeration containing the
type of the VI. This property is useful because not all VIs are standard,
executable VIs. Examples of other types of VIs include global variables,
type definitions, and custom controls. In this program, this property
provides information for the VI report. Certain VI properties are valid for
only some VI types, and therefore, it may be necessary to check the value of
this property before accessing it. For example, if the program uses any
properties from the Execution group other than Exec.State, you would need
to check this property before accessing the properties to ensure that the
current VI reference is not a control or a global variable.

Exec.State (VI Object)—This property returns an enumeration containing
the execution state of the VI. In this program, you increment the number of
running VIs if this property is equal to Run top level or Running.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-5 LabVIEW Connectivity Exercises

Implementation
1. Create a blank VI and save the VI as VI Statistics.vi in the

<Exercises>\LabVIEW Connectivity\
VI Statistics directory.

2. Create the front panel as shown in Figure 2-1.

Figure 2-1. VI Statistics Front Panel

❑ Create the following items as described in Table 2-1.

– Machine Name control

– VIs Open indicator

– VIs Running indicator

❑ Place a Table control on the front panel.

– Label the table VI Report.

– Right-click the table and select Change to Indicator from the
shortcut menu.

– Right-click the table and select Visible Items»Column Headers
from the shortcut menu.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-6 ni.com

– Enter VI Name, VI Type, and VI State as the first three
column headers.

3. Acquire a reference to the LabVIEW Application object and access the
ExportedVIs property. Create the block diagram as shown in Figure 2-2
using the following items.

Figure 2-2. Application Properties

❑ Open Application Reference

❑ ExportedVIs Property Node—Right-click the application
reference output of the Open Application Reference function and
select Create»Property for Application Class»Application»
Exported VIs In Memory from the shortcut menu.

❑ Close Reference

Tip Leave space between the Property Node and the Close Reference function so you
can insert more code between them in later steps.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-7 LabVIEW Connectivity Exercises

4. Acquire a VI reference to each exported VI. Use the following items to
modify the block diagram as shown in Figure 2-3.

Figure 2-3. VI Properties

❑ For Loop

❑ Open VI Reference

❑ VI Name Property Node

– Right-click the vi reference output of the Open VI Reference
function and select Create»Property for VI Class»VI Name
from the shortcut menu to create the VI Name Property Node.

– Expand the VI Name Property Node so that three items are
available.

– Click the second item in the Property Node and select VI Type
from the list.

– Click the third item in the Property Node and select Execution»
State from the list.

❑ Close Reference

❑ Shift Registers—Replace the application reference and error tunnels
on the For Loop with Shift Registers.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-8 ni.com

5. Figure 2-4 shows the items and wiring you add in steps 5 and 6. In this
step, add the following items to gather and display VI statistics.

Figure 2-4. VI Statistics Block Diagram

❑ Numeric constant

– Set the representation to I32.

– Label the constant Number Running.

❑ Increment function—Wire the value from the Number Running
constant through the Increment function to the VIs Running
indicator. Use shift registers to wire through the For Loop.

❑ Case structure

– Place the Case structure around the Increment function.

– Wire the output of the Exec.State property to the case selector
terminal.

– Right-click the Case structure and select Add Case After from
the shortcut menu.

– Verify that the Run top level case of the Case structure is visible.
Right-click the Case structure and select Swap Diagram With
Case»Idle from the shortcut menu.

– Wire the numeric data through the Idle and Bad cases of the Case
structure.

– Switch to the Run Top Level case, which should have the
increment function in it, then right-click the Case structure and

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-9 LabVIEW Connectivity Exercises

select Duplicate Case from the shortcut menu. This creates a
Running case which contains an increment function.

The Case structure increments the number in the VIs Running
indicator if the VI is in the Run Top Level or the Running state.

❑ Increment function

– Place the function to the right of the For Loop.

– Wire the iteration terminal of the For Loop to the second
Increment function through the border of the For Loop. Disable
indexing on the tunnel.

❑ Two Format Into String functions—The Format Into String function
determines the string representation of an enumerated value.

❑ Build Array

6. In this step, add the following item to handle errors.

❑ Simple Error Handler VI

7. Save the VI.

Testing
1. Run the VI.

❑ Close all other open VIs.

❑ Run the VI Statistics VI.

2. Run the VI with multiple VIs in memory.

❑ Open the solution to the Word Processor project in the
<Solutions>\LabVIEW Connectivity\Exercise 3-2
directory.

Note If you have the LabVIEW Core 3 files installed, you also can use
<Solutions>\LabVIEW Core 3\Course Project\Exercise 7-8\
TLC Main.vi.

❑ Run the VI Statistics VI.

❑ Observe the results in the VI Report.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-10 ni.com

3. Test the VI on a remote system.

❑ Determine the network address of a target computer near you and
enter it in the Machine Name control.

Tip In most cases, you can use the Computer Name, which you found in Exercise 1-1,
as a network address. If this name does not work, find the IP address of the computer by
using the String to IP and IP to String functions.

❑ Verify that the VI Server settings on the target computer are
configured as described in Exercise 2-1.

❑ Open one or more VIs on the target computer.

❑ Run the VI. All exported VIs in memory on the target computer
should be displayed.

Challenge
Add statistical information for the VI priority, VI execution system, and/or
state of the front panel to your table. Remember that not all properties are
valid for all types of VIs. Use the context help to identify which types of VIs
a property applies to and the VIType property to determine which VIs have
the property, otherwise you receive an error.

End of Exercise 2-2

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-11 LabVIEW Connectivity Exercises

Exercise 2-3 Remote Run VI

Goal
Build a VI that programmatically opens and runs another VI on a remote
computer.

Description
You have seen how the Application refnum runs transparently over a
network. In this exercise, use VI Server to run a VI remotely. The techniques
in this exercise show how to use VI Server to open and run a VI on a remote
machine. VI Server operates the same whether it is on a network or a local
machine.

Implementation

1. Open the Remote Run VI located in the <Exercises>\LabVIEW
Connectivity\Remote Run directory. The front panel is built for
you.

Figure 2-5. Remote Run VI Front Panel

2. In the VI to execute control, browse to <Exercises>\LabVIEW
Connectivity\Remote Run\Statistics.vi. Right-click the
control and select Data Operations»Make Current Value Default
from the shortcut menu.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-12 ni.com

3. Build the block diagram shown in Figure 2-6 using the following items.

Figure 2-6. Remote Run VI Block Diagram

❑ Open Application Reference

❑ Open VI Reference

❑ Wire the VI to execute path control, which determines the VI to
execute, to the vi path input of the Open VI Reference function.

❑ Two Close References

❑ Property Node

– Wire the vi reference output of the Open VI Reference function
to the reference input of the Property Node.

– Click the Property terminal and select Front Panel Window»
Open.

– Right-click the Property Node and select Change All to Write
from the shortcut menu.

– Wire a TRUE Boolean constant to the Front Panel Window
Open property terminal.

– Create a copy of this Property Node.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-13 LabVIEW Connectivity Exercises

❑ Invoke Node

– Wire the VI reference from the Property Node to the Invoke
Node.

– Click the method terminal and select Run VI from the list.

– Wire the TRUE Boolean constant to the Wait Until Done
property terminal and a FALSE Boolean constant to the Auto
Dispose Ref property terminal.

❑ Simple Error Handler VI

❑ Case structure—Use the Case structure to select whether the front
panel of the called VI remains open when the VI completes
execution.

– Place the Case structure around the second Property Node.

– Wire a FALSE Boolean constant to the Front Panel Window
Open property of the Property Node. Verify these items are in the
True case. This case closes the front panel of the called VI if it is
selected.

– Wire the VI refnum and the error cluster through the False case.

– Wire the case selector to the Close Front Panel on Completion
control.

4. Save the VI.

Testing
Run the VI on the local computer.

This VI opens a reference to the Frequency Response VI located in the
<Exercises>\LabVIEW Connectivity\Remote Run directory. The
front panel of the VI is opened by accessing the Front Panel Open property
of the VI. Then, the Run VI method runs the VI. Because the Wait Until
Done property is TRUE, this VI waits for the Frequency Response VI to
complete execution. After exiting the Frequency Response VI, the front
panel remains open or closes depending on the position of the front panel
switch. Finally, the Close Reference function closes the VI reference,
freeing the resources.

If time permits, complete the following Optional and Challenge steps,
otherwise close the VI.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-14 ni.com

Optional
If your computer is connected through TCP/IP to another computer that has
LabVIEW and each computer has a unique IP address, you can run the
Remote Run VI on one computer and have it call the Frequency Response
VI on the other computer.

1. Find a partner and exchange IP addresses. Decide which computer is the
server. Complete the following steps on the server computer to set up the
VI Server.

❑ Select Tools»Options and select VI Server from the Category list
to display the VI Server page. Verify that TCP/IP is selected and
that a port number is entered.

❑ In the Machine Access section, enter the IP address of the client
computer. Select Allow Access and click Add.

❑ In the Exported VIs section, confirm that a wildcard (*) is allowed
access. This allows the client computer, or any computer allowed
access in the VI Server: Machine Access section, to access any VIs
on your computer. Click the OK button.

2. On the client computer, verify the path to the Frequency Response VI on
the server computer. Enter the IP address of the server computer in the
Machine Name control.

3. Run the Remote Run VI on the client computer. Does the VI behave as
expected? Repeat steps 1 and 2, but reverse situations with your partner.

Challenge
Break into groups of three. Write a VI on the first computer that calls the
Remote Run VI on the second computer, which then calls the Frequency
Response VI on the third computer.

End of Exercise 2-3

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-15 LabVIEW Connectivity Exercises

Exercise 2-4 Dynamically Calling VIs

Goal
Observe two different methods for calling VIs dynamically and learn the
difference between strictly and weakly typed refnums.

Description
This exercise demonstrates two ways to dynamically call a VI. The first
method is to use a Weakly Typed VI Refnum. This technique is
advantageous because it can be used to call any VI, regardless of the VI’s
connector pane. However, passing data to the VI using a Weakly Typed VI
Refnum is difficult.

The second method uses a strictly typed VI refnum. The strictly typed
refnum specifies the connector pane for the called VI, and allows you to use
a Call By Reference Node, which simplifies the passing of data to the
dynamically called VI. However, a Strictly Typed VI Refnum only allows
you to call VIs with a matching connector pane. Therefore it is not as
flexible as the weakly typed VI refnum.

Instructions
1. Open the Dynamically Calling VIs VI located in the <Exercises>\

LabVIEW Connectivity\Dynamically Calling VIs directory.

2. Complete the VI front panel as shown in Figure 2-7 using the following
items.

❑ Place a VI Refnum to the left of the Boolean switch.

– Label the refnum Weakly Typed.

– Right-click the refnum and choose Select VI Server Class.
Verify that VI is checked.

❑ Place a VI Refnum to the right of the Boolean switch.

– Label the refnum Strictly Typed.

– Right-click the refnum and choose Select VI Server Class»
Browse. Navigate to <Exercises>\LabVIEW
Connectivity\Dynamically Calling VIs directory and
select the Pop up VI. Click the OK button. The refnum adapts to
the connector pane of the Pop up VI.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-16 ni.com

Figure 2-7. Weakly versus Strictly Typed Ref VI Front Panel

3. Complete the False case as shown in Figure 2-8.

Wire the Weakly Typed VI refnum to the type specifier input of the
Open VI Reference function in the False case as shown in Figure 2-8.

Figure 2-8. Weakly VS Strictly Typed Ref VI Block Diagram False Case

The False case contains a VI reference to the Pop up VI. This VI
reference opens the front panel of the VI using the Front Panel
Window:Open property. The Set Control Value method passes values
to the Numeric and String controls of the Pop up VI.

The Run VI method runs the VI and waits until it completes execution.
The Get All Control Values method returns the values of the front panel
indicators of the Pop up VI. These values display on the front panel of
this VI. Finally, the Close VI Reference function closes the front panel
of the Pop up VI and releases the VI Reference.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-17 LabVIEW Connectivity Exercises

4. Complete the True case on the block diagram as shown in Figure 2-9.

❑ Wire the Strictly Typed VI refnum to the Type Specifier input of
the Open VI Reference function.

❑ Place a Call By Reference Node on the block diagram.

5. Wire the VI reference output of the Open VI Reference function to the
reference input of the Call By Reference Node. The node adopts the
connector pane of the Pop up VI, as shown at left.

Note When you wire the strictly typed VI refnum for the Pop up VI to the Open VI
Reference function, a strictly typed VI reference is generated that you can wire to the Call
By Reference Node.

Figure 2-9. Block Diagram Code Inside the True Case

6. Save the VI.

Testing
1. Run the VI.

2. Select the strictly typed reference and click the GO! button.

The Pop up VI appears. It returns the value it receives or allows you to
change the data. When you finish with the Pop up VI and click the
DONE button. The front panel of the Dynamically Calling VIs VI
shows the values of the indicators from the Pop up VI.

3. Run the VI again and select the weakly typed reference. Notice that the
behavior is the same as the behavior of the strictly typed reference.

Although both calling methods produce the same result, the Run VI
method provides more flexibility and allows you to call a VI
asynchronously. If you call a VI asynchronously by passing a false value
to the Wait Until Done parameter of the Run VI method, the

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-18 ni.com

dynamically called VI executes independently of the calling VI. The
calling VI continues its dataflow progression without waiting for the
called VI to complete.

The Call By Reference Node simplifies calling a VI dynamically,
particularly when passing data to the subVI. The Call By Reference
Node requires a strictly typed reference that eliminates the possibility of
a run-time type mismatch error. If you do not need the additional
flexibility of the Run VI method, use the Call By Reference Node to
reduce the complexity of your code.

End of Exercise 2-4

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-19 LabVIEW Connectivity Exercises

Notes

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-20 ni.com

Notes

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 3-1 LabVIEW Connectivity Exercises

3
Using .Net and ActiveX Objects in
LabVIEW Exercises

Exercise 3-1 Font Dialog

Goal
Call a System .NET Assembly to display a Windows Common Dialog box.

Scenario

For many applications, you want to provide a familiar look and feel for your
user. One technique for doing this is reusing Windows Common Dialogs
whenever possible. For example, to have your user select a text font, you can
call a Font dialog from the operating system. The Windows Common Font
Dialog Box creates a font style and color selection dialog that is familiar to
users of most Windows-based word processors, as shown in Figure 3-1.

Figure 3-1. Windows Common Font Dialog Box

Create a subVI that calls a font dialog and returns references to the font and
color selected by the user. The subVI should use proper error handling
techniques and should return a value indicating if the user has canceled the
dialog.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-2 ni.com

Design
There are multiple ways to display Windows Common Dialogs. The
Microsoft Common Dialog Control ActiveX server and ActiveX control
provide access to the Color, Font, Help, Open, Printer, and Save dialog
boxes. However, these ActiveX components require special licensing to use,
which can be acquired through Microsoft Visual Studio. Alternately, you
can create a FontDialog object from the System.Windows.Forms .NET
assembly. Using the .NET assembly requires the .NET Framework to be
installed, but does not require any additional licensing. Furthermore, the
.NET assembly provides the newest version of the dialog, which has
additional features and improved integration with other Windows
components.

FontDialog Inputs and Outputs

The FontDialog subVI should perform the following steps:
1. Create a FontDialog object using a .NET Constructor Node.

2. Set the ShowColor property to TRUE so that the font dialog allows the
user to select a color.

3. Call the ShowDialog method to show the dialog and return a result.
Return the result to the calling VI.

4. Use the Font and Color properties to obtain references to the selected
font and color and return these references to the calling VI.

5. Close the reference to the FontDialog object.

Table 3-1. FontDialog Inputs and Outputs

Type Name Properties Default Value

Cluster Control error in Error Cluster No Error

Constructor Node Font .NET Reference,
System.Drawing.Font class

Not a refnum

Constructor Node Color .NET Reference,
System.Drawing.Color class

Not a refnum

Enum Indicator DialogResult Values defined by FontDialog object None

Cluster Indicator error out Error Cluster No Error

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-3 LabVIEW Connectivity Exercises

FontDialog Object Description
The FontDialog object creates a common dialog box that displays a list of
fonts that are currently installed on the system. You can create a FontDialog
class by selecting the FontDialog object from the System.Windows.Forms
assembly using a .NET Constructor Node. You use the following properties
and methods of the FontDialog object in this exercise. Full documentation
for the FontDialog and other objects included in the .NET Framework can
be found on MSDN or in the documentation for Microsoft Visual Studio
.NET.

ShowColor Property—Setting this to TRUE instructs the FontDialog to
show a selector for the font color. This property should be set before
showing the dialog.

ShowDialog Method—Displays the font dialog. This method returns an
enumerated type which indicates the user’s response to the dialog. Notice
that the enumerated type returned from this function is shared among many
dialogs, and therefore not all the values are actually possible from a
FontDialog. A FontDialog typically returns OK or Cancel.

Two versions of the ShowDialog method exists. One takes no parameters
and the other takes an IWin32Window object to designate the owning
window for the dialog. For this exercise, use the version of the function with
no parameters. This may occasionally cause the font dialog to show up
behind the main application. You can solve this problem by using the
IWin32Window version of the function. However, this requires getting a
reference to the window handle of the LabVIEW front panel and converting
it to an IWin32Window object, which is beyond the scope of this exercise.

Font Property—Returns a .NET reference to a System.Drawing.Font
object. You can use this reference to get information about the font, such as
the font name and size, or you can pass this reference to other objects that
take .NET Font references, such as a .NET RichTextBox control.

Color Property—Returns a .NET reference to a System.Drawing.Color
object. You can convert this color into a LabVIEW color by using the
reference to get the R, G and B properties of the color and then using the
RGB to Color VI. Alternately, you can pass this reference to any .NET
object which uses colors.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-4 ni.com

Implementation
1. Create the VI.

❑ Create a blank VI and save it as Font Dialog.vi in the
<Exercises>\LabVIEW Connectivity\Font Dialog
directory.

Figure 3-2. Completed Font Dialog Block Diagram

2. Add the following item to the block diagram as shown in Figure 3-2 to
open a .NET reference to the FontDialog object.

❑ Place a Constructor Node on the block diagram to display the Select
.NET Constructor dialog box.

❑ Select System.Windows.Forms from the Assembly pull-down
menu.

Note If more than one version of System.Windows.Forms is listed, select the latest one.

– Double-click the + to the left of the System.Windows.Forms
item in the Objects list. Scroll down and select FontDialog to
add it to the Constructors list.

– Click OK.

3. Add the following items to the block diagram as shown in Figure 3-2 to
show the font dialog.

❑ FontDialog Property Node.

– Right-click the new reference output of the Constructor Node
and select Create»Property for
System.Windows.Forms.FontDialog Class»ShowColor to
create the FontDialog Property Node.

– Right-click the FontDialog Property Node and select Change
All To Write from the shortcut menu.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-5 LabVIEW Connectivity Exercises

❑ TRUE constant—Right-click the ShowColor input of the
FontDialog Property Node and select Create»Constant. Set the
value of the constant to TRUE.

❑ FontDialog Invoke Node—Right-click the reference output of the
FontDialog Property Node and select Create»Method for
System.Windows.Forms.FontDialog Class»ShowDialog() from
the shortcut menu to create a FontDialog Invoke Node.

❑ Ring Indicator—Right-click the ShowDialog output of the
FontDialog Invoke Node and select Create»Indicator from the
shortcut menu to create a ring indicator described in Table 3-1.

4. Add the following items to the block diagram as shown in Figure 3-2 to
get .NET references to font and color.

❑ FontDialog Property Node

– Right-click the reference output of the FontDialog Invoke Node
and select Create»Property for
System.Windows.Forms.FontDialog Class»Font to create
another FontDialog Property Node.

– Expand the second FontDialog Property Node to show two
elements. Select Color as the second element.

❑ Right-click the Font output of the FontDialog Property Node and
select Create»Indicator from the shortcut menu to create the Font
output described in Table 3-1.

❑ Right-click the Color output of the FontDialog Property Node and
select Create»Indicator from the shortcut menu to create the Color
output described in Table 3-1.

5. Add the following items to the block diagram as shown in Figure 3-2 to
close the reference and handle errors.

❑ Place a Close Reference function on the block diagram.

❑ Right-click the error in input of the Constructor Node and select
Create»Control from the shortcut menu to create the error in input
described in Table 3-1.

❑ Right-click the error out output of the Close Reference function and
select Create»Indicator from the shortcut menu to create the error
out output described in Table 3-1.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-6 ni.com

❑ Wire the error wire through the Error case of the Case structure to
the error out indicator.

6. Create the icon and connector pane.

❑ Switch to the VI front panel.

❑ Organize the controls in a logical manner.

❑ Right-click the ShowDialog indicator and select Replace»
Modern»Ring & Enum»Enum from the shortcut menu.

Note Converting the ring indicator into an enumerated type indicator allows you to
better control Case structures with the result of the dialog.

❑ Create an icon and connector pane similar to Figure 3-3.

Figure 3-3. Font Dialog icon and Connector Pane

7. Save the VI.

Testing
Test the VI as a top-level VI.

❑ Run the VI. A font dialog should display. Notice that the font dialog may
be behind the front panel. Minimize the front panel or press <Alt-Tab>
to find the font dialog window.

❑ Click OK in the font dialog to finish the VI.

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-7 LabVIEW Connectivity Exercises

Challenge
Test the VI as a subVI.

❑ Create a VI that calls the FontDialog VI.

❑ Check the ShowDialog to determine if the user clicked the OK button.

❑ Use the Font reference to display the selected Font Name.

❑ Use the Color reference to display the selected color in a LabVIEW
Color Box indicator.

Tip Refer to the Design section for a suggestion on how to convert a .NET Color
reference to a LabVIEW color.

End of Exercise 3-1

