
Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

LabVIEWTM Connectivity
Exercises

Course Software Version 2010
May 2011 Edition
Part Number 325628A-01

LabVIEW Connectivity Exercises

Copyright

© 2004–2011 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the USICopyrights.chm or the Copyrights topic in your software.

Xerces C++. This product includes software that was developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995–2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

b64. Copyright © 2004–2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995–2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999–2003 Boris Fomitchev

Trademarks
LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n
Worldwide Technical Support and Product Information
ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone
numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation iii LabVIEW Connectivity Exercises

Contents

Student Guide

Lesson 1
Calling Shared Libraries in LabVIEW Exercises

Exercise 1-1 Computer Name..1-1

Lesson 2
VI Server Exercises

Exercise 2-1 VI Server Options...2-1
Exercise 2-2 VI Statistics ..2-3
Exercise 2-3 Remote Run VI...2-11
Exercise 2-4 Dynamically Calling VIs..2-15

Lesson 3
Using .Net and ActiveX Objects in LabVIEW Exercises

Exercise 3-1 Font Dialog...3-1
Exercise 3-2 Word Processor ..3-8
Exercise 3-3 Auto Save ...3-24
Exercise 3-4 Browse to URL and Display VI Statistics Report3-32

Lesson 4
Connecting to Databases Exercises

Exercise 4-1 Viewing a Database..4-1
Exercise 4-2 Connect to a Theatre Database Using LabVIEW.............................4-3
Exercise 4-3 Select Data from a Table ..4-6
Exercise 4-4 Insert New Record..4-13
Exercise 4-5 SQL Query..4-18

Lesson 5
TCP/IP and UDP Exercises

Exercise 5-1 Simple Data Client VI and Simple Data Server VI..........................5-1
Exercise 5-2 TCP Signal Data Transfer ..5-6

Lesson 6
Web Services Exercises

Exercise 6-1 Create a LabVIEW Web Service to Add Two Numbers..................6-1
Exercise 6-2 Accept POST Data from an HTML Form..6-9
Exercise 6-3 Generate Image with Web Method...6-16
Exercise 6-4 Create an HTTP Client in LabVIEW ...6-21

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation v LabVIEW Connectivity Exercises

Student Guide

Thank you for purchasing the LabVIEW Connectivity course kit. This kit
contains the materials used in the two-day, hands-on LabVIEW Connectivity
course.

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. Visit ni.com/training to register for a course and to
access course schedules, syllabi, and training center location information.

A. NI Certification
The LabVIEW Connectivity course is part of a series of courses designed to
build your proficiency with LabVIEW and help you prepare for exams to
become an NI Certified LabVIEW Developer and NI Certified LabVIEW
Architect. The following illustration shows the courses that are part of the
LabVIEW training series. Refer to ni.com/training for more
information about NI Certification.

Advanced User

LabVIEW Core 1*

LabVIEW Core 2*

Certified LabVIEW
Architect Exam

New User Experienced User

Advanced Architectures
in LabVIEW

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

Courses

Certifications

Other Courses

Certified LabVIEW
Associate Developer Exam

LabVIEW Instrument Control

LabVIEW Machine Vision

Modular Instruments Series

LabVIEW FPGA

LabVIEW Real-Time

LabVIEW DAQ and Signal Conditioning

Managing Software
Engineering in LabVIEW

LabVIEW Performance

Object-Oriented Design
and Programming

in LabVIEW

LabVIEW Connectivity

Certified LabVIEW
Developer Exam

LabVIEW Core 3*

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Exercises vi ni.com

B. Course Description
The LabVIEW Connectivity course teaches you how to use advanced
connectivity in VIs. This manual assumes you are familiar with Windows,
that you have experience writing algorithms in the form of flowcharts or
block diagrams, and that you have taken the LabVIEW Core 1 and LabVIEW
Core 2 courses or you are familiar with all the concepts contained therein.
This course also assumes that you have one year or more of LabVIEW
development experience.

In the course manual, each lesson consists of the following sections:

• An introduction that describes the purpose of the lesson and what
you will learn

• A discussion of the topics

• A summary or quiz that tests and reinforces important concepts and
skills taught in the lesson

In the exercise manual, each lesson consists of the following sections:

• A set of exercises to reinforce topics

• Self-study and challenge exercise sections or additional exercises

Note For course manual updates and corrections, refer to ni.com/info and enter the
Info Code lvconn.

C. What You Need to Get Started
Before you use this course manual, make sure you have the following items:

❑ Windows XP or later installed on your computer; this course is
optimized for Windows XP

❑ LabVIEW Professional Development System 2010 or later

❑ Microsoft Excel

❑ LabVIEW Connectivity course CD, containing the following folders:

Directory Description

Exercises Contains all the VIs and support files needed
to complete the exercises in this course

Solutions Contains completed versions of the VIs you
build in the exercises for this course

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation vii LabVIEW Connectivity Exercises

D. Installing the Course Software
Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Connectivity
Course Material Setup dialog box appears.

2. Click Install LabVIEW Connectivity.

3. Follow the onscreen instructions to complete installation and setup.

Exercise files are located in the <Exercises>\LabVIEW Connectivity
folder.

Tip Folder names in angle brackets, such as <Exercises>, refer to folders in the root
directory of your computer.

Repairing or Removing Course Material
You can repair or remove the course material using the Add or Remove
Programs feature on the Windows Control Panel. Repair the course
manual to overwrite existing course material with the original, unedited
versions of the files. Remove the course material if you no longer need the
files on your computer.

E. Course Goals
This course presents the following topics:

• Networking technologies

– External procedure call model

– Broadcast model

– Client/server model

– Publish/subscribe model

• Implementing the external procedure call model

– Calling shared libraries from LabVIEW

– Programmatically controlling VIs using the VI Server

• Using the VI Server functions to programmatically load and
operate VIs and LabVIEW itself

– Using ActiveX objects in LabVIEW

• Using LabVIEW as an ActiveX client

• Using LabVIEW as an ActiveX server

• ActiveX events

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Exercises viii ni.com

– Using .NET Objects in LabVIEW

• Using LabVIEW as a .NET client

• .NET events

• Implementing the broadcast model

– Using the UDP VI and functions to create a UDP multicast session

• Implementing the client/server model

– Using the TCP/IP VI and functions to communicate with other
applications locally and over a network

• Using LabVIEW Web services and HTTP Client VIs to create and
deploy Web services

This course does not present any of the following topics:

• Basic principles of LabVIEW covered in the LabVIEW Core 1 and
LabVIEW Core 2 courses

• Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

• Developing a complete VI for any student in the class; refer to the
NI Example Finder, available by selecting Help»Find Examples,
for example VIs you can use and incorporate into VIs you create

F. Course Conventions
The following conventions are used in this course manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
AO <3..0>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation ix LabVIEW Connectivity Exercises

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace Italic text in this font denotes text that is a placeholder for a word or value
italic that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 1-1 LabVIEW Connectivity Exercises

1
Calling Shared Libraries in LabVIEW
Exercises

Exercise 1-1 Computer Name

Goal
Call a DLL function from the Windows API.

Scenario
Programmatically determining the Windows computer name is necessary in
a number of situations. For example, if you have several computers logging
data to a central server, you should identify the computer name for each set
of data in order to track the data. The computer name is also helpful for
storing or retrieving data over a Windows File Share and is a useful piece of
information to include when generating reports.

There is not a native function within LabVIEW to retrieve the computer
name. However, the Windows operating system provides an API, in the form
of DLLs, which allows you to interface with the operating system. One
common use of this API is retrieving useful information about the operating
system or computer, such as the computer name.

Call a Windows API DLL function to determine the name of the computer.
You should also handle any errors returned by the function in an appropriate
manner.

Note The Windows computer name is different from the network address of a computer.
You can determine a computer’s network address in LabVIEW by using the String to IP
and IP to String functions located on the TCP/IP palette.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-2 ni.com

Design

Inputs and Outputs

Program Structure
When you call functions from a DLL, the DLL often defines a method for
reporting errors. The Windows API returns a numeric value from each
function call indicating whether the function was executed correctly. In the
event of an incorrect execution, you can call additional Windows API
functions to identify the error code and convert the code to an
understandable string. To correctly identify the error, the error handling
functions must be called immediately after the original function call,
because the error information will be lost if any other Windows API calls
are made from the same program. This error handling mechanism works
differently than the normal error handling mechanism in LabVIEW, where
each subVI reports its own errors and errors can be chained together and
handled at the end of a program or section.

Get Computer Name
The Windows API provides a function called GetComputerName in
Kernel32.dll. You must allocate a string buffer large enough to store the
string returned by the function, fortunately, the Call Library Function Node
in LabVIEW Version 8.20 or later can automatically allocate the buffer
based on a size parameter passed to the function. If the buffer is too small to
store the computer name, or if another error occurs, this function returns a
value of zero. Use the return value from this function as well as the error out
cluster from the Call Library Function Node to control the transition logic
of the state machine.

Handle Errors
This program has the potential to generate normal LabVIEW errors, such as
a missing DLL file in a Call Library Function Node, as well as Windows
API errors, such as an insufficient buffer size for the GetComputerName
function to store the computer name. The handle errors case should handle
both types of errors.

Table 1-1. Computer Name Inputs and Outputs

Type Name Properties Default Values

Numeric Control Buffer Size 32-bit Unsigned
Integer

256

String Indicator Computer Name — Empty

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-3 LabVIEW Connectivity Exercises

Use the General Error Handler instead of the Simple Error Handler to allow
for custom messages generated by the Windows API error reporting calls.

In order to provide a meaningful error message for Windows API calls, you
must perform two steps. First, you must call the Windows API function
GetLastError. This function returns a numeric value that represents any
error encountered during the last function call, in this case,
GetComputerName. In order to translate the numeric code into a
meaningful message, you must call the FormatMessage Windows API
function. You can use this function many different ways. Control the
behavior of the function by setting one or more flags in a parameter called
dwFlags. In order to return a message for a system error, set the
FORMAT_MESSAGE_FROM_SYSTEM flag. Also set the
FORMAT_MESSAGE_IGNORE_INSERTS flag because you do not need to
include any additional parameters in your message. Setting this parameter
also allows you to ignore the arguments parameter of the function, thereby
simplifying the function call. For more information on setting flags, refer to
the Background: Windows API Reference section.

Tip All of the functions called in this exercise are in kernel32.dll. However,
Windows API functions are found in many other DLLs. Refer to the Windows API
Reference to determine in which DLL a given function is located.

Additional Information
The following sections describe some issues particular to Windows API
calls that you must address in order to implement a solution.

Background: Windows API Reference
You can find the Windows API definitions for each of the functions used in
this exercise in the <Exercises>\LabVIEW Connectivity\
Computer Name directory. Open each of the PDF files in this directory and
browse the reference material in them. As you proceed through the exercise,
refer to the references periodically to identify the meaning of each
parameter you pass to the functions.

Note The function information in this manual is from the Windows API Reference in the
MSDN library. You can access the full Windows API Reference at:
http://msdn.microsoft.com/en-us/library/Aa383749.

Bitmasked Flags
Some functions in the API contain a flags parameter that allows you to
enable one or more options by masking the bits in an integer. The dwFlags
parameter of the FormatMessage function is an example of this technique.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-4 ni.com

In order to set a flag in LabVIEW, pass an integer constant with the
appropriate size and value to the Call Library Function Node. Remember
that you can change the way a numeric constant is represented to make it
easier to enter the flag value. For example, the specification for the
FormatMessage function gives the flags in hexadecimal format. You can
set the format of your numeric constant to hexadecimal and then enter the
value directly.

If you need to set multiple flags in a flags parameter, you can use a Bitwise
Or function to combine multiple flags. In LabVIEW, the Or function is a
polymorphic function which automatically becomes a Bitwise Or if you
wire two integers to it.

Data Types
Windows API and other DLL function specifications often refer to many
data types which have different names in LabVIEW. Table 1-2 lists
LabVIEW types for some of the Windows data types used in this exercise.
For a more complete list, the Call DLL example in the NI Example Finder
provides a complete data type conversion list, as well as examples for each
data type. The Windows Data Type reference is also a useful reference. It
can be found at: http://msdn.microsoft.com/en-us/library/
Aa383751.

String Types
Many Windows API functions support two methods for representing strings.
The first method is ASCII, in which each character in a string is represented
by a single byte. Traditional ASCII has a 128 character set, which contains
all of the upper and lowercase letters, as well as other common symbols and
a set of control characters. LabVIEW typically uses ASCII to represent
strings.

Table 1-2. Data Type Conversion

Windows Data Type LabVIEW Data Type

LPTSTR String (Pass as C String Pointer)

DWORD U32

LPDWORD U32 (Pass by pointer)

BOOL I32

va_list* Varies (Use Adapt to Type)

LPCVOID Varies (Use Adapt to Type)

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-5 LabVIEW Connectivity Exercises

The second method uses “wide” strings, which is another term for Unicode
string representation (UTF-16 encoding). Unicode requires two bytes for
each character, and allows for a much larger character set than traditional
ASCII. Unicode is not natively supported in LabVIEW, but it is possible to
use Unicode through add on libraries or calls to external functions.

Windows API functions which deal with strings often have two versions
present in the DLL, marked with an A for ASCII and a W for wide. For
example, there are two GetComputerName functions in kernel32.dll,
GetComputerNameA and GetComputerNameW. In most cases, you should
use the “A” version of the function in LabVIEW.

Implementation
1. Create the front panel shown in Figure 1-1.

Figure 1-1. Computer Name Front Panel

❑ Create a blank VI and save the VI as Computer Name.vi in the
<Exercises>\LabVIEW Connectivity\Computer Name
directory.

❑ Create the Buffer Size control as described in Table 1-1.

❑ Create the Computer Name indicator as described in Table 1-1.

2. Call the GetComputerName function with the parameters shown in
Table 1-3.

Table 1-3. GetComputerName Parameters

Parameter Name Type Format/Data type Other

return type Numeric Signed 32-bit Integer

lpBuffer String C String Pointer Select lpnSize for
Minimum size

lpnSize Numeric Unsigned 32-bit
Integer

Select Pointer to
Value for Pass

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-6 ni.com

❑ Open the GetComputerName function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
getcomputername.pdf and identify the prototype and parameters
for the function.

❑ Place a Call Library Function Node.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Click the Function tab and configure the settings to match
Figure 1-2.

– Click the Browse button and navigate to \Windows\
System32\kernel32.dll or enter kernel32.dll.

– Select GetComputerNameA from the Function name
pull-down menu.

– Select Run in any thread from the Thread section.

Note Because the Windows API functions are reentrant (multi-threaded), calling
GetComputerNameA in UI thread functions correctly, except the error is not stored in
the proper memory location for GetLastError to access it.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-7 LabVIEW Connectivity Exercises

– Select stdcall (WINAPI) from the Calling convention section.

Figure 1-2. GetComputerNameA Call Library Function

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

– Select Numeric from the Type pull-down menu in the Current
parameter section.

– Verify the Data type pull-down menu is set to Signed 32-bit
Integer.

– Click the + button to add a parameter after the return type
parameter.

– Enter lpBuffer in the Name text box.

– Select String from the Type pull-down menu.

– Verify the String format pull-down menu is set to C String
Pointer.

Note You must declare an additional parameter before setting the minimum size for the
lpBuffer parameter. Leave Minimum size blank.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-8 ni.com

– Click the + button to add a parameter.

– Enter lpnSize in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Select Pointer to Value from the Pass pull-down menu.

– Select the lpBuffer parameter from the parameter list.

– Select lpnSize from the Minimum size pull-down menu.

– Confirm that the function prototype matches the following text.

int32_t GetComputerNameA(CStr lpBuffer,
uint32_t *lpnSize);

❑ Click the OK button.

3. Call the GetLastError function with the parameters shown in
Table 1-4.

❑ Open the GetLastError function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
getlasterror.pdf and identify the prototype and parameters for
the function.

❑ Place another Call Library Function Node after the call to
GetComputerName.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Click the Function tab.

– Click the Browse button and navigate to \Windows\
system32\kernel32.dll or enter kernel32.dll.

– Select GetLastError from the Function Name pull-down
menu.

Table 1-4. GetLastError Parameters

Parameter Name Type Format/Data type Other

return type Numeric Unsigned 32-bit Integer —

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-9 LabVIEW Connectivity Exercises

– Select Run in any thread from the Thread section.

– Select stdcall (WINAPI) from the Calling convention section.

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Type pull-down menu.

– Confirm that the function prototype matches the following text.

uint32_t GetLastError(void);

❑ Click OK.

4. Create the block diagram as shown in Figure 1-3 using the following
items:

Figure 1-3. Get Computer Name

❑ Flat Sequence structure—Place around the two Call Library
Function Nodes.

Note The Flat Sequence structure ensures that the VI checks for an error right after
calling the GetComputerNameA function from the DLL and does so in the same thread.

Because of the way the LabVIEW execution system works, it is possible for something
to run between the two DLL nodes. This could cause the GetLastError call to return an
incorrect result. The Flat Sequence structure with nothing but the two DLL nodes in it
reduces the likelihood that this would occur.

❑ Equal To 0?

❑ Computer Name indicator

❑ Buffer Size control

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-10 ni.com

5. Call the FormatMessage function with the parameters shown in
Table 1-5.

❑ Open the FormatMessage function reference from
<Exercises>\LabVIEW Connectivity\Computer Name\
formatmessage.pdf and identify the prototype and parameters
for the function.

❑ Place a Call Library Function Node after the Flat Sequence
structure.

❑ Double-click the Call Library Function Node to open the Call
Library Function dialog box.

❑ Select the Function tab.

– Click the Browse button and navigate to \Windows\
System32\kernel32.dll or enter kernel32.dll.

– Select FormatMessageA from the Function Name pull-down
menu.

– Select Run in any thread from the Thread section.

– Select stdcall (WINAPI) from the Calling convention section.

❑ Click the Parameters tab.

– Ensure the return type parameter is selected.

Table 1-5. FormatMessage Parameters

Parameter Name Type Format/Data type Other

return type Numeric Unsigned 32-bit Integer —

dwFlags Numeric Unsigned 32-bit Integer Select Value for Pass

lpSource Adapt to Type Pointers to Handles —

dwMessageId Numeric Unsigned 32-bit Integer Select Value for Pass

dwLanguageId Numeric Unsigned 32-bit Integer Select Value for Pass

lpBuffer String C String Pointer Select nSize for
Minimum size

nSize Numeric Unsigned 32-bit Integer Select Value for Pass

Arguments Adapt to Type Pointers to Handles —

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-11 LabVIEW Connectivity Exercises

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Type pull-down menu.

– Click the + button to add a parameter.

– Enter dwFlags in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter lpSource in the Name text box.

– Select Adapt to Type from the Type pull-down menu.

– Select Pointers to Handles from the Data Format pull-down
menu.

– Click the + button to add a parameter.

– Enter dwMessageId in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter dwLanguageId in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter.

– Enter lpBuffer in the Name text box.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-12 ni.com

– Select String from the Type pull-down menu.

– Verify the String format pull-down menu is set to C String
Pointer.

Note You must declare an additional parameter before setting the Minimum Size
pull-down menu. Leave Minimum Size set to <None> for now.

– Click the + button to add a parameter

– Enter nSize in the Name text box.

– Select Numeric from the Type pull-down menu.

– Select Unsigned 32-bit Integer from the Data type pull-down
menu.

– Verify the Pass pull-down menu is set to Value.

– Click the + button to add a parameter

– Enter Arguments in the Name text box.

– Select Adapt to Type from the Type pull-down menu.

– Select Pointers to Handles from the Data Format pull-down
menu.

– Select the lpBuffer parameter from the parameter list.

– Select nSize from the Minimum size pull-down menu.

– Confirm that the function prototype matches the following text.

– uint32_t FormatMessageA(uint32_t dwFlags, void
*lpSource, uint32_t dwMessageId, uint32_t
dwLanguageId, CStr lpBuffer, uint32_t nSize,
void *Arguments);

Note The terminals corresponding to the arguments with type Void are blank until
wired because void parameters accept any type of data.

❑ Click the OK button.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-13 LabVIEW Connectivity Exercises

6. Create the error handling code shown in Figure 1-4 using the following
items.

Figure 1-4. Error Handling Code

❑ Numeric constant

– Set the representation to U32.

– Right-click the numeric constant and select Visible Items»
Radix.

– Click the radix and select Hex.

– Set the value of the constant to 200.

– Label the constant Ignore Arguments.

❑ Numeric constant

– Create a copy of the Ignore Arguments constant.

– Change the label of the new constant to System Message.

– Set the value of the System Message constant to 1000.

❑ Or

❑ Numeric constant

– Set the representation to I32.

– Label the constant Null Value.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-14 ni.com

❑ Numeric constant

– Set the representation to U32.

– Label the constant String Size.

– Set the value of the String Size constant to 1000.

❑ Error Cluster From Error Code VI

– Right-click the error code input terminal of the Error Cluster
From Error Code VI and select Create»Constant.

– Set the value of the constant to 5000.

– Label the constant User Defined Error.

❑ Place a Case structure around the error handling code.

❑ General Error Handler VI.

Testing
1. Test the VI with an appropriate buffer size.

❑ Run the VI with the default Buffer Size (256).

❑ The name of your computer should display in the Computer Name
indicator.

2. Verify that the correct computer name displays.

❑ Locate My Computer on the desktop of your computer or in
Windows Explorer.

❑ Right-click My Computer and select Properties from the shortcut
menu.

❑ Select the Computer Name tab and verify that the Full Computer
Name matches the value the VI returns.

Note The case of the names does not need to match.

3. Test the error handling in the VI.

❑ Set the Buffer Size control to 1 and run the VI.

❑ Verify that the VI displays The file name is too long. as an
error message.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

© National Instruments Corporation 1-15 LabVIEW Connectivity Exercises

Tip The error message that displays for this VI is the description for the Windows error
message ERROR_BUFFER_OVERFLOW (System Error 111). Refer to
http://msdn.microsoft.com/library/en-us/debug/base/
system_error_codes.asp for more information about system error codes and their
descriptions.

End of Exercise 1-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW Exercises

LabVIEW Connectivity Exercises 1-16 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 2-1 LabVIEW Connectivity Exercises

2
VI Server Exercises

Exercise 2-1 VI Server Options

Goal
Observe and set the VI server configuration options.

Description
VI Server presents a potential security risk because other programs and/or
computers can use it to call VIs, which can in turn be used to do almost
anything with a computer. To protect your computer, VI server contains
security options which allow you to select who can use VI server, which VIs
users can access, how the VIs can be used, and what communication
mechanisms can be used.

This exercise demonstrates the VI Server configuration options and sets
them to a configuration you can use to run the remaining exercises in the
course. The security configuration set in this exercise is very light.
Therefore, if you are completing these exercises on a development machine
or any other important machine, increase the security level by only allowing
certain machines to access VI Server or return the settings to the default
values when you finish the course.

Implementation
1. Configure VI Server.

❑ Select Tools»Options and select VI Server from the Category list.

❑ In the Protocols section, select TCP/IP. Note the Port number.

❑ Verify ActiveX is selected.

❑ Verify that all options under Accessible Server Resources are
selected.

2. Configure Machine Access.

❑ In the Machine Access section, enter * in the Machine
name/address field.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-2 ni.com

Tip Entering * in the Machine name/address field opens VI Server Access to all
computers. For security reasons, you should not do this on a production computer.
Instead, add the machine name or IP address of each computer that needs access to VI
server on this computer.

3. Configure Exported VIs.

❑ In the Exported VIs section, verify * is entered in the Exported VIs
list.

❑ Click the OK button to exit the Options dialog box.

End of Exercise 2-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-3 LabVIEW Connectivity Exercises

Exercise 2-2 VI Statistics

Goal
Open and use VI server references to Application and VI objects to gather
information about all open VIs.

Scenario
The Application VI Server object allows you to retrieve a list of all VIs in
memory. Using this list, you can determine information about the VIs in
memory. This information is useful for writing tools which track
information about the VIs on your system. In this exercise you track VI
usage statistics to identify the number of VIs running and the number of VIs
in memory at any given time. Because VI Server has the ability to access
application instances on remote machines, you can use this program to track
the VI usage on any computer which allows you VI Server access.

Design

Inputs and Outputs

Program Flow
1. Acquire a reference to the LabVIEW Application object by using the

Open Application Reference function.

2. Use this reference to access the ExportedVIs property, which gives you
a list of each VI in memory.

3. Use a For Loop and the Open VI Reference function to get a reference
to each VI in the list.

4. Using the VI reference, access the desired properties, in this case, Name,
VIType and Exec.State.

Table 2-1. VI Statistics Inputs and Outputs

Type Name Properties Default Value

String Control Machine Name String Empty (defaults to
local machine)

Numeric Indicator VIs Open Signed 32-bit Integer 0

Numeric Indicator VIs Running Signed 32-bit Integer 0

Table VI Report Table, Column
headers visible

Empty (Column
headers only)

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-4 ni.com

5. Close each VI reference.

6. Gather and display the data.

7. Close the application reference.

Property Descriptions
Use the following properties in this program:

ExportedVIs (Application Object)—This property returns an array of
strings, which represent the name of all VIs in memory, if run on the local
machine, or a list of all exported VIs in memory, if run on a remote machine.
You must use this property instead of the AllVIs property to run the program
on a remote machine. Notice that the strings contain only the names of the
VIs, and not their paths. However, because the VIs are already guaranteed
to be in memory, you only need the VI name to open a VI reference.

Name (VI Object)—This property accesses the name of the VI. You could
use the names from the ExportedVIs property in place of this property.
However, using the property provides a consistent technique for accessing
the VI data and also simplifies wiring.

VIType (VI Object)—This property returns an enumeration containing the
type of the VI. This property is useful because not all VIs are standard,
executable VIs. Examples of other types of VIs include global variables,
type definitions, and custom controls. In this program, this property
provides information for the VI report. Certain VI properties are valid for
only some VI types, and therefore, it may be necessary to check the value of
this property before accessing it. For example, if the program uses any
properties from the Execution group other than Exec.State, you would need
to check this property before accessing the properties to ensure that the
current VI reference is not a control or a global variable.

Exec.State (VI Object)—This property returns an enumeration containing
the execution state of the VI. In this program, you increment the number of
running VIs if this property is equal to Run top level or Running.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-5 LabVIEW Connectivity Exercises

Implementation
1. Create a blank VI and save the VI as VI Statistics.vi in the

<Exercises>\LabVIEW Connectivity\
VI Statistics directory.

2. Create the front panel as shown in Figure 2-1.

Figure 2-1. VI Statistics Front Panel

❑ Create the following items as described in Table 2-1.

– Machine Name control

– VIs Open indicator

– VIs Running indicator

❑ Place a Table control on the front panel.

– Label the table VI Report.

– Right-click the table and select Change to Indicator from the
shortcut menu.

– Right-click the table and select Visible Items»Column Headers
from the shortcut menu.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-6 ni.com

– Enter VI Name, VI Type, and VI State as the first three
column headers.

3. Acquire a reference to the LabVIEW Application object and access the
ExportedVIs property. Create the block diagram as shown in Figure 2-2
using the following items.

Figure 2-2. Application Properties

❑ Open Application Reference

❑ ExportedVIs Property Node—Right-click the application
reference output of the Open Application Reference function and
select Create»Property for Application Class»Application»
Exported VIs In Memory from the shortcut menu.

❑ Close Reference

Tip Leave space between the Property Node and the Close Reference function so you
can insert more code between them in later steps.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-7 LabVIEW Connectivity Exercises

4. Acquire a VI reference to each exported VI. Use the following items to
modify the block diagram as shown in Figure 2-3.

Figure 2-3. VI Properties

❑ For Loop

❑ Open VI Reference

❑ VI Name Property Node

– Right-click the vi reference output of the Open VI Reference
function and select Create»Property for VI Class»VI Name
from the shortcut menu to create the VI Name Property Node.

– Expand the VI Name Property Node so that three items are
available.

– Click the second item in the Property Node and select VI Type
from the list.

– Click the third item in the Property Node and select Execution»
State from the list.

❑ Close Reference

❑ Shift Registers—Replace the application reference and error tunnels
on the For Loop with Shift Registers.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-8 ni.com

5. Figure 2-4 shows the items and wiring you add in steps 5 and 6. In this
step, add the following items to gather and display VI statistics.

Figure 2-4. VI Statistics Block Diagram

❑ Numeric constant

– Set the representation to I32.

– Label the constant Number Running.

❑ Increment function—Wire the value from the Number Running
constant through the Increment function to the VIs Running
indicator. Use shift registers to wire through the For Loop.

❑ Case structure

– Place the Case structure around the Increment function.

– Wire the output of the Exec.State property to the case selector
terminal.

– Right-click the Case structure and select Add Case After from
the shortcut menu.

– Verify that the Run top level case of the Case structure is visible.
Right-click the Case structure and select Swap Diagram With
Case»Idle from the shortcut menu.

– Wire the numeric data through the Idle and Bad cases of the Case
structure.

– Switch to the Run Top Level case, which should have the
increment function in it, then right-click the Case structure and

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-9 LabVIEW Connectivity Exercises

select Duplicate Case from the shortcut menu. This creates a
Running case which contains an increment function.

The Case structure increments the number in the VIs Running
indicator if the VI is in the Run Top Level or the Running state.

❑ Increment function

– Place the function to the right of the For Loop.

– Wire the iteration terminal of the For Loop to the second
Increment function through the border of the For Loop. Disable
indexing on the tunnel.

❑ Two Format Into String functions—The Format Into String function
determines the string representation of an enumerated value.

❑ Build Array

6. In this step, add the following item to handle errors.

❑ Simple Error Handler VI

7. Save the VI.

Testing
1. Run the VI.

❑ Close all other open VIs.

❑ Run the VI Statistics VI.

2. Run the VI with multiple VIs in memory.

❑ Open the solution to the Word Processor project in the
<Solutions>\LabVIEW Connectivity\Exercise 3-2
directory.

Note If you have the LabVIEW Core 3 files installed, you also can use
<Solutions>\LabVIEW Core 3\Course Project\Exercise 7-8\
TLC Main.vi.

❑ Run the VI Statistics VI.

❑ Observe the results in the VI Report.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-10 ni.com

3. Test the VI on a remote system.

❑ Determine the network address of a target computer near you and
enter it in the Machine Name control.

Tip In most cases, you can use the Computer Name, which you found in Exercise 1-1,
as a network address. If this name does not work, find the IP address of the computer by
using the String to IP and IP to String functions.

❑ Verify that the VI Server settings on the target computer are
configured as described in Exercise 2-1.

❑ Open one or more VIs on the target computer.

❑ Run the VI. All exported VIs in memory on the target computer
should be displayed.

Challenge
Add statistical information for the VI priority, VI execution system, and/or
state of the front panel to your table. Remember that not all properties are
valid for all types of VIs. Use the context help to identify which types of VIs
a property applies to and the VIType property to determine which VIs have
the property, otherwise you receive an error.

End of Exercise 2-2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-11 LabVIEW Connectivity Exercises

Exercise 2-3 Remote Run VI

Goal
Build a VI that programmatically opens and runs another VI on a remote
computer.

Description
You have seen how the Application refnum runs transparently over a
network. In this exercise, use VI Server to run a VI remotely. The techniques
in this exercise show how to use VI Server to open and run a VI on a remote
machine. VI Server operates the same whether it is on a network or a local
machine.

Implementation

1. Open the Remote Run VI located in the <Exercises>\LabVIEW
Connectivity\Remote Run directory. The front panel is built for
you.

Figure 2-5. Remote Run VI Front Panel

2. In the VI to execute control, browse to <Exercises>\LabVIEW
Connectivity\Remote Run\Statistics.vi. Right-click the
control and select Data Operations»Make Current Value Default
from the shortcut menu.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-12 ni.com

3. Build the block diagram shown in Figure 2-6 using the following items.

Figure 2-6. Remote Run VI Block Diagram

❑ Open Application Reference

❑ Open VI Reference

❑ Wire the VI to execute path control, which determines the VI to
execute, to the vi path input of the Open VI Reference function.

❑ Two Close References

❑ Property Node

– Wire the vi reference output of the Open VI Reference function
to the reference input of the Property Node.

– Click the Property terminal and select Front Panel Window»
Open.

– Right-click the Property Node and select Change All to Write
from the shortcut menu.

– Wire a TRUE Boolean constant to the Front Panel Window
Open property terminal.

– Create a copy of this Property Node.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-13 LabVIEW Connectivity Exercises

❑ Invoke Node

– Wire the VI reference from the Property Node to the Invoke
Node.

– Click the method terminal and select Run VI from the list.

– Wire the TRUE Boolean constant to the Wait Until Done
property terminal and a FALSE Boolean constant to the Auto
Dispose Ref property terminal.

❑ Simple Error Handler VI

❑ Case structure—Use the Case structure to select whether the front
panel of the called VI remains open when the VI completes
execution.

– Place the Case structure around the second Property Node.

– Wire a FALSE Boolean constant to the Front Panel Window
Open property of the Property Node. Verify these items are in the
True case. This case closes the front panel of the called VI if it is
selected.

– Wire the VI refnum and the error cluster through the False case.

– Wire the case selector to the Close Front Panel on Completion
control.

4. Save the VI.

Testing
Run the VI on the local computer.

This VI opens a reference to the Frequency Response VI located in the
<Exercises>\LabVIEW Connectivity\Remote Run directory. The
front panel of the VI is opened by accessing the Front Panel Open property
of the VI. Then, the Run VI method runs the VI. Because the Wait Until
Done property is TRUE, this VI waits for the Frequency Response VI to
complete execution. After exiting the Frequency Response VI, the front
panel remains open or closes depending on the position of the front panel
switch. Finally, the Close Reference function closes the VI reference,
freeing the resources.

If time permits, complete the following Optional and Challenge steps,
otherwise close the VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-14 ni.com

Optional
If your computer is connected through TCP/IP to another computer that has
LabVIEW and each computer has a unique IP address, you can run the
Remote Run VI on one computer and have it call the Frequency Response
VI on the other computer.

1. Find a partner and exchange IP addresses. Decide which computer is the
server. Complete the following steps on the server computer to set up the
VI Server.

❑ Select Tools»Options and select VI Server from the Category list
to display the VI Server page. Verify that TCP/IP is selected and
that a port number is entered.

❑ In the Machine Access section, enter the IP address of the client
computer. Select Allow Access and click Add.

❑ In the Exported VIs section, confirm that a wildcard (*) is allowed
access. This allows the client computer, or any computer allowed
access in the VI Server: Machine Access section, to access any VIs
on your computer. Click the OK button.

2. On the client computer, verify the path to the Frequency Response VI on
the server computer. Enter the IP address of the server computer in the
Machine Name control.

3. Run the Remote Run VI on the client computer. Does the VI behave as
expected? Repeat steps 1 and 2, but reverse situations with your partner.

Challenge
Break into groups of three. Write a VI on the first computer that calls the
Remote Run VI on the second computer, which then calls the Frequency
Response VI on the third computer.

End of Exercise 2-3

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-15 LabVIEW Connectivity Exercises

Exercise 2-4 Dynamically Calling VIs

Goal
Observe two different methods for calling VIs dynamically and learn the
difference between strictly and weakly typed refnums.

Description
This exercise demonstrates two ways to dynamically call a VI. The first
method is to use a Weakly Typed VI Refnum. This technique is
advantageous because it can be used to call any VI, regardless of the VI’s
connector pane. However, passing data to the VI using a Weakly Typed VI
Refnum is difficult.

The second method uses a strictly typed VI refnum. The strictly typed
refnum specifies the connector pane for the called VI, and allows you to use
a Call By Reference Node, which simplifies the passing of data to the
dynamically called VI. However, a Strictly Typed VI Refnum only allows
you to call VIs with a matching connector pane. Therefore it is not as
flexible as the weakly typed VI refnum.

Instructions
1. Open the Dynamically Calling VIs VI located in the <Exercises>\

LabVIEW Connectivity\Dynamically Calling VIs directory.

2. Complete the VI front panel as shown in Figure 2-7 using the following
items.

❑ Place a VI Refnum to the left of the Boolean switch.

– Label the refnum Weakly Typed.

– Right-click the refnum and choose Select VI Server Class.
Verify that VI is checked.

❑ Place a VI Refnum to the right of the Boolean switch.

– Label the refnum Strictly Typed.

– Right-click the refnum and choose Select VI Server Class»
Browse. Navigate to <Exercises>\LabVIEW
Connectivity\Dynamically Calling VIs directory and
select the Pop up VI. Click the OK button. The refnum adapts to
the connector pane of the Pop up VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-16 ni.com

Figure 2-7. Weakly versus Strictly Typed Ref VI Front Panel

3. Complete the False case as shown in Figure 2-8.

Wire the Weakly Typed VI refnum to the type specifier input of the
Open VI Reference function in the False case as shown in Figure 2-8.

Figure 2-8. Weakly VS Strictly Typed Ref VI Block Diagram False Case

The False case contains a VI reference to the Pop up VI. This VI
reference opens the front panel of the VI using the Front Panel
Window:Open property. The Set Control Value method passes values
to the Numeric and String controls of the Pop up VI.

The Run VI method runs the VI and waits until it completes execution.
The Get All Control Values method returns the values of the front panel
indicators of the Pop up VI. These values display on the front panel of
this VI. Finally, the Close VI Reference function closes the front panel
of the Pop up VI and releases the VI Reference.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-17 LabVIEW Connectivity Exercises

4. Complete the True case on the block diagram as shown in Figure 2-9.

❑ Wire the Strictly Typed VI refnum to the Type Specifier input of
the Open VI Reference function.

❑ Place a Call By Reference Node on the block diagram.

5. Wire the VI reference output of the Open VI Reference function to the
reference input of the Call By Reference Node. The node adopts the
connector pane of the Pop up VI, as shown at left.

Note When you wire the strictly typed VI refnum for the Pop up VI to the Open VI
Reference function, a strictly typed VI reference is generated that you can wire to the Call
By Reference Node.

Figure 2-9. Block Diagram Code Inside the True Case

6. Save the VI.

Testing
1. Run the VI.

2. Select the strictly typed reference and click the GO! button.

The Pop up VI appears. It returns the value it receives or allows you to
change the data. When you finish with the Pop up VI and click the
DONE button. The front panel of the Dynamically Calling VIs VI
shows the values of the indicators from the Pop up VI.

3. Run the VI again and select the weakly typed reference. Notice that the
behavior is the same as the behavior of the strictly typed reference.

Although both calling methods produce the same result, the Run VI
method provides more flexibility and allows you to call a VI
asynchronously. If you call a VI asynchronously by passing a false value
to the Wait Until Done parameter of the Run VI method, the

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-18 ni.com

dynamically called VI executes independently of the calling VI. The
calling VI continues its dataflow progression without waiting for the
called VI to complete.

The Call By Reference Node simplifies calling a VI dynamically,
particularly when passing data to the subVI. The Call By Reference
Node requires a strictly typed reference that eliminates the possibility of
a run-time type mismatch error. If you do not need the additional
flexibility of the Run VI method, use the Call By Reference Node to
reduce the complexity of your code.

End of Exercise 2-4

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

© National Instruments Corporation 2-19 LabVIEW Connectivity Exercises

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 VI Server Exercises

LabVIEW Connectivity Exercises 2-20 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 3-1 LabVIEW Connectivity Exercises

3
Using .Net and ActiveX Objects in
LabVIEW Exercises

Exercise 3-1 Font Dialog

Goal
Call a System .NET Assembly to display a Windows Common Dialog box.

Scenario

For many applications, you want to provide a familiar look and feel for your
user. One technique for doing this is reusing Windows Common Dialogs
whenever possible. For example, to have your user select a text font, you can
call a Font dialog from the operating system. The Windows Common Font
Dialog Box creates a font style and color selection dialog that is familiar to
users of most Windows-based word processors, as shown in Figure 3-1.

Figure 3-1. Windows Common Font Dialog Box

Create a subVI that calls a font dialog and returns references to the font and
color selected by the user. The subVI should use proper error handling
techniques and should return a value indicating if the user has canceled the
dialog.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-2 ni.com

Design
There are multiple ways to display Windows Common Dialogs. The
Microsoft Common Dialog Control ActiveX server and ActiveX control
provide access to the Color, Font, Help, Open, Printer, and Save dialog
boxes. However, these ActiveX components require special licensing to use,
which can be acquired through Microsoft Visual Studio. Alternately, you
can create a FontDialog object from the System.Windows.Forms .NET
assembly. Using the .NET assembly requires the .NET Framework to be
installed, but does not require any additional licensing. Furthermore, the
.NET assembly provides the newest version of the dialog, which has
additional features and improved integration with other Windows
components.

FontDialog Inputs and Outputs

The FontDialog subVI should perform the following steps:
1. Create a FontDialog object using a .NET Constructor Node.

2. Set the ShowColor property to TRUE so that the font dialog allows the
user to select a color.

3. Call the ShowDialog method to show the dialog and return a result.
Return the result to the calling VI.

4. Use the Font and Color properties to obtain references to the selected
font and color and return these references to the calling VI.

5. Close the reference to the FontDialog object.

Table 3-1. FontDialog Inputs and Outputs

Type Name Properties Default Value

Cluster Control error in Error Cluster No Error

Constructor Node Font .NET Reference,
System.Drawing.Font class

Not a refnum

Constructor Node Color .NET Reference,
System.Drawing.Color class

Not a refnum

Enum Indicator DialogResult Values defined by FontDialog object None

Cluster Indicator error out Error Cluster No Error

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-3 LabVIEW Connectivity Exercises

FontDialog Object Description
The FontDialog object creates a common dialog box that displays a list of
fonts that are currently installed on the system. You can create a FontDialog
class by selecting the FontDialog object from the System.Windows.Forms
assembly using a .NET Constructor Node. You use the following properties
and methods of the FontDialog object in this exercise. Full documentation
for the FontDialog and other objects included in the .NET Framework can
be found on MSDN or in the documentation for Microsoft Visual Studio
.NET.

ShowColor Property—Setting this to TRUE instructs the FontDialog to
show a selector for the font color. This property should be set before
showing the dialog.

ShowDialog Method—Displays the font dialog. This method returns an
enumerated type which indicates the user’s response to the dialog. Notice
that the enumerated type returned from this function is shared among many
dialogs, and therefore not all the values are actually possible from a
FontDialog. A FontDialog typically returns OK or Cancel.

Two versions of the ShowDialog method exists. One takes no parameters
and the other takes an IWin32Window object to designate the owning
window for the dialog. For this exercise, use the version of the function with
no parameters. This may occasionally cause the font dialog to show up
behind the main application. You can solve this problem by using the
IWin32Window version of the function. However, this requires getting a
reference to the window handle of the LabVIEW front panel and converting
it to an IWin32Window object, which is beyond the scope of this exercise.

Font Property—Returns a .NET reference to a System.Drawing.Font
object. You can use this reference to get information about the font, such as
the font name and size, or you can pass this reference to other objects that
take .NET Font references, such as a .NET RichTextBox control.

Color Property—Returns a .NET reference to a System.Drawing.Color
object. You can convert this color into a LabVIEW color by using the
reference to get the R, G and B properties of the color and then using the
RGB to Color VI. Alternately, you can pass this reference to any .NET
object which uses colors.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-4 ni.com

Implementation
1. Create the VI.

❑ Create a blank VI and save it as Font Dialog.vi in the
<Exercises>\LabVIEW Connectivity\Font Dialog
directory.

Figure 3-2. Completed Font Dialog Block Diagram

2. Add the following item to the block diagram as shown in Figure 3-2 to
open a .NET reference to the FontDialog object.

❑ Place a Constructor Node on the block diagram to display the Select
.NET Constructor dialog box.

❑ Select System.Windows.Forms from the Assembly pull-down
menu.

Note If more than one version of System.Windows.Forms is listed, select the latest one.

– Double-click the + to the left of the System.Windows.Forms
item in the Objects list. Scroll down and select FontDialog to
add it to the Constructors list.

– Click OK.

3. Add the following items to the block diagram as shown in Figure 3-2 to
show the font dialog.

❑ FontDialog Property Node.

– Right-click the new reference output of the Constructor Node
and select Create»Property for
System.Windows.Forms.FontDialog Class»ShowColor to
create the FontDialog Property Node.

– Right-click the FontDialog Property Node and select Change
All To Write from the shortcut menu.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-5 LabVIEW Connectivity Exercises

❑ TRUE constant—Right-click the ShowColor input of the
FontDialog Property Node and select Create»Constant. Set the
value of the constant to TRUE.

❑ FontDialog Invoke Node—Right-click the reference output of the
FontDialog Property Node and select Create»Method for
System.Windows.Forms.FontDialog Class»ShowDialog() from
the shortcut menu to create a FontDialog Invoke Node.

❑ Ring Indicator—Right-click the ShowDialog output of the
FontDialog Invoke Node and select Create»Indicator from the
shortcut menu to create a ring indicator described in Table 3-1.

4. Add the following items to the block diagram as shown in Figure 3-2 to
get .NET references to font and color.

❑ FontDialog Property Node

– Right-click the reference output of the FontDialog Invoke Node
and select Create»Property for
System.Windows.Forms.FontDialog Class»Font to create
another FontDialog Property Node.

– Expand the second FontDialog Property Node to show two
elements. Select Color as the second element.

❑ Right-click the Font output of the FontDialog Property Node and
select Create»Indicator from the shortcut menu to create the Font
output described in Table 3-1.

❑ Right-click the Color output of the FontDialog Property Node and
select Create»Indicator from the shortcut menu to create the Color
output described in Table 3-1.

5. Add the following items to the block diagram as shown in Figure 3-2 to
close the reference and handle errors.

❑ Place a Close Reference function on the block diagram.

❑ Right-click the error in input of the Constructor Node and select
Create»Control from the shortcut menu to create the error in input
described in Table 3-1.

❑ Right-click the error out output of the Close Reference function and
select Create»Indicator from the shortcut menu to create the error
out output described in Table 3-1.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-6 ni.com

❑ Wire the error wire through the Error case of the Case structure to
the error out indicator.

6. Create the icon and connector pane.

❑ Switch to the VI front panel.

❑ Organize the controls in a logical manner.

❑ Right-click the ShowDialog indicator and select Replace»
Modern»Ring & Enum»Enum from the shortcut menu.

Note Converting the ring indicator into an enumerated type indicator allows you to
better control Case structures with the result of the dialog.

❑ Create an icon and connector pane similar to Figure 3-3.

Figure 3-3. Font Dialog icon and Connector Pane

7. Save the VI.

Testing
Test the VI as a top-level VI.

❑ Run the VI. A font dialog should display. Notice that the font dialog may
be behind the front panel. Minimize the front panel or press <Alt-Tab>
to find the font dialog window.

❑ Click OK in the font dialog to finish the VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-7 LabVIEW Connectivity Exercises

Challenge
Test the VI as a subVI.

❑ Create a VI that calls the FontDialog VI.

❑ Check the ShowDialog to determine if the user clicked the OK button.

❑ Use the Font reference to display the selected Font Name.

❑ Use the Color reference to display the selected color in a LabVIEW
Color Box indicator.

Tip Refer to the Design section for a suggestion on how to convert a .NET Color
reference to a LabVIEW color.

End of Exercise 3-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-8 ni.com

Exercise 3-2 Word Processor

Goal
Use a Windows Forms .NET Control.

Scenario
Develop a Word Processor in LabVIEW. The Word Processor should have
the following features and should have a look and feel similar to other
Windows word processors.

Word Processor Features
• Contains a standard, multiline area for typing text.

• Displays scrollbars when necessary.

• Provides a graphical toolbar to perform all functions.

• Allows the user to create a new, blank file.

• Allows the user to save the current text as a Rich Text File.

• Allows the user to change the font, color, and effects for selected text or
for new text at the cursor position.

• Allows the user to cut text to the clipboard.

• Allows the user to copy text to the clipboard.

• Allows the user to paste text from the clipboard.

• Ends the application when the user clicks the close button on the title
bar.

Design
You could implement all of this functionality in LabVIEW by using a text
box control. However, manually implementing each of these features would
be a considerable undertaking. A better approach is to utilize an existing
component which has most of these features built in.

The .NET Framework contains common windows controls which you can
use in a user interface. These controls behave very similarly to ActiveX
controls in LabVIEW. One of the available controls is RichTextBox. This
control is a text box, much like a LabVIEW string control, except that the
control contains many built-in word processor functions. Most of the
features specified in the Scenario are already included in RichTextBox.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-9 LabVIEW Connectivity Exercises

However, you still need to provide an interface to activate the various
functions.

Word Processor Inputs and Outputs

Event Handling Design
The user activates various functions of the word processor by pressing
buttons on a toolbar. A common user interface event handler is the best
design for this application because it allows the application to efficiently
monitor and react to these buttons. The program consists of an initialization
section before the event loop, a number of different events, and a cleanup
section after the event loop. With the exception of the Close event, all of the
events are Value Change events for button controls.

Initialization Section—Sets any properties which need to be set only once
at the beginning of the program. For example, the scrollbars on the text box
should be configured in this section by using the ScrollBars property of the
RichTextBox.

New Event—Calls the Clear method of the RichTextBox to erase all text
and create a blank slate for the user to type.

Save Event—Prompts the user to enter a filename and location by using a
standard file dialog. If the user does not cancel the dialog, the event case
should call the SaveFile method of the RichTextBox.

Font Event—Calls the Font Dialog VI you created in Exercise 3-1 to allow
the user to select the font, color and other effects. If the user does not cancel

Table 3-2. Word Processor Inputs and Outputs

Type Name Properties Default Value

.NET Container TextBox .NET Container with a
System.Windows.Forms.RichTextBox
object inserted

—

Boolean button New Strict Type Definition Custom Control False

Boolean button Save Strict Type Definition Custom Control False

Boolean button Font Strict Type Definition Custom Control False

Boolean button Cut Strict Type Definition Custom Control False

Boolean button Copy Strict Type Definition Custom Control False

Boolean button Paste Strict Type Definition Custom Control False

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-10 ni.com

the dialog, the references for the font and color should be applied to the
RichTextBox by using the SelectionFont and SelectionColor properties.

Cut Event—Calls the Cut method of the RichTextBox.

Copy Event—Calls the Copy method of the RichTextBox.

Paste Event—Calls the Paste method of the RichTextBox.

Close Event—Exits the event loop and enters the cleanup section. This
Event structure case should handle the Panel Close? filter event.

Cleanup Section—Closes all open references, including the RichTextBox
reference, and handle errors with a simple error handler.

RichTextBox Control Description
The RichTextBox control is an enhanced text box with the ability to change
text characteristics and a number of built-in word processor features. You
can create a RichTextBox control by inserting the RichTextBox control
from the System.Windows.Forms assembly into a .NET Container. You use
the following properties and methods of the RichTextBox control in this
exercise. Full documentation for the RichTextBox and other controls
included in the .NET Framework can be found on MSDN or in the
documentation for Microsoft Visual Studio .NET.

ScrollBars Property—Controls the scrollbars on the RichTextBox. Use
this property to show or hide the horizontal and vertical scrollbars or to set
the scrollbars so that they display only when necessary. For this exercise, set
the property to Vertical to cause the vertical scrollbar to appear only when
necessary.

Clear Method—Removes all text from the text box.

LoadFile Method—Loads the contents of a file into the RichTextBox. The
default version of this method accepts a path and loads a Rich Text File into
the text box. Another version of the method allows you to open file types
other than Rich Text Files, such as Plain Text files or Unicode text files. For
this exercise, you only need to load Rich Text Files.

SaveFile Method—Saves the contents of the RichTextBox into a file. Like
the LoadFile method, alternate versions of this method can save in different
file types. However you only need to save Rich Text Files for this exercise.

SelectionFont Property—Applies a Font reference to text in the
RichTextBox. This property affects the font type, size, and effects, but does
not set the font color.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-11 LabVIEW Connectivity Exercises

If no text is selected when this property is set, the font specified in this
property is applied to the current insertion point and to all text that is typed
into the control after the insertion point. The font setting applies until the
property is changed to a different font or until the insertion point is moved
to a different section within the control.

If text is selected within the control, the selected text and any text entered
after the text selection have the value of this property applied to it.

SelectionColor Property—Applies a Color reference to text in the
RichTextBox. This property behaves in the same way as SelectionFont with
regards to selected text and insertion points.

Focus Method—Sets the input focus to the control. Use this property to
return the cursor to the text box after displaying a dialog such as the font
dialog or the dialog to search for a string.

Cut Method—Copies selected text to the Windows clipboard and then
deletes it.

Copy Method—Copies selected text to the Windows clipboard.

Paste Method—Pastes text that has been previously placed on the Windows
clipboard at the current cursor location.

Implementation

1. Open the Word Processor Project located in the <Exercises>\
LabVIEW Connectivity\Word Processor directory.

2. Open Word Processor.vi from the Project Explorer window.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-12 ni.com

3. Build the VI front panel as shown in Figure 3-4.

Figure 3-4. Word Processor Front Panel

❑ Place a .NET Container on the front panel of the VI. Label the
container TextBox.

❑ Place a RichTextBox inside the container.

– Right-click the .NET Container and select Insert .NET
Control.

– Select System.Windows.Forms(2.0.0.0) from the Assembly
pull-down menu.

– Select RichTextBox from the Controls list.

– Click the OK button.

❑ Hide the label for the .NET Container.

4. Set window properties.

❑ Select File»VI Properties and choose Window Appearance from
the Category pull-down menu.

❑ Click the Customize button and set the Window Appearance as
shown in Figure 3-5.

❑ Click the OK button. Click the OK button.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-13 LabVIEW Connectivity Exercises

Figure 3-5. Word Processor Window Appearance Options

5. Create the initialization section, cleanup section, close event, and main
program structure of the block diagram. Use the following items to
create the block diagram as shown in Figure 3-6.

Figure 3-6. Word Processor Block Diagram

❑ While Loop

❑ Event structure

– Right-click the border of the Event structure and select Edit
Events Handled by This Case.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-14 ni.com

– Select <This VI> from the Event Sources list.

– Select Panel Close? from the Events list.

Note LabVIEW generates two events when you close a panel. The Panel Close event is
a notify event that occurs after the panel closes. The Panel Close? event is a filter event
that occurs before the panel closes and allows you to prevent the panel from closing. To
use the toolbar to stop the application, you must use the filter event. Otherwise the VI
closes each time you stop it.

– Click OK.

❑ Unbundle By Name

❑ Or

❑ Close Reference

❑ Simple Error Handler

❑ Two True constants

6. Create the New event as shown in Figure 3-7.

Figure 3-7. New Event

❑ Add the New case.

– Right-click the border of the Event Structure and select Add
Event Case from the shortcut menu.

– Select Controls»New from the Event Sources list.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-15 LabVIEW Connectivity Exercises

– Select Value Change from the Events list.

– Click the OK button.

❑ Right-click the .NET Refnum wire and select Create»Method for
System.Windows.Forms.RichTextBox Class»Clear() to create a
Clear Invoke Node.

❑ Right-click the stop tunnel on the Event structure and select Create»
Constant to create a False constant.

Note You may want to resize the Event Data Node to make space for your error and
refnum wires. You should do this for each subsequent event.

7. Create the Cut event as shown in Figure 3-8.

Figure 3-8. Cut Event

Note The order the events are created in makes no difference, so it makes sense to first
create the events which you can easily duplicate from the New event case.

❑ Add the Cut event.

– Right-click the border of the Event Structure and select
Duplicate Event Case.

– Select Controls»Cut from the Event Sources list.

– Select Value Change from the Events list.

– Click the OK button.

❑ Click the method in the RichTextBox Invoke Node and change it to
Cut().

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-16 ni.com

8. Create the Copy event.

Figure 3-9. Copy Event

❑ Add the Copy event.

– Right-click the border of the Event Structure and select
Duplicate Event Case from the shortcut menu.

– Select Controls»Copy from the Event Sources list.

– Select Value Change from the Events list.

– Click the OK button.

❑ Click the method in the RichTextBox Invoke Node and change it to
Copy().

9. Create the Paste event.

Figure 3-10. Paste Event

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-17 LabVIEW Connectivity Exercises

❑ Add the Paste event.

– Right-click the border of the Event structure and select
Duplicate Event Case from the shortcut menu.

– Select Controls»Paste from the Event Sources list.

– Select Value Change from the Events list.

– Click the OK button.

❑ Click the method in the RichTextBox Invoke Node and change it to
Paste().

10. Create the Save event.

Figure 3-11. Save Event

❑ Add the Save event.

– Right-click the border of the Event structure and select Add
Event Case from the shortcut menu.

– Select Controls»Save from the Event Sources list.

– Select Value Change from the Events list.

– Click OK.

❑ Place a File Dialog Express VI in the event case.

– Select File and New or Existing in the Configure File Dialog
dialog box.

❑ Click OK.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-18 ni.com

Tip Expand the File Dialog Express VI and select the terminals shown in Figure 3-11 to
make the VI easier to wire.

– Right-click the prompt input of the File Dialog Express VI and
select Create»Constant from the shortcut menu.

– Enter Select File to Save in the string constant.

– Right-click the pattern label input of the File Dialog Express VI
and select Create»Constant from the shortcut menu.

– Enter Rich Text Files in the string constant.

– Right-click the pattern(allfiles) input of the File Dialog Express
VI and select Create»Constant from the shortcut menu.

– Enter *.rtf in the string constant.

❑ Place a Case structure in the event case.

❑ Wire the cancelled output of the File Dialog Express VI to the Not
function and wire the output of the Not function to the case selector
terminal.

❑ Place a Path to String function inside the False case of the Case
structure.

❑ Right-click the .NET Refnum wire and select Create»Method for
System.Windows.Forms.RichTexdBox Class»SaveFile(String
path) from the shortcut menu to create a SaveFile Invoke Node.
Place the Invoke Node in the False case.

❑ Place the Clear Specific Error VI located in the Word Processor
Project in the True case of the Case structure.

❑ Right-click the Code input of the Clear Specific Error VI and select
Create»Constant from the shortcut menu to create a Numeric
Constant.

❑ Enter 43 for the value of the Numeric Constant.

Note The Font Dialog Express VI returns error 43 when the user clicks the cancel
button. The word Processor VI handles the cancel error explicitly by ignoring the open
command and returning control to the user interface. Therefore, you can safely discard
this error to prevent it from stopping the program and displaying an error message.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-19 LabVIEW Connectivity Exercises

❑ Right-click the stop tunnel on the Event structure and select Create»
Constant from the shortcut menu to create a FALSE constant.

❑ Wire the diagram as shown in Figure 3-11 and Figure 3-12.

Figure 3-12. Save Event True Case

11. Create the Font event.

Figure 3-13. Font Event

❑ Add the Font event.

– Right-click the border of the Event structure and select Add
Event Case from the shortcut menu.

– Select Controls»Font from the Event Sources list.

– Select Value Change from the Events list.

– Click OK.

❑ Place the Font Dialog VI that you created in Exercise 3-1 inside the
event case. The VI is located in the <Exercises>\LabVIEW
Connectivity\Font Dialog directory.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-20 ni.com

❑ Place a Case structure in the event case.

❑ Wire the ShowDialog output of the Font Dialog VI to the case
selector terminal.

❑ Right-click the .NET Refnum wire and select Create»Property for
System.Windows.Forms.RichTextBox Class»SelectionFont to
create a SelectionFont Property Node. Place the Property Node in
the OK case of the case structure.

❑ Resize the Property Node to accept another property and set the
second property to SelectionColor.

❑ Right-click the Property Node and select Change All to Write.

❑ Change to the None case of the Case structure.

❑ Change the case name to "Cancel", Default.

❑ Wire the error and refnum wires through the Cancel case of the case
structure.

❑ Right-click the .NET Refnum wire and select Create»Method for
System.Windows.Forms.RichTextBox Class»Focus() to create a
Focus Invoke Node. Place the Invoke Node to the right of the Case
structure.

❑ Right-click the stop terminal on the Event structure and select
Create»Constant to create a False constant.

❑ Wire the diagram as shown in Figure 3-13.

12. Place each button terminal in the corresponding event case.

Note You place the button terminals in the event cases because the buttons use a latch
Boolean mechanism. If the buttons are not in the event cases, they are not read when
clicked, and remain pressed. Wait until the end of implementation to place the buttons in
the cases to prevent creating duplicate buttons when you duplicate event cases.

13. Save the VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-21 LabVIEW Connectivity Exercises

Testing
1. Test basic functionality.

❑ Run the VI.

❑ Enter text in the text box.

❑ Ensure that word wrap works by typing to the end of a line.

2. Test the text box scrollbar.

❑ Press the <Enter> key repeatedly until there is enough text for the
vertical scrollbar to appear.

❑ Use the scrollbar to scroll to the top of the document.

3. Test the Save function.

❑ Click the Save button.

❑ Click the Cancel button. The program should not stop or display an
error.

❑ Click the Save button again.

❑ Navigate to the <Exercises>\LabVIEW Connectivity\
Word Processor directory and enter test.rtf for the file name.

❑ Click the OK button.

4. Test the New function.

❑ Click the New button. The text field should clear and the scrollbar
should disappear.

5. Test the Font function.

❑ Close the block diagram of the VI if it is still open, also close any
other unused windows. This makes it easier to find the font dialog if
it does not appear as the front window.

❑ Click the New button.

❑ Click the Font button and select the font dialog. Remember that the
font dialog may appear behind other windows.

❑ Select a font, a style, a size and a color different from the default
values.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-22 ni.com

❑ Click the Cancel button. The cursor should return to the text box.

❑ Enter a few words of text. Because you clicked the Cancel button,
the text should have the default font, not the font you selected in the
font dialog.

❑ Click the Font button again and select the font dialog.

❑ Select a font, a style, a size and a color different from the default
values.

❑ Click the OK button. The cursor should return to the text box.

❑ Enter a few more words of text. The original text should be
unchanged, but the new text should use the font, size, style, and color
you selected.

❑ Use the mouse to select an area of text you have already entered. Try
selecting an area around the change in fonts.

❑ Click the Font button and select the Font Dialog.

❑ Select a font, a style, a size, and a color different from both the
default values and the values you selected before.

❑ Click the OK button. The selected text should now have the new text
characteristics.

6. Test the Cut function.

❑ Ensure that a word is still selected in the text box and click the Cut
button. The selected word should disappear.

7. Test the Paste function.

❑ Place the cursor at the end of the text you have entered.

❑ Click the Paste button. The word you cut should appear at the cursor
location.

8. Test the Copy function.

❑ Select an area of text.

❑ Click the Copy button. The text should remain in place.

❑ Move the cursor to a different location.

❑ Click the Paste button. The copied text should appear.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-23 LabVIEW Connectivity Exercises

9. Test the Close function.

❑ Click the Close button at the upper right hand corner of the window.
The program should stop, but the VI should not close.

Challenge
There are many more features you can add to your word processor if time
allows. Some suggestions include:

• Add an Open function.

• Add an Undo function.

• Add a Redo function.

• Add a display to the bottom of the window to display the number of lines
and number of characters.

• Add Run-Time menus to perform the functions on the toolbar.

• Allow the find to search for instances of a string beyond the first.

• Add an options page to your program which allows the user to select
things such as the background color and whether word wrap or
horizontal scroll bars are used.

• Allow the user to resize the window. Make the text box resize, but
prevent the resize from affecting the toolbar.

• Allow the text box to open and close plain text files.

End of Exercise 3-2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-24 ni.com

Exercise 3-3 Auto Save

Goal
Use .NET events to create a timer.

Scenario
Word processors commonly contain an Auto Save feature that periodically
saves the work in them. This features helps users avoid losing data in the
event of a crash or power failure.

Add an auto save function to the word processor. This function should save
the document once every 30 seconds.

Design
There are a number of ways to implement an auto save feature. You could
use the Timeout event of the LabVIEW Event structure to save the contents
of the text box. However, the Timeout event occurs only after no events have
fired for the specified time period. Therefore, if you configured the Timeout
to 30 seconds, the program would only auto save if the user had not used any
other functions for 30 seconds. You could use a smaller timeout, but you
would need to track and check the amount of time since the last auto save.
This would increase the complexity and decrease the performance of the
program.

You could use a second LabVIEW loop to implement the auto save. The
second loop could call the save function directly by branching the .NET
refnum. Unfortunately, this could lead to errors if the first loop finished and
closed the reference before the second loop finished. The second loop could
also communicate with the main loop by firing a User Event every
30 seconds. While this implementation is fairly elegant, it significantly
increases the complexity of the program. Furthermore, any implementation
with a second loop must deal with a tradeoff between timing accuracy and
increased processor usage from regularly checking the elapsed time.

A better solution would be to asynchronously register an event which occurs
at a specified period. You can do this by using the .NET Timer Object from
the System.Timers assembly. You can create a Timer object and specify a
time interval so that the Timer periodically fires .NET events at the interval
specified. You can handle the .NET event in LabVIEW by specifying a
subVI to use as an event handler. By passing a reference to the RichTextBox
to this subVI, you can asynchronously call the Save method every 30
seconds without having to program the timing mechanism in LabVIEW.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-25 LabVIEW Connectivity Exercises

Auto Save Inputs and Outputs

Timer Object Description
The Timer class generates recurring .NET events at a frequency that you
specify. You can create a Timer object by selecting the Timer object from
the System.Timers assembly using a .NET Constructor Node. One of the
constructors for the Timer takes a numeric value to specify the interval.
Calling this constructor is the easiest way to initialize a Timer. Use the
following event and method from the Timer class in this exercise. Full
documentation for the Timer and other objects included in the .NET
Framework can be found on MSDN or in the documentation for Microsoft
Visual Studio .NET.

Start method—Calling this method instructs the Timer to begin generating
events. You can stop the event generation by calling the Stop method or by
closing the Timer reference using a Close Reference function.

Elapsed event—After a Timer starts, it repeatedly generates the Elapsed
event. The time between events is equal to the Interval property, which can
be set directly, or initialized through the class Constructor.

Table 3-3. Auto Save Inputs and Outputs

Type Name Properties Default Value

Cluster Control error in Error Cluster No Error

.NET Refnum
Control

TextBox
reference

.NET Reference,
System.Windows.Forms.RichTextBox
class

Not a refnum

Numeric
Control

Interval (ms) Double precision numeric 30000

.NET Refnum
Indicator

Timer
reference

.NET Reference,
System.Timers.Timer class

Not a refnum

.NET Refnum
Indicator

TextBox
reference out

.NET Reference,
System.Windows.Forms.RichTextBox
class

Not a refnum

Cluster
Indicator

error out Error Cluster No Error

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-26 ni.com

Implementation
1. Open the Word Processor Project located in the <Exercises>\

LabVIEW Connectivity\Word Processor directory.

2. Add a new VI to the Word Processor Project and save it as Auto
Save.vi in the <Exercises>\LabVIEW Connectivity\Word
Processor directory.

3. Create the front panel as shown in Figure 3-14.

Figure 3-14. Auto Save VI Front Panel

❑ Create the Interval control as described in Table 3-3.

❑ Create the Error In control as described in Table 3-3.

❑ Create the Error Out control as described in Table 3-3.

❑ Place a .NET Refnum on the front panel.

– Right-click the .NET Refnum and choose Select .NET Class»
Browse from the shortcut menu.

– Select System.Windows.Forms from the Assembly pull-down
menu.

– Double-click the System.Windows.Forms item in the
Objects list and select RichTextBox.

– Click OK.

– Label the control TextBox Reference.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-27 LabVIEW Connectivity Exercises

❑ Create a copy of the TextBox reference control. Name the copy
TextBox Reference out.

❑ Right-click the TextBox reference out control and select Change
to Indicator from the shortcut menu.

4. Add the following items and wiring as shown in Figure 3-15 to create a
Timer object.

Figure 3-15. Completed Auto Save Block Diagram

❑ Place a Constructor Node on the block diagram as shown in
Figure 3-15. The Select .NET Constructor dialog box should
appear.

– Select System from the Assembly pull-down menu.

– Double-click the System.Timers item in the Objects list and
select Timer to add Timer constructors to the Constructors list.

– Select Timer(Double interval) from the Constructors list.

– Click OK.

❑ Connect the Interval terminal to the interval input of the
Constructor Node as shown in Figure 3-15.

5. Add the following items and wiring as shown in Figure 3-15 to register
a handler for the Elapsed event.

❑ Place a Register Event Callback function on the block diagram.

❑ Wire the reference output of the Constructor Node to the Event
input of the Register Event Callback function as shown in
Figure 3-15.

❑ Click the Event input of the Register Event Callback function and
select Elapsed(Object sender, ElapsedEventArgs e).

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-28 ni.com

❑ Wire the TextBox Reference to the user parameter input of the
Register Event Callback function as shown in Figure 3-15.

6. Add the following items and wiring as shown in Figure 3-15 to start the
Timer.

❑ Right-click the reference output of the Constructor Node and select
Create»Method for System.Timers.Timer Class»Start() from the
shortcut menu.

❑ Right-click the reference output of the Start Invoke Node and select
Create»Indicator from the shortcut menu. Name the indicator
Timer Reference.

7. Create the Callback VI.

Figure 3-16. Auto Save Callback Block Diagram

❑ Right-click the VI Ref input of the Register Event Callback node
and select Create Callback VI from the shortcut menu. This opens
a new VI with the appropriate connector pane for this event callback.

❑ Save the callback VI as Auto Save Callback.vi in the
<Exercises>\LabVIEW Connectivity\Word Processor
directory.

❑ Open the block diagram of the callback VI.

❑ Right-click the TextBox reference terminal and select Create»
Method for System.Windows.Forms.RichTextBox Class»
SaveFile(String path) from the shortcut menu to create a SaveFile
Invoke Node.

❑ Place a Temporary Directory constant on the block diagram.

❑ Place a Build Path function on the block diagram.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-29 LabVIEW Connectivity Exercises

❑ Right-click the name or relative path input of the Build Path
function and select Create»Constant from the shortcut menu. Enter
Word Processor Autosave.rtf for the value of the constant.

❑ Place a Path to String function on the block diagram.

❑ Wire the block diagram as shown in Figure 3-16.

❑ Save and close the Auto Save Callback VI.

8. Build the icon and connector pane for the Auto Save VI.

❑ Return to the front panel of the Auto Save VI.

❑ Right-click the VI icon and select Edit Icon from the shortcut menu.

❑ Build the connector pane similar to the one shown in Figure 3-17.

Figure 3-17. Auto Save Icon and Connector Pane

9. Save the VI.

10. Add auto save functionality to the Word Processor.

Figure 3-18. Word Processor with Auto Save Block Diagram

❑ Open the Word Processor VI located in the <Exercises>\
LabVIEW Connectivity\Word Processor directory.

❑ Place the Auto Save VI on the block diagram of the Word
Processor VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-30 ni.com

❑ Place a Close Reference function on the block diagram of the Word
Processor VI.

❑ Right-click the Interval input of the Auto Save VI and select
Create»Constant from the shortcut menu. The constant should
default to 30000.

❑ Wire the diagram as shown in Figure 3-18.

11. Save the VI.

Testing
1. Navigate to the Windows\Temp directory.

❑ Minimize all programs to get to the desktop of the computer.

Tip Press <Windows Key-D> to display the desktop.

❑ (Windows XP) Right-click the My Computer icon and select
Properties from the shortcut menu to open the System Properties
dialog box.

❑ (Windows XP) Select the Advanced tab and click the Environment
Variables button.

❑ (Windows 7/Vista) Click the Start button, right-click Computer and
select Properties.

❑ (Windows 7/Vista) Click Advanced System Settings and click the
Environment Variables button.

❑ Select TEMP under User variables. If TEMP does not exist under
User variables, locate it under System variables.

❑ Click the Edit button.

❑ Select all the text in the Variable value field then right-click the text
and select Copy from the shortcut menu.

❑ Click the Cancel button. Do not change the value of the variable.

❑ Click the Cancel button twice to exit the Environment Variables
and System Properties windows.

Tip This process shows you how to check the value of any system variable. However,
an easier way to get the value of the TEMP variable would be to simply attach an
indicator to a Temporary Directory constant in LabVIEW.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-31 LabVIEW Connectivity Exercises

❑ Open Windows Explorer.

❑ Paste the temporary directory path into the Address field and
press <Enter>. Leave the Windows Explorer window open.

Note If you try to browse to the temporary directory instead of pasting the path, you may
need to show hidden files from the Windows Explorer folder view options.

2. Test the Auto Save function.

❑ Run the Word Processor VI.

❑ Enter text into the text box.

❑ Wait 30 seconds and then switch to the Windows Explorer window.

❑ Double-click the Word Processor Autosave.rtf and verify
that your text shows up in the file.

3. Save and close the Word Processor VI.

End of Exercise 3-3

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-32 ni.com

Exercise 3-4 Browse to URL and Display VI Statistics Report

Goal
Use ActiveX automation to control Internet Explorer and then integrate that
automation into an application.

Scenario
This exercise is divided into two parts, browsing to a URL and then using
that code to display a VI Statistics report.

Part A: Browse to URL
Displaying a Web page or HTML report is a common task for measurement
and test applications. Develop a reusable component that allows you to open
a Web browser and navigate to a specified address.

Part B: Display VI Statistics Report
In Exercise 2-4 you created a VI to gather information about the VIs running
on a computer. Currently, the exercise only displays this data to the front
panel of the VI. In order to make the data more accessible, publish the data
into an HTML report and use the reusable Web browser component to
display the data.

Design

Part A: Browse to URL Inputs and Outputs

Microsoft provides two ActiveX interfaces for interacting with Internet
Explorer. Internet Explorer can be embedded within another application as
an ActiveX control, or Internet Explorer can be accessed as a separate entity
through an automation server. Embedding Internet Explorer within a
LabVIEW front panel is a powerful tool that allows your user to view web
pages or other documents without changing programs. However, an
embedded control requires an ActiveX container on the front panel, which
is less reusable than a call to the automation server.

Table 3-4. Browse to URL Inputs and Outputs

Type Name Properties Default Value

String Control URL — Empty

Cluster Control Error In Error Cluster No Error

Cluster Indicator Error Out Error Cluster No Error

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-33 LabVIEW Connectivity Exercises

To create a reusable web browser component, write a subVI that does the
following:

1. Opens a reference to the Internet Explorer automation server.

2. Shows an Internet Explorer window.

3. Navigates to a web site specified by the URL control.

4. Closes the ActiveX reference.

IWebBrowser2 Interface Description
To open a reference to the Internet Explorer automation server, create an
InternetExplorer.IWebBrowser2 object from the Microsoft Internet
Controls Type Library. The Microsoft Internet Controls Type Library
contains more than one IWebBrowser2 object, so be certain to select the
object in the InternetExplorer folder. In this exercise, you use the following
properties and methods of the IWebBrowser2 object:

• Visible property—When you open an Internet Explorer automation
reference, the Internet Explorer window is hidden by default. Set the
Visible property to TRUE to display the Internet Explorer window.

• Navigate method—The Navigate method instructs Internet Explorer to
open a document or URL. Use the URL control to pass a string to this
method. Notice that the IWebBrowser2 object also contains a Navigate2
method. In addition to standard URLs, the second method allows you to
browse to non-standard folders such as the Printers folder or the Recycle
Bin. Although the Navigate2 method also works for this exercise, use
the Navigate method because you do not need the extra functionality.

Tip The LabVIEW context help provides descriptions of many ActiveX properties and
methods.

Part B: Display VI Statistics Report Inputs and Outputs

Table 3-5. VI Statistics Report Inputs and Outputs

Type Name Properties Default Value

String
Control

Machine
Name

— Empty (defaults to local machine)

File Path
Control

Report File
Path

Browse button,
New or Existing
Files Selection
Mode

<Exercises>\LabVIEW Connectivity\
VI Statistics Report\VI Statistics
Report.html

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-34 ni.com

In order to display the VI statistics data in a web browser, you must first
format the data into HTML format. While you could do this manually using
string manipulation, the Report Generation VIs in LabVIEW simplify the
task considerably. A subVI with the appropriate report generation code is
provided in the <Exercises>\LabVIEW Connectivity\
VI Statistics Report directory.

Use the Generate VI Statistics HTML VI provided along with the Browse to
URL VI that you created in Exercise 3-1 to display the results of the VI
Statistics VI in a report. You can remove the current indicators to simplify
wiring and avoid duplicating the displayed information.

Part A: Browse to URL Implementation
1. Create a blank VI and save it as Browse to URL.vi in the

<Exercises>\LabVIEW Connectivity\Browse to URL
directory.

2. Create the front panel as shown in Figure 3-19.

Figure 3-19. Browse to URL Front Panel

3. Create the following items as described in Table 3-4.

❑ URL control

❑ Error In control

❑ Error Out indicator

4. Add the following items to the block diagram as shown in Figure 3-20
to open the automation reference.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-35 LabVIEW Connectivity Exercises

Figure 3-20. Completed Browse To URL Block Diagram

❑ Automation Open function

❑ Automation Refnum constant

– Right-click the automation refnum input of the Automation
Open function and select Create»Constant to create the
Automation Refnum constant.

– Right-click the Automation Refnum constant and choose Select
ActiveX Class»Browse.

– Select Microsoft Internet Controls from the Type Library
pull-down menu.

– Place a checkmark in the Show Creatable Objects Only
checkbox.

5. In the Objects list, double-click the InternetExplorer item and
select IWebBrowser2, as shown in Figure 3-21. Click OK.

Figure 3-21. Select Automation Object

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-36 ni.com

6. Add the following items and wiring to the block diagram to show the
Internet Explorer window.

❑ Visible Property Node

– Right-click the automation refnum output of the Automation
Open function and select Create»Property for
SHDocVw.IWebBrowser2 Class»Visible to create the Visible
Property Node.

– Right-click the Property Node and select Change all to Write
from the shortcut menu.

❑ True constant—Place a true constant on the block diagram and wire
it to the Property Node.

❑ Wire the error and refnum wires of the Automation Open function to
the Visible Property Node.

7. Add the following items and wiring to the block diagram to browse to a
URL.

❑ Navigate Invoke Node—Right-click the automation refnum output
of the Automation open function and select Create»Method for
SHDocVw.IWebBrowser2 Class»Navigate from the shortcut
menu to create a Navigate Invoke Node.

❑ Wire the URL control to the Navigate Invoke Node.

❑ Wire the error and refnum wires of the Visible Property Node to the
Navigate Invoke Node.

8. Add the following item to the block diagram to close the automation
reference.

❑ Close Reference function

9. Create an icon and connector pane for the VI.

❑ Right-click the VI icon and select Edit Icon from the shortcut menu.

❑ In the Icon Editor select Edit»Import Glyph from File. Select
<Exercises>\LabVIEW Connectivity\Browse to URL\
Images\ieiwn.bmp as the file to import.

❑ Double-click the Rectangle tool to create a black box around the
icon.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-37 LabVIEW Connectivity Exercises

10. Click the OK button to exit the Icon Editor. The icon should resemble
Figure 3-22.

11. Configure the connector pane for the VI similar to the example shown
in Figure 3-22.

Figure 3-22. Browse to URL Icon and Connector Pane

12. Save the VI.

Testing
1. Browse to a file.

❑ Enter C:\Program Files\National Instruments\
LabVIEW X.X\readme\readme.html in the URL control, where
X.X is your LabVIEW version.

Note The preceding path may be different if you have installed LabVIEW to a directory
other than the default installation directory.

❑ Run the VI. An Internet Explorer window should display the
LabVIEW readme file.

2. Browse to a Web site.

❑ Enter http://www.ni.com in the URL control.

❑ Run the VI. An Internet Explorer window should display the
National Instruments Web site.

Note You can browse to a Web site only if your computer has internet access.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-38 ni.com

Part B: VI Statistics Report Implementation
Modify the front panel of the original VI Statistics VI so that it matches
Figure 3-23.

Figure 3-23. VI Statistics Report Front Panel

1. Open the VI Statistics VI that you created in Exercise 2-2 located in the
<Exercises>\LabVIEW Connectivity\VI Statistics
directory.

❑ Save the VI as VI Statistics Report.vi in the
<Exercises>\LabVIEW Connectivity\
VI Statistics Report directory. Choose the Substitute
copy for original option in the Save As dialog box.

❑ Delete the VIs Open, VIs Running, and VIs Report indicators.

❑ Create the Report File Path control as described in Table 3-5.

Tip To set the default value of the path control as described in Table 3-5, click the
browse button and navigate to the appropriate folder. Enter VI Statistics Report.
html in File Name and click OK. Right-click the path control and select Data
Operations»Make Current Value Default.

2. Add the following items and wiring to the block diagram as shown in
Figure 3-24 to generate an HTML report for the data.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-39 LabVIEW Connectivity Exercises

Figure 3-24. Completed VI Statistics Report Block Diagram

❑ Place Generate VI Statistics HTML.vi, located in
<Exercises>\LabVIEW Connectivity\VI Statistics
Report directory, on the block diagram.

❑ Open the subVI and inspect the code to generate the report. This
subVI uses the Report Generation VIs in LabVIEW.

3. Add the following items and wiring to the block diagram to display the
report in Internet Explorer.

❑ Place Browse to URL.vi, located in the <Exercises>\
LabVIEW Connectivity\Browse to URL directory on the
block diagram. You created this subVI in Exercise 3-1.

❑ Place a Path to String function on the block diagram.

❑ Simple Error Handler

4. Save the VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-40 ni.com

Testing
1. Run the VI.

❑ Switch to the front panel of the VI.

❑ Close all other open VIs.

❑ Run the VI. Notice that report generation loads a number of VIs into
memory.

2. (Optional) Test the VI under other conditions.

❑ Open one or more other VIs and run the VI. Observe the difference
in states between the running and non-running VIs.

❑ Enter the name of another machine in the Machine Name control
and run the VI remotely.

End of Exercise 3-4

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

© National Instruments Corporation 3-41 LabVIEW Connectivity Exercises

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .Net and ActiveX Objects in LabVIEW Exercises

LabVIEW Connectivity Exercises 3-42 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 4-1 LabVIEW Connectivity Exercises

4
Connecting to Databases Exercises

Exercise 4-1 Viewing a Database

Goal
Examine the contents of a database using Microsoft Excel.

Description
Applications such as LabVIEW and Microsoft Excel can use the OLE DB
standard to retrieve information from a database. In this exercise, you will
use Microsoft Excel to view the records and fields in the three tables
contained in the Theatre database.

The Theatre database contains the following three tables: Event_Table,
Production_Table, and Cue_Information_Table. The Event table contains
administrative information for every event that occurs. The Production table
assigns a Production ID to each production. The Cue Information table
contains timing and lighting data for the cues in each production.

• Event_Table consists of the following five fields: Event_ID,
Production_Id, Date, Location, and Seats_Sold.

• Production_Table consists of the following two fields: Production_ID
and Production_Name.

• Cue_Information_Table consists of the following eight fields: Cue_Id,
Production_ID, Cue_Name, Wait_Time, Fade_Time, Follow_Time,
Intensity, and Color.

Implementation
1. Launch Excel.

2. Import data from the database.

❑ Select the Data tab.

❑ In the Get External Data section, click From Other Sources and
select From Data Connection Wizard. This launches the Data
Connection Wizard that uses the OLE DB standard to communicate
with the database.

❑ Select Other/Advanced and click Next.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-2 ni.com

❑ Select Microsoft Jet 4.0 OLE DB Provider and click Next.

Note The Microsoft Jet OLE DB Provider uses the Microsoft Jet database engine to
expose data stored in Microsoft Access databases (.mdb) and other databases.

❑ Click the Browse button and navigate to <Exercises>\LabVIEW
Connectivity\Theatre Database\. Select
TheatreDatabase.mdb. Click Open.

❑ Click the Test Connection button to verify that there is a successful
connection. In the Microsoft Datalink dialog box, click OK.

❑ In the Datalink Properties dialog box, click OK.

❑ In the Data Connection Wizard, select
Cue_Information_Table and click Next. Click Finish.

❑ In the Import Data dialog box, click OK. Excel imports the Cue
Information data from the database and displays it in a spreadsheet.

3. Examine the contents of the table. Save the table in its own worksheet.

Note In Microsoft Excel 2003 or 2007, to select a worksheet, click the tabs in the lower
left. The default names for worksheets in Excel are Sheet1, Sheet2 and Sheet3.

4. Repeat steps 2 and 3 for the following tables:

– Event_Table

– Production_Table

5. Save the file as TheatreDatabase tables.xlsx in the
<Exercises>\LabVIEW Connectivity\Theatre Database
directory.

End of Exercise 4-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-3 LabVIEW Connectivity Exercises

Exercise 4-2 Connect to a Theatre Database Using LabVIEW

Goal
Configure and open a connection to a database using LabVIEW.

Scenario
Using LabVIEW to communicate with a database allows you to perform
many database operations programmatically. The first step to communicate
with a database using LabVIEW is to successfully open a connection to the
database. In this exercise, you will connect to a database with LabVIEW
using the OLE DB method.

Design
The VI you build will connect to a database using the OLE DB standard.
You will create and configure a Universal Data Link (UDL) file which the
VI will use to establish a connection with the Theatre database.

You will use the Database Connectivity Toolkit VIs.

The completed VI will perform the following tasks:

1. Open a connection to the Theatre database.

2. Close the connection to the Theatre database.

3. Check for errors.

Implementation

Connect to Database Using OLE DB
1. Create and configure a UDL file.

❑ Launch LabVIEW.

❑ Open a blank VI.

❑ Select Tools»Create Data Link.

❑ Select Microsoft Jet 4.0 OLE DB Provider and click Next.

❑ Click the Browse button and navigate to <Exercises>\LabVIEW
Connectivity\Theatre Database\
TheatreDatabase.mdb.

❑ Click the Test Connection button to verify that there is a successful
connection and click OK.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-4 ni.com

❑ Click OK.

❑ Navigate to <Exercises>\LabVIEW Connectivity\Theatre
Database\ and enter MyUDL for File name. Click OK.

❑ A dialog box informs you the data link has been successfully
created. Click OK.

2. Create the front panel shown in Figure 4-1.

Figure 4-1. Open DB Connection Using OLE DB VI Front Panel

❑ Create a blank VI and save the VI as Open DB Connection
Using OLE DB.vi in the <Exercises>\LabVIEW
Connectivity\Theatre Database\ directory.

❑ Place a File Path control on the front panel and label the control UDL
File Path.

3. Create a VI to open and close a connection to a database using OLE DB.
Build the block diagram shown in Figure 4-2 using the following items:

Figure 4-2. Open DB Connection Using OLE DB VI Block Diagram

❑ DB Tools Open Connection VI

❑ DB Tools Close Connection VI

❑ Simple Error Handler VI

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-5 LabVIEW Connectivity Exercises

Testing
1. On the front panel, set the UDL File Path control to WrongUDL and run

the VI.

This triggers error messages in a dialog box and in the error out indicator
because WrongUDL is not a valid UDL.

2. Click the UDL File Path control browse button and navigate to
<Exercises>\LabVIEW Connectivity\Theatre
Database\MyUDL.udl.

3. Run the VI.

If no errors occur, then the VI successfully opened and closed the
connection to the database.

4. Save and close the VI.

End of Exercise 4-2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-6 ni.com

Exercise 4-3 Select Data from a Table

Goal
Retrieve data from the cue information table in the Theatre database.

Scenario
One of the most common database operations is retrieving data from the
database. In this exercise, you will retrieve the cue name, wait time, fade
time, follow time, light intensity, and light color for all the records in the Cue
Information table in the Theatre database.

Design
You will use the Database Connectivity Toolkit VIs to retrieve data from the
Theatre database. You will first create a VI that retrieves and displays the
data as a variant data type. Then you will add code to convert the variant data
type into specific LabVIEW data types and display the data.

Your final VI will perform the following tasks:

1. Open a connection to the Theatre database using a UDL file.

2. Retrieve data from the Cue Information table.

3. Convert the retrieved data from a variant data type to specific LabVIEW
data types.

4. Close the connection to the Theatre database.

5. Check for errors.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-7 LabVIEW Connectivity Exercises

Implementation
1. Create a blank VI and save it as Select Data.vi in the

<Exercises>\LabVIEW Connectivity\Theatre Database\
directory.

2. Create the first part of a VI to select data from the cue information table
in the Theatre database. Create the block diagram shown in Figure 4-3
using the following items:

Figure 4-3. Select Data VI Block Diagram.

❑ DB Tools Open Connection VI—Right-click the connection
information input terminal and select Create»Control.

❑ DB Tools Select Data VI

– Right-click the table input terminal and select Create»Control.

– Right-click the columns input terminal and select Create»
Control.

– Right-click the data output terminal and select Create»
Indicator. Change the label of the indicator to Variant data.

❑ DB Tools Close Connection VI

❑ Simple Error Handler VI

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-8 ni.com

3. Create the front panel shown in Figure 4-4.

Figure 4-4. Select Data VI Front Panel

❑ On the front panel, click and drag the bottom edge of the columns
string array indicator to resize it to six elements as shown in
Figure 4-4.

Note Dragging one of the resize handles on the inside edge of the indicator increases the
size of each cell. Dragging a handle on the outside edge increases the number of the cells.

❑ Right-click the blank area in the middle of the Variant data
indicator and select Visible Items»Scrollbar. This removes the
unnecessary scrollbar and declutters the interface.

❑ Click and drag the lower right corner of the Variant data indicator
to resize it to two rows and six columns as shown in Figure 4-4.

❑ Right-click the outer edge of the Variant data indicator and select
Visible Items»Vertical scrollbar.

❑ Arrange the controls and indicators as shown in Figure 4-4.

4. Get and display information from the database.

❑ Set the connection information control to <Exercises>\
LabVIEW Connectivity\Theatre Database\MyUDL.udl.

❑ Set the table string control to Cue_Information_Table. This
specifies the table in the database from which to access data.

❑ Right-click the table string control and select Data Operations»
Make Current Value Default.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-9 LabVIEW Connectivity Exercises

❑ Set the columns string array control to the values shown in the
following figure. This specifies the fields in the database from which
to access data.

Figure 4-5. Columns Control on the Select Data VI Front Panel

❑ Right-click the border of the columns string array control and select
Data Operations»Make Current Value Default.

❑ Run the VI. This should populate the Variant data indicator with
values from the database.

❑ Scroll through the data by using the vertical scrollbar of the Variant
data indicator.

5. Save the VI.

Although the data is displayed, the data is currently a variant datatype.
To operate on the data, you must first convert it into its corresponding
LabVIEW datatype.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-10 ni.com

6. In the second part of the exercise, convert the variant datatype into more
usable LabVIEW datatypes by expanding the block diagram as shown
in Figure 4-6 using the following items.

Figure 4-6. Completed Select Data VI Block Diagram

❑ Database to Variant Data function

❑ Create an array of clusters with the following elements.

Label Data Type

Cue Name String

Wait Time U32

Fade Time U32

Follow Time U32

Intensity DBL

Color U32

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-11 LabVIEW Connectivity Exercises

7. On the front panel, label the elements inside the Cue Data indicator to
match Figure 4-7.

Figure 4-7. Cue Data elements on Select Data VI Front Panel

8. Right-click the Color indicator and select Replace»Classic»Classic
Numeric»Framed Color Box.

9. Right-click the border of the Cue Data cluster indicator and select
Visible Items»Horizontal Scrollbar. The completed front panel should
be similar to Figure 4-8.

Figure 4-8. Completed Select Data VI Front Panel

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-12 ni.com

10. Get cue data from the database and display the data as converted
LabVIEW datatypes.

❑ Run the VI. This populates the Cue Data indicator with values from
the database.

❑ Scroll through the data by using the index display or horizontal
scrollbar of the Cue Data indicator. Notice that the data in the Cue
Data indicator is more usable in LabVIEW than the data in the
Variant data indicator.

11. Save the VI.

End of Exercise 4-3

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-13 LabVIEW Connectivity Exercises

Exercise 4-4 Insert New Record

Goal
Insert new records of cue data into the cue information table in the Theatre
database.

Scenario
Another common database operation is inserting new records into a table in
a database. In this exercise, you will insert new records of cue data into the
cue information table in the Theatre database.

Design

You will use the Database Connectivity Toolkit VIs to insert new records
into the Theatre database. You will also use the Record Cue Dialog Box
subVI to launch a dialog box where the user can enter the cue data to insert
into the cue information table in the Theater database.

Your completed VI will perform the following tasks:

1. Launch a dialog box that allows the user to enter cue data.

2. Open a connection to the Theatre database.

3. Insert a new record into the Cue Information table.

4. Close the connection to the Theatre database.

5. Check for errors.

Implementation
1. Open the Insert New Record VI in the <Exercises>\LabVIEW

Connectivity\Theatre Database\Insert New Record
directory.

2. Modify the block diagram to insert new records into a database table as
shown in Figure 4-9 using the following items.

Figure 4-9. Insert New Record VI Partial Block Diagram

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-14 ni.com

❑ DB Tools Open Connection VI

❑ DB Tools Insert Data VI

❑ DB Tools Close Connection VI

❑ Simple Error Handler VI

3. Organize new cue data into a cluster datatype to insert a new record into
the Cue Information table. Use the following items to expand the block
diagram as shown in Figure 4-10.

Figure 4-10. Insert New Record VI False Case

❑ Record Cue Dialog Box subVI—This subVI is located in the
<Exercises>\LabVIEW Connectivity\Theatre
Database\Insert New Record directory.

Note The Record Cue Dialog Box subVI displays a Record dialog box in which the user
enters cue values. The VI then outputs the data through the Output Cue indicator.

❑ Case structure

– Right-click the border of the Case structure and select Make
This Case False.

– Wire the Cancelled? output terminal of the Record Cue Dialog
Box subVI to the Case Selector input terminal of the Case
structure.

❑ Simple Error Handler

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-15 LabVIEW Connectivity Exercises

4. Press <Ctrl-H> to open the Context Help window. Hover your mouse
cursor over the wire that connects the Record Cue Dialog Box subVI to
the data input of the DB Tools Insert Data VI. The Context Help
window shows that the data type of the wire is a cluster that contains
seven elements.

Note The DB Tools Insert Data VI inserts each item in the cluster into a table
corresponding to each element in the columns input of the DB Tools Insert Data VI. The
order is determined by the order of the cluster such that the 0th item in the cluster is
inserted into the column name given in the 0th element of the columns input.

5. Create the block diagram for the True case of the Case structure as
shown in Figure 4-11 using the following items.

Figure 4-11. Insert New Record VI True Case

❑ One Button Dialog

– Right-click the message input terminal and select Create»
Constant.

– Set the constant to Record Cue cancelled. No record
was inserted.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-16 ni.com

Testing
1. On the front panel, set the connection information file path control to

<Exercises>\LabVIEW Connectivity\Theatre Database\
MyUDL.udl.

2. The table string control should be set to Cue_Information_Table.
This specifies the table in the database in which to insert data.

3. The columns string array control should be set to the values shown in
Figure 4-12. This specifies the fields in the table in which to insert data.

Figure 4-12. Columns Control on the Insert New Record VI Front Panel

4. Insert new records into the cue information table.

❑ Run the VI.

❑ In the Cue Record dialog box, set all the cue values to match the cue
values shown in Figure 4-13. Select your own channel colors.

Figure 4-13. First Cue to Record

❑ Run the VI two more times to record the remaining cues shown in
Table 4-1. Select your own lighting colors.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-17 LabVIEW Connectivity Exercises

5. View the records that you have inserted into the database.

❑ Open the Select Data.vi you created in Exercise 4-3 from the
<Exercises>\LabVIEW Connectivity\Theatre Database
directory.

❑ Set the connection information control to <Exercises>\
LabVIEW Connectivity\Theatre Database\MyUDL.udl.

❑ Set the table string control to Cue_Information_Table. This
specifies the table in the database from which to access data.

❑ Set the columns string array control to the values shown in the
following figure. This specifies which fields in the database from
which to access data.

Figure 4-14. Columns Control on the Select Data VI Front Panel

❑ Run the VI.

❑ Scroll through the data using the index display or horizontal
scrollbar of the Cue Data indicator. You can see the records that you
have inserted at the end of the array.

6. Save and close the Insert New Records VI.

End of Exercise 4-4

Table 4-1. Remaining Cues to Record

Cue Name
Wait
Time

Fade
Time

Follow
Time Intensity

Act 2, Scene 2: Clara and the Prince 1 5 8 95

Act 2, Scene 3: Various dances 2 5 9 100

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-18 ni.com

Exercise 4-5 SQL Query

Goal
Execute an SQL query statement to retrieve data from the Theatre database.

Scenario
The Structured Query Language (SQL) consists of a set of character string
commands and is a widely supported standard for database access. You can
use SQL commands to describe, store, retrieve, and manipulate the rows and
columns in database tables. You will use the DB Tools Execute Query VI to
send an SQL string to a database to query data from the Theatre database.

Design
You will modify the Select Data VI that you created in an earlier exercise to
query data from the database using a SQL command. You will add the DB
Tools Execute Query VI, DB Tools Fetch Recordset Data VI, and DB Tools
Free Object VI to the application.

Your completed VI will perform the following tasks:

1. Open a connection to the Theatre database.

2. Send an SQL command to the Theatre database.

3. Retrieve the recordset returned from the SQL command.

4. Convert the retrieved data from a variant data type to specific LabVIEW
data types.

5. Close the recordset reference.

6. Close the connection to the Theatre database.

7. Check for errors.

Implementation
1. Open the Select Data VI in the <Exercises>\LabVIEW

Connectivity\Theatre Database directory.

2. Save a copy of the VI as SQL Query.vi in the <Exercises>\
LabVIEW Connectivity\Theatre Database directory.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-19 LabVIEW Connectivity Exercises

3. Edit the block diagram to execute a SQL statement as shown in
Figure 4-15.

Figure 4-15. SQL Query VI Block Diagram

❑ Delete the following items:

– Table control

– Columns control

– Error and connection reference wires connecting the Database
Connectivity Toolkit VIs

❑ Add the following items:

– DB Tools Execute Query VI

– DB Tools Free Object VI

❑ Right-click the DB Tools Select Data VI and select Replace»
Database Palette»Advanced»DB Tools Fetch Recordset Data.vi.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-20 ni.com

Testing

1. Set the connection information file path control to <Exercises>\
LabVIEW Connectivity\Theatre Database\MyUDL.udl.

2. Set the SQL Query string control to SELECT Cue_Name,
Wait_Time, Fade_Time, Follow_Time, Intensity, Color
FROM Cue_Information_Table WHERE Production_ID=4.

3. Run the VI. The VI should return only Cue Data associated with the
Nutcracker production.

End of Exercise 4-5

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

© National Instruments Corporation 4-21 LabVIEW Connectivity Exercises

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases Exercises

LabVIEW Connectivity Exercises 4-22 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 5-1 LabVIEW Connectivity Exercises

5
TCP/IP and UDP Exercises

Exercise 5-1 Simple Data Client VI and Simple Data Server VI

Goal
Open and examine some of the TCP/IP example VIs that show how you can
use LabVIEW as a TCP client and a TCP server or how to send and receive
UDP datagrams.

Scenario
Transferring data of TCP/IP is easy with LabVIEW. It is necessary to define
the method that the data is transferred. The TCP and UDP functions in
LabVIEW only send string data. So, all data types in LabVIEW need to be
converted to a string before they are passed to a TCP or UDP function. Also,
it is often necessary to send the size of the data with the packet.

In this exercise, notice how the data is passed from the TCP server to the
TCP client. In particular, notice how the size of the data packet is
determined and then sent to the server, before the data packet. Also in the
exercise, notice how data is sent using UDP from a UDP sender VI to a UDP
client VI.

Implementation

TCP Client
1. Open the NI Example Finder by clicking Help»Find Examples.

2. Select the Search tab and enter tcp/ip in the Enter keyword(s) text
box and click Search.

3. Double-click Simple Data Client.vi in the search results. Do not close
NI Example Finder.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-2 ni.com

4. Open and examine the block diagram as shown in Figure 5-1.

Figure 5-1. Simple Data Client VI Block Diagram

The TCP Open Connection function specifies which address and port
you should use to open the connection.

The TCP Read function is configured to read four bytes of information.
These four bytes are the size of the data and are type cast to a 32-bit
signed integer (I32) and used for the bytes to read input on the second
TCP Read function. The resulting data is type cast to an array of
double-precision, floating-point scalar numbers (DBL) and displayed
in a chart. The TCP Read functions are continuously called in a loop
until you click the STOP button or an error occurs.

The Error to Warning VI converts non-critical connection errors to
warnings.

The TCP Close Connection function is wired to stop the connection
when you click the STOP button or an error occurs, and errors are
reported by the Simple Error Handler VI.

TCP Server
1. Return to NI Example Finder, search for tcp/ip and double-click

Simple Data Server.vi in the search results.

2. Open and examine the block diagram as shown in Figure 5-2.

Figure 5-2. Simple Data Server VI Block Diagram

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-3 LabVIEW Connectivity Exercises

The TCP Listen VI waits for a connection on the specified port for
five seconds. The default timeout ms of –1 causes the VI to wait
indefinitely. The TCP Listen VI contains a TCP Create Listener function
and a function to determine if a listener has already been created.

After a connection is made, a random or sine waveform is generated,
based on the value of the Function control, and type cast to a string. The
length of that string is type cast to a string and sent to the client with the
TCP Write function. The first TCP Write function sets the amount of
data to send. The second TCP Write function sends the waveform string.
If a connection error occurs, error checking in the loop stops the loop.

The Error to Warning VI converts non-critical connection errors to
warnings.

3. If the computer is connected through TCP/IP to another computer that
has LabVIEW, and each computer has a unique IP address, you can
run the Simple Data Client VI on one computer and the Simple Data
Server VI on the other computer.

❑ Find a partner and exchange IP addresses. Decide which computer
is the server. Run the Simple Data Server VI on that computer.

❑ Run the Simple Data Client VI with the IP address or hostname of
the server on the other computer. You should see the random or sine
waveform on the chart in the client VI as you change the Function
control on the server VI.

Note To end the connection, click the STOP button on the client VI. You can run the
client and server VIs on the same computer if the computer is not networked.

4. Close the Simple Data Client VI and Simple Data Server VIs. Do not
save changes.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-4 ni.com

UDP Receiver
1. Return to NI Example Finder and search for UDP.

2. Open UDP Receiver.vi and examine the block diagram as shown in
Figure 5-3.

Figure 5-3. UDP Receiver

The UDP Open function opens a UDP socket on the specified port.

The UDP Read function reads a datagram from a UDP socket.

The UDP Close function closes a UDP socket.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-5 LabVIEW Connectivity Exercises

UPD Sender
1. Return to NI Example Finder and search for UDP.

2. Open UDP Sender.vi and examine the block diagram as shown in
Figure 5-4.

Figure 5-4. UDP Sender

The UDP Open function opens a UDP socket on the specified port.

The UDP Write function writes to a remote UDP socket specified by the
Remote Host and Remote Port.

The UDP Close function closes a UDP socket.

3. Run UDP Receiver.vi and then run UDP Sender.vi. Notice data is sent
to the receiver.

4. Click the Stop button on the UDP Receiver.

5. Close the UDP Receiver and UDP Sender VIs. Do not save changes.

6. Close the Example Finder.

End of Exercise 5-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-6 ni.com

Exercise 5-2 TCP Signal Data Transfer

Goal
Create a TCP program that transfers a signal from a server to a client

Scenario

You typically use TCP communication in situations where you need to
reliably transfer data with no loss of data. For example, when transferring
signal data, reliability is very important.

Write an application which uses TCP to transfer a simple signal (sine wave,
sawtooth, and so on) from one computer to another. The application should
be designed to have an extensible message protocol.

Design
When creating a TCP program, it is important to create a well defined
protocol that the client and server use to communicate.

A common design pattern for the protocol is to send a message header
followed by the data for that specific message. It is common for the header
to contain a message ID and the message length.

The protocol header can be easily defined in LabVIEW by way of a cluster
containing the protocol elements. When the client or server sends a
message, it will first flatten and send the protocol cluster followed by more
data for that message.

Client Server Architecture
Since a TCP client-server connection is bi-directional it does not matter
whether the server sends or receives the signal. For this program the server
will send the signal and the client will receive the signal.

For the file transfer program, transmit the number of chunks at the beginning
of the program and then transmit the size of each chunk immediately before
the chunk itself.

TCP Client—Signal Receiver Inputs and Outputs

Table 5-1. TCP File Sender Inputs and Outputs

Type Name Properties Default Value

String Control Address — localhost

Numeric Control Port Unsigned 16-bit Integer 6341

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-7 LabVIEW Connectivity Exercises

TCP Client—Signal Receiver Program Flow
For this application, the TCP client will receive the signal. The TCP signal
receiver should perform the following tasks:

1. Open a TCP connection to the server using the machine address and port
number.

2. Send a message to the server requesting a specific signal (sine wave,
sawtooth, etc.).

❑ Create and send a message header to the server requesting a signal.

❑ Send the desired signal type to the server as the message data.

3. Handle the server response message containing the requested signal,
using the following steps:

❑ Read the message header sent from the server.

❑ Read the signal sent from the server.

❑ Unflatten the signal string and then graph the signal.

4. When an error occurs or the user stops the client, send a Goodbye
message to the server and close the TCP connection.

Enum Typedef Signal Type Unsigned 32-bit enum Sine

Waveform Graph Waveform Graph — —

Boolean Control Stop Latch when released False

Table 5-1. TCP File Sender Inputs and Outputs (Continued)

Type Name Properties Default Value

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-8 ni.com

TCP Server—Signal Sender Program Flow
For this application, the TCP server will generate a signal and send the
signal to the client. The TCP server should perform the following tasks:

1. Wait for incoming TCP connections. When a connection comes in, pass
that connection to the reentrant connection handler VI. The TCP server
can then forget about the connection since the reentrant instance of the
connection handler VI now owns the specific TCP connection.

2. The connection handler will handle the request message header from the
client using the following steps:

❑ Read the message header sent from the client.

❑ Decide how to handle the received message based on the Message
ID from the header.

3. When a signal request message is received, perform the following steps:

❑ Read the desired signal type from the TCP connection.

❑ Generate the desired signal data and flatten it to a string.

❑ Create and send a signal data message header to the client.

❑ Send the flattened signal data to the client.

4. When an error occurs or a Goodbye message is received, close the TCP
connection.

Implementation

Part A: TCP Client—Signal Receive
1. Open the TCP Signal Data Transfer project in the <Exercises>\

LabVIEW Connectivity\TCP Signal Data Transfer directory.

2. Open TCP Client.vi from the Project Explorer window.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-9 LabVIEW Connectivity Exercises

3. Create the block diagram shown in Figure 5-5.

Figure 5-5. TCP Client Block Diagram

4. Create and wire the TCP Open Connection. Add the following items and
wiring to the block diagram to open the TCP connection and file
reference.

❑ TCP Open Connection

❑ Wire the address and port inputs

❑ Wire the outputs connection ID and error out

5. Create a new message ID for the client to request a specific signal.

❑ Open TCP Message ID.ctl located in the Controls directory of
the TCP Signal Data Transfer project.

❑ Add a Client - Request Signal item to the Message ID enum

❑ Save and apply changes

6. Write code to send the Client - Request Signal message header. Add the
following items to the block diagram:

❑ Right-click the Message ID input of the Send Header VI and select
Create»Constant from the shortcut menu. Set the value of the
constant to Client - Request Signal.

❑ Right-click the Message Length input of the Send Header VI and
select Create»Constant from the shortcut menu. Set the value of the
constant to 4.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-10 ni.com

7. Send the Signal Type as the message data. In this step, add the
following items to the block diagram:

❑ Flatten To String—Flatten the Signal Type enum to a string

❑ TCP Write

❑ Wire the string returned from the Flatten To String function into the
TCP Write function

❑ Wire the error and TCP connection ID

8. Read the signal sent by the server. In this step, add the following items
to the block diagram:

❑ TCP Read

❑ Unflatten From String

❑ Array of doubles constant for the Unflatten From String type input

– Right-click the Waveform Graph input and select Create»
Constant.

❑ Wire the Read Header VI Message Length output to the TCP Read
bytes to read input.

Note In this example, the Message ID returned by the Read Header VI is ignored. When
creating a more complicated TCP protocol, it may be desirable to verify the Message ID
was received was the expected message.

Part B: TCP Server—Signal Sender
1. Open and examine TCP Server.vi in the <Exercises>\LabVIEW

Connectivity\TCP Signal Data Transfer directory. Notice the
following:

❑ TCP Create Listener outside the While Loop

❑ TCP Wait On Listener inside the While Loop

❑ Static VI Reference to TCP Connection Handler.vi

❑ Open VI Reference with option 0x8

❑ Set Control Value method setting the Input Connection

❑ Run VI method using FLASE for Wait Until Done and TRUE for
Auto Dispose Ref

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-11 LabVIEW Connectivity Exercises

2. Create a new message ID for the server to send a signal to the client.

❑ Open TCP Message ID.ctl in the <Exercises>\LabVIEW
Connectivity\TCP Signal Data Transfer directory

❑ Add a Server - Send Signal item to the Message ID enum

❑ Save and apply changes

3. Open TCP Connection Handler.vi in the
<Exercises>\LabVIEW Connectivity\TCP Signal Data
Transfer directory.

4. Modify the TCP Connection Handler VI as shown in Figure 5-6.

Figure 5-6. TCP Connection Handler Block Diagram

5. Add the Client - Request Signal message case.

❑ Right-click the border of the Case structure and select Add Case
After.

6. Read the signal type from the TCP connection. In this step, add the
following items to the Server - Send Signal case diagram:

❑ TCP Read

❑ Unflatten From String

❑ Signal Type constant from Signal Type.ctl from the Controls
directory of the TCP Signal Data Transfer project and wire it to the
Unflatten From String type input

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-12 ni.com

7. Generate the signal to send to the client. Add the following items to the
Server - Send Signal case diagram.

❑ Generate Signal.vi from the SubVIs directory of the TCP
Signal Data Transfer project

❑ Flatten To String

8. Send the Server - Send Signal message header. Add the following items
to the block diagram:

❑ Send Header.vi from the SubVIs directory of the TCP Signal
Data Transfer project

❑ Right-click the Message ID input of the Send Header VI and select
Create»Constant from the shortcut menu. Set the value of the
constant to Server - Send Signal.

❑ String Length

❑ Wire the Flatten to String to the String Length function. Wire the
String Length function output to the Send Header VI Message
Length input.

9. Create and wire the TCP Write node.

10. Create and wire a FALSE constant for Done.

Note The TCP Connection Handler VI you created does not report errors. It would be
inappropriate to use the General Error Handler on the server because it is likely the server
will not have a user present while running. If you wanted to record errors, you might want
to create a server log file.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

© National Instruments Corporation 5-13 LabVIEW Connectivity Exercises

Testing

Note The TCP Connection Handler VI is reentrant. To debug this VI, you must deal with
the reentrant instances created by the TCP Server VI. To do this, save a breakpoint into
in TCP Connection Handler VI. This breakpoint will be hit when the server receives a
connection and spawns a handler.

1. Run the client and server on the same machine.

❑ Run TCP Server.vi first and TCP Client.vi second.

❑ While running, change the value of Signal Type on the TCP
Client VI. You should see the appropriate signal on the graph.

❑ Click Stop on the TCP Client VI.

2. (Optional) Run with the client and server running on separate machines.

❑ Copy the TCP VIs to another machine, or interact with your
neighbor’s VIs.

❑ Set Address on the TCP Client VI to be the machine name of the
LabVIEW with TCP Server VI.

❑ Repeat the steps from the first test.

3. (Optional) Run with multiple clients targeting one server.

❑ Make a copy of the TCP Client VI and target the same TCP
Server VI.

– Optionally, use the TCP Client VI from a second machine.

❑ Repeat the steps from the first test where both the TCP Client VI and
the copy are run.

End of Exercise 5-2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 TCP/IP and UDP Exercises

LabVIEW Connectivity Exercises 5-14 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 6-1 LabVIEW Connectivity Exercises

6
Web Services Exercises

Exercise 6-1 Create a LabVIEW Web Service to Add
Two Numbers

Goal
Use a build specification to convert a simple VI that adds two numbers and
shows the sum in a LabVIEW Web service, then use a Web browser to
invoke the Web service, displaying the output terminal as text or XML.

Scenario
You have a subVI that accepts two numbers, adds them together, and returns
the sum. You want to convert it into a Web service.

Design
You will be using the Application Builder to create a build specification for
a RESTful Web service. You will configure the build specification and build
the a Web service out of your VI. You will then enable the LabVIEW Web
Application Server on your computer and deploy the Web service to it.
Finally, you will use a Web browser to invoke your deployed Web service
and display the sum of any two umbers

Implementation
1. Create a new LabVIEW Project called Math Web Service.lvproj

and save it to the <Exercises>\LabVIEW Connectivity\Web
Services directory

2. Create a new VI in the project and save it to <Exercises>\LabVIEW
Connectivity\Web Services\add.vi.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-2 ni.com

3. Create a front panel similar to the one shown in Figure 6-1 using the
following items:

Figure 6-1. Add VI Front Panel

❑ Two Numeric Controls—label one input_1 and label the other
input_2

❑ Numeric Indicator labeled result

4. Configure the connector pane with two input terminals, one for the
input_1 control and one for input_2 control, and one output terminal
connected to the result indicator as shown in Figure 6-2.

Figure 6-2. Add VI Connector Pane

5. Place an Add function on the block diagram and complete the block
diagram shown in Figure 6-3.

Figure 6-3. Add VI Block Diagram

6. Save and close the VI.

7. Create the build specification for your Web Service.

❑ In the Project Explorer window, right-click Build Specifications
and select New»Web Service (RESTful).

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-3 LabVIEW Connectivity Exercises

8. Configure the settings for each of the following categories.

❑ Select the Information category and configure the following
settings as shown in Figure 6-4.

Figure 6-4. Information Category Settings for Web Service Build Specification

– Enter My Math Web Service in the Build specification name
field. This is the name that will be displayed in the project.

– Enter math in the Service name field. This is used as the name
of the service in URLs.

– Accept the default Destination directory.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-4 ni.com

❑ Select the Source Files category.

– Select add.vi in the Project Files section and click the arrow to
move it to the Service VIs list.

– In the Configure RESTful VI dialog box, change the Output
format to Text, as shown in Figure 6-5, and then click the OK
button.

Figure 6-5. Configure RESTful VI Dialog Box

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-5 LabVIEW Connectivity Exercises

❑ Select the URL Mappings category and notice that an entry has
been created for your add.vi as shown in Figure 6-6.

Figure 6-6. URL Mappings Configuration for Add VI

Note :input_1 and :input_2 are placeholders in the URL for values that will be
passed to the controls of the same name in your add.vi.

– Set the order of the inputs to be :input_1 and then :input_2.
If they are not in that order in your URL mapping, triple-click the
text, make the change, and then press <Enter>.

9. Click the Build button to build your Web service.

❑ When the build is complete, click the Done button in the Build
status dialog box.

10. Ensure that the LabVIEW Web Application Server is running.

❑ Select Tools»Options in the Project Explorer window.

❑ Select the Web Server category and click the Configure Web
Application Server button.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-6 ni.com

This launches a Web browser and displays the Web Server
Configuration page. You can also browse to
http://localhost:3580 and select the Web Server
Configuration Extension from the icons on the left-hand side.

❑ Ensure that the port for the Application Web Server is set to 8080
and the Enabled box is checked as shown in Figure 6-7.

Figure 6-7. Web Server Configuration

❑ Close the Web browser and click the OK button in the Options
dialog box.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-7 LabVIEW Connectivity Exercises

11. Deploy your Web service.

❑ In the LabVIEW Project Explorer, right-click the My Math Web
Service build specification and select Deploy from the shortcut
menu, as shown in Figure 6-8.

Figure 6-8. Deploy Web Service

❑ When the Deployment Progress dialog box shows that deployment
completed successfully, click the Close button.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-8 ni.com

Testing
1. Open a Web browser and point it to your Web service at the

following URL:

http://localhost:8080/math/add/3.25/4.5

❑ This invokes the Web service, which runs your add.vi, passing the
values of 3.25 and 4.5. The sum, 7.75 should display as shown in
Figure 6-9.

Figure 6-9. Result of Add Method Invoked by Math Web Service

2. Try passing different numbers, both integers and floating point numbers.

3. Try passing a different number of arguments: one, zero, or more than
two.

4. Close your Web browser.

End of Exercise 6-1

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-9 LabVIEW Connectivity Exercises

Exercise 6-2 Accept POST Data from an HTML Form

Goal
Add a new version of the /math/add method that allows the user to fill out
an HTML form with the two numbers to be summed. You will learn to add
static documents to a Web service.

Scenario
You want to add an HTML form to your service and invoke the /math/add
method from the form.

Design
You will edit an HTML form using Windows Notepad or another text editor
and add this to a new Virtual Folder in your LabVIEW Project.

You will configure the Web Service Build Specification to include the folder
and its contents (the HTML file) when building the Web service.

You will write a new VI called add-by-post.vi that uses VIs from the
Web Service palette to read variables from the HTML form to get the
two numbers that are to be summed, then update the Build Specification
with a new version of the /math/add method that is invoked in response to
a POST instead of the GET that you used in Exercise 6-1.

Finally, you will load the form in a Web browser and test that the new
service works as expected.

Implementation
1. Open <Exercises>\LabVIEW Connectivity\Web Services\

Math Web Service.lvproj.

2. Add a virtual folder to the project for your html documents.

❑ Right-click My Computer and select New»Virtual Folder from
the shortcut menu. Name the folder html to refer to the static HTML
documents it is intended to contain.

❑ Right-click the html folder and select Add»File from the shortcut
menu.

❑ Browse to <Exercises>\LabVIEW Connectivity\Web
Services and select test_form.html and click the Add File
button.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-10 ni.com

3. View the HTML form that will invoke the /math/add method.

❑ Open test_form.html in Internet Explorer or another Web
browser.

❑ Select View»Source.

Tip If the menu bar is not displayed in Internet Explorer, press the <Alt> key.

❑ Look at the <form action="/math/add-by-post"> tag.

– "/math/add-by-post" is a relative path that includes the
Web service name (math) and Web method (add-by-post).

– The Web method is set to POST.

❑ Look at the <input type="text" name="a"> tag.

– "a" is a variable name and the variable is text. In LabVIEW, text
is a string type.

❑ Verify that your project resembles Figure 6-10.

Figure 6-10. Math Web Service Project with Auto-Populated HTML Folder

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-11 LabVIEW Connectivity Exercises

4. Create a VI to interact with your HTML form.

❑ Add a new VI to your Math Web Service LabVIEW Project and save
it to <Exercises>\LabVIEW Connectivity\Web Services\
add-by-post.vi.

5. Create the front panel as shown in Figure 6-11 using the following
items.

Figure 6-11. Add-by-post VI Front Panel

❑ Numeric Control—Set the representation to U32 and label the
control httpRequestID (the name and data type must match
exactly).

❑ Numeric Indicator—Set representation to DBL and label the
indicator result

❑ Configure the connector pane with an input terminal connected to
the httpRequestID control and an output terminal connected to the
result indicator, as shown in Figure

6. Create the block diagram as shown in Figure 6-12 using the following
items:

Figure 6-12. Add-by-post VI Block Diagram

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-12 ni.com

❑ Two Read Form Data VIs

– Wire String Constants with values of a and b to the key inputs
of VIs.

This tells the VI to read the values of the variables with these
names from the HTML form you created earlier.

❑ Two Scan From String functions

– Wire String Constants with a value of %f to the format string
inputs of each of these functions.

❑ Add function

❑ Complete the block diagram wiring as shown in Figure 6-12.

7. Save and close add-by-post.vi.

8. Add the add-by-post.vi and test_form.html to your build
specification.

❑ Open My Math Web Service build specification in the Project
Explorer.

– Select the Source Files category and add the add-by-post.vi to
the Service VIs list.

– In the Configure RESTful VI dialog box, change the Output
format to Text, and then click the OK button.

– Move the html folder to the Always Included list.

❑ Select the URL Mappings category.

– Click the plus sign (+) to the right of the URL mappings list.

– Enter /html to add a new URL mapping for the static directory.

– With the /html mapping selected, select Static document in the
Mapping information section.

– Select the /add-by-post mapping and change the HTTP method
to POST.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-13 LabVIEW Connectivity Exercises

9. Add the test_form.html file to the build specification as shown in
Figure 6-13.

❑ Select the Destinations category.

– Click the plus sign (+) at the bottom of the Destinations list and
enter html in the Destination label field.

– Place a checkmark in the Preserve disk hierarchy checkbox.

Figure 6-13. Web Services Destinations Settings

10. Place all files inside the html folder into the newly-created html
destination.

❑ Select the Source File Settings category.

– Under Project Files, select the html folder and place a check in
the Set destination for all contained items checkbox.

– From the pull-down menu, select html.

– Place a checkmark in the Set save settings for all contained
items checkbox and the Use default save settings checkbox.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-14 ni.com

– The completed form should resemble Figure 6-14.

Figure 6-14. Source File Settings

11. Build and deploy the Web service.

Testing

1. Open your Web browser and load the HTML form you created earlier.

❑ Enter the following URL:

http://localhost:8080/math/html/test_form.html

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-15 LabVIEW Connectivity Exercises

2. Enter numbers into each field and click the Submit Query button.

Your new VI should be invoked and the result displayed, as shown in
Figure 6-15 and Figure 6-16.

Figure 6-15. Add-by-post Submit Query

Figure 6-16. Add-by-post Result

3. Close your Web browser.

End of Exercise 6-2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-16 ni.com

Exercise 6-3 Generate Image with Web Method

Goal
Add a new /math/get_waveform_data method to your previously
created Web service. This method will generate an image of an indicator and
download it as a .png file. This will demonstrate the creation and use of
Web services that use Stream Output rather than Terminal Output. Stream
Output mode puts the Web service developer in complete control of the data
sent back from the Web service.

Scenario
You want to display the image of a waveform graph control on a Web page.

Design
You will create a VI that accepts a set point via an input terminal, assigns
that set point to a slider control, captures the image of that slider control,
converts it into a .png file, and downloads the image to the browser with
the image/png MIME type.

Then, you will invoke the method from a Web browser and see the image
displayed set to the correct value.

Implementation
1. Open <Exercises>\LabVIEW Connectivity\Web Services\

Math Web Service.lvproj.

2. Create a VI to display an image in a Web browser.

❑ Add a new VI in your Math Web Service LabVIEW Project and save
it to <Exercises>\LabVIEW Connectivity\Web Services\
get_waveform_data.vi.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-17 LabVIEW Connectivity Exercises

3. Create the front panel as shown in Figure 6-17, using the following
items.

Figure 6-17. get_waveform_data VI Front Panel

❑ Numeric Control—set the representation to U32 and label it
httpRequestID (the name and data type must match exactly)

❑ Numeric Control—set the representation to DBL and label it
frequency

❑ Waveform Graph

❑ Configure the connector pane with input terminals connected to the
httpRequestID and frequency controls. Do not connect any output
terminals.

4. Configure the block diagram as shown in Figure 6-18 using the
following items.

Figure 6-18. get_waveform_data Block Diagram

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-18 ni.com

❑ Flat Sequence Structure with two frames

❑ Sawtooth Waveform VI

❑ Set HTTP Response MIME Type VI

❑ Write Response VI

❑ LV Image to PNG Data VI

❑ In the first frame of the Flat Sequence Structure, wire the frequency
terminal to the frequency input of the Sawtooth Waveform VI.

❑ Wire the Sawtooth Waveform signal out to the Waveform Graph
terminal.

❑ In the second frame, wire the httpRequestID control terminal to the
Set HTTP Response MIME Type VI.

❑ Create a constant from the MIME type terminal and set it to
image/png.

❑ Wire the httpRequestID to the httpRequestID input terminal on
the Write Response VI.

❑ Right-click the Waveform Graph indicator terminal and select
Create»Invoke Node»Get Image from the shortcut menu. Place
the Invoke Node in the second frame.

– Wire the Image Data output of the Waveform Graph Invoke
Node to image data input of the LV Image to PNG Data VI.

❑ Wire the png data output of the LV Image to PNG Data VI to the
response string input of the Write Response VI.

5. Save and close the VI.

6. Add the get_waveform_data.vi to the build specification.

❑ Open the My Math Web Service build specification in the Project
Explorer.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-19 LabVIEW Connectivity Exercises

❑ Select the Source Files category.

– Add the get_waveform_data.vi to the list of Service VIs.

– In the Configure RESTful VI dialog box, set the Output Type
to Stream, and then click the OK.

❑ Select the URL Mappings category

– Notice that the build specification has automatically created a
new URL mapping for the new VI, complete with a
:frequency placeholder to map a parameter from the URL to
the frequency control.

– Ensure that HTTP method is set to GET. The completed page
should resemble Figure 6-19.

Figure 6-19. URL Mappings Settings for get_set_point_image

7. Build and deploy the Web service.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-20 ni.com

Testing
1. Open your Web browser and enter the URL for your new Web method:

http://localhost:8080/math/get_waveform_data/10

2. Notice the waveform graph displayed in your Web browser.

3. Enter different values as the final parameter of the URL and notice that
the waveform graph displays the results.

End of Exercise 6-3

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-21 LabVIEW Connectivity Exercises

Exercise 6-4 Create an HTTP Client in LabVIEW

Goal
Use the HTTP Client VIs in LabVIEW to communicate with the Web
methods you created in Exercise 6-3.

Scenario
You have two methods that belong to a Web service running on your local
server. Create a single VI that uses the HTTP Client API to communicate
with these Web methods.

Design
Using the GET VI and POST VI from the HTTP Client API to communicate
with two Web methods in the Web service mathWS. You will perform the
following actions.

• Use the GET and POST VIs to establish communication with the math
Web service.

• Use VIs from the String palette to create a UI for changing the
parameters sent to the Web Server from the HTTP VIs

Inputs and Outputs

Table 6-1. HTTP Client Call Add Method Inputs and Outputs

Type Name Properties Default Value

Enum HTTP Method U16 GET

String Control Root URL String — http://localhost:8080/math/

Numeric Control Input 1 DBL 0

Numeric Control Input 2 DBL 0

String Indicator Response Body — Empty

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-22 ni.com

Implementation

1. Open a blank VI and save it as HTTP Client Call Add Method.vi
in the <Exercises>\LabVIEW Connectivity\HTTP Client
directory.

2. Create the front panel shown in Figure 6-20 using the following items.

Figure 6-20. HTTP Client Call Add Method Front Panel

❑ Enum—labeled HTTP Method with two items, GET and POST

❑ String Control—labeled Root URL String

– Enter http://localhost:8080/math/ in the control and
then right-click the control and select Data Operations»Make
Current Value Default

❑ Two Numeric Controls—Set the representation to DBL

– Label one control Input 1

– Label the second control Input 2

❑ String Indicator—labeled Response Body

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-23 LabVIEW Connectivity Exercises

In the following steps, you complete the block diagram shown in
Figure 6-21 and Figure 6-22.

Figure 6-21. HTTP Client Call Add Method Block Diagram—GET Case

Figure 6-22. HTTP Client Call Add Method Block Diagram—POST Case

3. Complete the GET case.

❑ Place a Case structure on the block diagram.

– Wire the HTTP Method enum to the Case Selector of the Case
structure.

– Select the GET case.

❑ Place the following VIs on the block diagram.

– OpenHandle.vi

– GET.vi

– CloseHandle.vi

– Simple Error Handler.vi

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-24 ni.com

❑ Place a Format Into String function in the Case structure.

– Expand the function to add a second input parameter.

– Wire a constant with a value of add/%f/%f into the format
string input.

❑ Wire the GET case as shown in Figure 6-21.

4. Complete the POST case.

❑ Select the POST case.

❑ Place a POST.vi in the Case structure.

❑ Place a Format Into String function in the POST case.

– Wire a String Constant with a value of add-by-post to input 1
of the first Format Into String function.

– Wire a String Constant of %s to the format string input.

❑ Place a second Format Into String function in the POST case.

– Expand the function to add a second input parameter.

– Wire a String Constant with a value of a=%f&b=%f into the
format string input.

❑ Wire the POST case as shown in Figure 6-22.

Testing

1. Run the VI.

2. Enter values in the Input 1 and Input 2 controls.

3. Click the Run button.

4. Change the HTTP Method to POST and run the VI again.

5. Exchange IP addresses with a partner and change the Root URL String
to http://<partner’s IP address>/math/, and then run the VI
again.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

© National Instruments Corporation 6-25 LabVIEW Connectivity Exercises

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Web Services Exercises

LabVIEW Connectivity Exercises 6-26 ni.com

Notes

