
Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

LabVIEWTM Connectivity
Course Manual

Course Software Version 2010
May 2011 Edition
Part Number 325627A-01

LabVIEW Connectivity Course Manual

Copyright
© 2004–2011 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the USICopyrights.chm or the Copyrights topic in your software.

Xerces C++. This product includes software that was developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995–2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

b64. Copyright © 2004–2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995–2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999–2003 Boris Fomitchev

Trademarks
LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n
Worldwide Technical Support and Product Information
ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone
numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation iii LabVIEW Connectivity Course Manual

Contents

Student Guide
A. NI Certification ...v
B. Course Description ...vi
C. What You Need to Get Started ...vi
D. Installing the Course Software..vii
E. Course Goals...vii
F. Course Conventions ..viii

Lesson 1
Calling Shared Libraries in LabVIEW

A. Shared Libraries Overview ...1-2
B. Calling Shared Libraries ...1-2
C. Using the Import Shared Library Wizard ...1-12

Lesson 2
Using VI Server

A. Capabilities of the VI Server ..2-2
B. VI Server Programming Model ..2-4
C. VI Server Functions ..2-5
D. Remote Communication ...2-14
E. Dynamically Calling and Loading VIs ...2-15

Lesson 3
Using .NET and ActiveX Objects in LabVIEW

A. Using .NET Objects in LabVIEW ..3-2
B. Accessing .NET in LabVIEW ..3-3
C. Registering .NET Events ..3-5
D. Using ActiveX Objects in LabVIEW ...3-8
E. Using LabVIEW as an ActiveX Client...3-10
F. Using LabVIEW as an ActiveX Server ..3-14
G. ActiveX Events ...3-16

Lesson 4
Connecting to Databases

A. What is a Database? ..4-2
B. Database Standards ...4-3
C. Connecting to a Database ...4-5
D. Performing Standard Database Operations...4-11
E. Structured Query Language ..4-20

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Contents

LabVIEW Connectivity Course Manual iv ni.com

Lesson 5
Broadcasting Data Using UDP and Serving Data to a Client Using TCP

A. Broadcasting Data Overview ..5-2
B. Implementing Broadcast Models ..5-5
C. TCP Overview ..5-6
D. Implementing the Client/Server Model ..5-10

Lesson 6
Using LabVIEW Web Services

A. Web Services ..6-2
B. LabVIEW Web Services Overview..6-9
C. LabVIEW as an HTTP Client ...6-28

Appendix A
LabVIEW Connectivity Options

Appendix B
Additional Information and Resources

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation v LabVIEW Connectivity Course Manual

Student Guide

Thank you for purchasing the LabVIEW Connectivity course kit. This kit
contains the materials used in the two-day, hands-on LabVIEW Connectivity
course.

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. Visit ni.com/training to register for a course and to
access course schedules, syllabi, and training center location information.

A. NI Certification
The LabVIEW Connectivity course is part of a series of courses designed to
build your proficiency with LabVIEW and help you prepare for exams to
become an NI Certified LabVIEW Developer and NI Certified LabVIEW
Architect. The following illustration shows the courses that are part of
the LabVIEW training series. Refer to ni.com/training for more
information about NI Certification.

Advanced User

LabVIEW Core 1*

LabVIEW Core 2*

Certified LabVIEW
Architect Exam

New User Experienced User

Advanced Architectures
in LabVIEW

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

Courses

Certifications

Other Courses

Certified LabVIEW
Associate Developer Exam

LabVIEW Instrument Control

LabVIEW Machine Vision

Modular Instruments Series

LabVIEW FPGA

LabVIEW Real-Time

LabVIEW DAQ and Signal Conditioning

Managing Software
Engineering in LabVIEW

LabVIEW Performance

Object-Oriented Design
and Programming

in LabVIEW

LabVIEW Connectivity

Certified LabVIEW
Developer Exam

LabVIEW Core 3*

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Course Manual vi ni.com

B. Course Description
The LabVIEW Connectivity course teaches you how to use advanced
connectivity in VIs. This course manual assumes you are familiar with
Windows, that you have experience writing algorithms in the form of
flowcharts or block diagrams, and that you have taken the LabVIEW Core 1
and LabVIEW Core 2 courses or you are familiar with all the concepts
contained therein. This course also assumes that you have one year or more
of LabVIEW development experience.

In the course manual, each lesson consists of the following sections:

• An introduction that describes the purpose of the lesson and what
you will learn

• A discussion of the topics

• A summary or quiz that tests and reinforces important concepts and
skills taught in the lesson

In the exercise manual, each lesson consists of the following sections:

• A set of exercises to reinforce topics

• Self-study and challenge exercise sections or additional exercises

Note For course manual updates and corrections, refer to ni.com/info and enter the
Info Code lvconn.

C. What You Need to Get Started
Before you use this course manual, make sure you have the following items:

❑ Windows XP or later installed on your computer

❑ LabVIEW Professional Development System 2010 or later

❑ Database Connectivity Toolkit

❑ LabVIEW Connectivity course CD, containing the following folders:

Directory Description

Exercises Contains all the VIs and support files needed
to complete the exercises in this course

Solutions Contains completed versions of the VIs you
build in the exercises for this course

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation vii LabVIEW Connectivity Course Manual

D. Installing the Course Software
Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Connectivity
Course Material Setup dialog box appears.

2. Click Install LabVIEW Connectivity.

3. Follow the onscreen instructions to complete installation and setup.

Exercise files are located in the <Exercises>\LabVIEW Connectivity
folder.

Tip Folder names in angle brackets, such as <Exercises>, refer to folders in the root
directory of your computer.

Repairing or Removing Course Material
You can repair or remove the course material using the Add or Remove
Programs feature on the Windows Control Panel. Repair the course
manual to overwrite existing course material with the original, unedited
versions of the files. Remove the course material if you no longer need the
files on your computer.

E. Course Goals
This course presents the following topics:

• Networking technologies

– External procedure call model

– Broadcast model

– Client/server model

• Implementing the external procedure call model

– Calling shared libraries from LabVIEW

– Programmatically controlling VIs using the VI Server

• Using the VI Server functions to programmatically load and
operate VIs and LabVIEW itself

– Using ActiveX objects in LabVIEW

• Using LabVIEW as an ActiveX client

• Using LabVIEW as an ActiveX server

• ActiveX events

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

LabVIEW Connectivity Course Manual viii ni.com

– Using .NET Objects in LabVIEW

• Using LabVIEW as a .NET client

• .NET events

• Implementing the broadcast model

– Using the UDP VI and functions to create a UDP multicast session

• Implementing the client/server model

– Using the TCP/IP VI and functions to communicate with other
applications locally and over a network

• Using LabVIEW Web services and HTTP Client VIs

This course does not present any of the following topics:

• Basic principles of LabVIEW covered in the LabVIEW Core 1 and
LabVIEW Core 2 courses

• Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

• Developing a complete VI for any student in the class; refer to the
NI Example Finder, available by selecting Help»Find Examples,
for example VIs you can use and incorporate into VIs you create

F. Course Conventions
The following conventions are used in this course manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
AO <3..0>.

[] Square brackets enclose optional items—for example, [response].

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Student Guide

© National Instruments Corporation ix LabVIEW Connectivity Course Manual

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace Italic text in this font denotes text that is a placeholder for a word or value
italic that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 1-1 LabVIEW Connectivity Course Manual

1
Calling Shared Libraries in LabVIEW

You can use LabVIEW to call code written in other languages in the
following ways:

• Using platform-specific protocols.

• Using the Call Library Function Node to call the following types of
shared libraries:

– Dynamic Link Libraries (DLL) on Windows

– Frameworks on Mac OS

– Shared Libraries on Linux

The scope of this course covers using the Call Library Function Node to call
Dynamic Link Libraries (shared libraries) in Windows. Refer to the
LabVIEW Help for information about other ways to call code written in
other languages from LabVIEW.

Topics
A. Shared Libraries Overview

B. Calling Shared Libraries

C. Using the Import Shared Library Wizard

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-2 ni.com

A. Shared Libraries Overview
On Windows, a shared library is called a DLL. A shared library is a library
of executable functions or data that can be used by a Windows application.
A shared library provides one or more functions that a program can access
by creating a static or dynamic link to the shared library. A static link
remains constant during program execution and a dynamic link is created by
the program as needed. The shared library is stored as a binary file.

You can use any language to write shared libraries as long as the shared
libraries can be called using one of the calling conventions LabVIEW
supports, either stdcall or C. Examples and troubleshooting information
help you build and use shared libraries and successfully configure the Call
Library Function Node in LabVIEW. The general methods described here
for DLLs also apply to other types of shared libraries.

LabVIEW loads shared libraries in a unique application instance. Opening
a shared library in a unique application instance prevents naming conflicts
with VIs in the shared library, and VIs outside of the shared library.

Refer to the labview\examples\dll directory for examples of using
shared libraries.

B. Calling Shared Libraries
This section describes the process of using a shared library in LabVIEW.

Describing and Defining Shared Libraries
You can call most standard shared libraries with the Call Library Function
Node. On Windows, these shared libraries are DLLs, on Mac OS, they are
Frameworks, and on Linux, they are Shared Libraries. The Call Library
Function Node supports a large number of data types and calling
conventions. You can use the Call Library Function Node to call functions
from most standard and custom-made libraries.

Purposes, Advantages, and Limitations of DLLs
Most modern development environments provide support for creating
DLLs.

In some cases, you may want to perform additional tasks at certain execution
times. For this purpose, the Call Library Function Node provides three entry
points—Reserve, Unreserve, and Abort. For example, you may want to
initialize data structures at reserve time for the Call Library Function Node or
free private data when the Call Library Function Node is unreserved or
aborted. For these situations, you can write and export routines from your

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-3 LabVIEW Connectivity Course Manual

DLL that LabVIEW calls at these predefined times. You can configure these
entry points on the Callbacks page of the Call Library Function dialog box.

The Call Library Function Node is most appropriate when you have existing
code you want to call, or if you are familiar with the process of creating
standard shared libraries. Because a library uses a format standard among
several development environments, you can use almost any development
environment to create a library that LabVIEW can call. Refer to the
documentation for your compiler to determine whether you can create
standard shared libraries.

The LabVIEW compiler can generate code fast enough for most
programming tasks. You can call shared libraries from LabVIEW to
complete tasks for which another language might be better suited.

Shared libraries execute synchronously, so LabVIEW cannot use the
execution thread used by these objects for any other tasks.

LabVIEW cannot interrupt object code that is running, so you cannot reset
a VI that is running a shared library until execution completes. If you want
to write a shared library that performs a long task, be aware that LabVIEW
cannot perform other tasks in the same thread while these objects execute.

Method for Calling Shared Libraries
Use the Call Library Function Node to directly call a Windows DLL, a Mac
OS Framework, or a Linux Shared Library function. With this node, you can
create an interface in LabVIEW to call existing libraries or new libraries
specifically written for use with LabVIEW. National Instruments
recommends using the Call Library Function Node to create an interface to
external code.

Note Be aware when using the Call Library Function Node or writing code that is called
by the Call Library Function Node that LabVIEW reserves Windows messages
WM_USER through WM_USER+99 for internal use only.

Right-click or double-click the Call Library Function Node and select
Configure from the shortcut menu to display the Call Library Function
dialog box. Use the Call Library Function dialog box to specify the
library, function, parameters, return value for the node, calling conventions,
and function callbacks on Windows. When you click the OK button in the
Call Library Function dialog box, LabVIEW updates the Call Library
Function Node according to your settings, displaying the correct number of
terminals and setting the terminals to the correct data types.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-4 ni.com

Note If you want to run applications or shared libraries created with different versions
of LabVIEW on the same computer, the computer must have a version of the LabVIEW
Run-Time Engine that is compatible with each version of LabVIEW used to create the
applications or shared libraries.

Setting the Calling Convention
Calling conventions define the way to pass information from a piece of code
to a function. Use the Calling convention control on the Function tab of
the Call Library Function dialog box to select the calling convention for
the function. The default calling convention is C. The C calling convention
allows variable-length parameter lists and passes parameters onto the stack
in reverse order. This can incur a slight speed decrease.

(Windows) You also can use the standard Windows calling convention,
stdcall. When you use stdcall, parameters are passed by a function
onto the stack in the same order as they appear in the function declaration.
The number of parameters passed to the function is fixed.

Refer to the documentation for the DLL you want to call for the appropriate
calling conventions.

Caution Using the incorrect calling convention can cause an irregular shutdown of
LabVIEW.

Configuring Parameters
To configure parameters for the Call Library Function Node, navigate to the
Parameters tab of the Call Library Function dialog box. Initially, the Call
Library Function Node has no parameters and has a return type of Void.

As you configure parameters, the Function prototype text box displays the
C prototype for the function you are building. This text box is a read-only
display.

Note If a type library is found, the parameters are updated to match the parameters
found in the type library for the selected function. The order of the parameters must
match the prototype of the function found in the library.

The return type for the Call Library Function Node returns to the right
terminal of the top terminal. If the return type is Void, the top terminal is
unused. Each additional pair of terminals corresponds to a parameter in the
Parameters list of the Call Library Function Node. To pass a value to the
Call Library Function Node, wire to the left terminal of a terminal pair. To
read the value of a parameter after the Call Library Function Node call, wire
from the right terminal of a terminal pair. The following illustration shows

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-5 LabVIEW Connectivity Course Manual

a Call Library Function Node that has a return type of Void, a string
parameter, and a numeric parameter.

Return Type
For return type, you can set Type to Void, Numeric, or String. Void is only
available for return type and is not available for other parameters. Use Void
for the return type if your function does not return any values.

Even if the function you call returns a value, you can use Void for the return
type. When the function returns a value and you select Void as the return
type, the value returned by the function is ignored.

Note The function you are calling can return a C string pointer. If you want to deallocate
the pointer, you must do so explicitly as LabVIEW does not automatically deallocate the
C string pointer for you.

Tip If the function you are calling returns a data type not listed, choose a return data type
the same data size as the one returned by the function. For example, if the function returns
a char data type, use an 8-bit unsigned integer. A call to a function in a DLL cannot return
a pointer because there are no pointer types in LabVIEW. However, you can specify the
return type as an integer that is the same size as the pointer. LabVIEW then treats the
address as a simple integer, and you can pass it to future DLL calls.

Adding and Deleting Parameters
To add parameters to the Call Library Function Node, navigate to the
Parameters tab of the Call Library Function dialog box. Click the Add a
parameter button. To remove a parameter, click the Delete the selected
parameter button. To change the order of the parameters, use the Move the
selected parameter up one and Move the selected parameter down
one buttons to the right of the parameter list.

Editing Parameters
Select the parameter from the Parameters list to edit the data type or
parameter name. You can edit the parameter name to something more
descriptive, which makes it easier to distinguish between parameters. The
parameter name does not affect the call, but it is propagated to output wires.
Also, you can edit all fields in the Current parameter section for the
selected parameter.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-6 ni.com

Selecting the Parameter Type
Use the Type pull-down menu to indicate the data type of each parameter.
You can select from the following parameter types:

• Numeric

• Array

• String

• Waveform

• Digital Waveform

• Digital Data

• ActiveX

• Adapt to Type

• Instance Data Pointer

After you select an item from the Type pull-down menu, you see more items
you can use to indicate details about the parameter and about how to pass
the data to the library function. The Call Library Function Node has a
number of different items for parameter types because of the variety of data
types required by different libraries. Refer to the documentation for the
library you call to determine which parameter types to use.

The following sections discuss the different parameter types available from
the Type pull-down menu.

(Windows) Refer to the labview\examples\dll\data passing\
Call Native Code.llb for an example of using data types in shared
libraries.

Numeric
For numeric data types, you must indicate the exact numeric type by using
the Data Type pull-down menu. You can choose from the following data
types:

• 8-, 16-, 32-, 64-bit, and pointer-sized signed and unsigned integers

• 4-byte, single-precision numbers

• 8-byte, double-precision numbers

If you use pointer-sized integers, the Call Library Function Node adapts to
the bitness of the version of LabVIEW it is being executed on and passes
data of the appropriate size to and from the library function. LabVIEW
represents the data in 64 bits and, on 32-bit LabVIEW, translates the
numeric data types to 32-bit integer types.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-7 LabVIEW Connectivity Course Manual

Note You can pass extended-precision numbers and complex numbers by selecting
Adapt to Type from the Type pull-down menu. However, standard libraries generally
do not use extended-precision numbers and complex numbers.

Use the Pass pull-down menu to indicate whether you want to pass the value
or a pointer to the value.

Array
Use the Data Type pull-down menu to indicate the data type of the array.
You can choose from the same data types available for numeric parameters.

Specify the dimensions of the array in Dimensions.

Use the Array format pull-down menu to make one of the following
choices:

• Array Data Pointer—passes a pointer to the array data, allowing the
called library to access the array data as the specified data type of the
array data.

• Array Handle—passes a pointer to a pointer to a four-byte value for
each dimension, followed by the data.

• Array Handle Pointer—passes a pointer to an array handle.

Use the Minimum size control to have LabVIEW check at run time that the
memory LabVIEW allocated for an array data pointer is at least the
Minimum size. To indicate the Minimum size of a 1D array, you can enter
a numeric value, or, if you configure an integer parameter in the Parameters
list, you can select the parameter from the pull-down menu. This option is
available only for one dimensional array data pointers.

Note If you pass in an array that is smaller than the Minimum size, LabVIEW enlarges
the size of the array to the minimum. However, if you pass in an array that is bigger than
the minimum, the array retains the larger size.

String
Use the String format pull-down menu to indicate the string format. You
can choose from the following string formats:

• C String Pointer—a string followed by a null character.

• Pascal String Pointer—a string preceded by a length byte.

• String Handle—a pointer to a pointer to four bytes for length
information, followed by string data.

• String Handle Pointer—a pointer to an array of string handles.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-8 ni.com

Select a string format that the library function expects. Most standard
libraries expect either a C string or a Pascal string. If the library function
you are calling is written for LabVIEW, you might want to use the String
Handle format. When configuring a Pascal string pointer, you must wire a
value to the string input on the block diagram. That value must be initialized
with enough characters to hold any new string that may be written to that
Pascal string. When configuring a C string pointer, you have two options:

• Wire a value to the string input that is initialized with enough characters
to hold any new string that may be written to that string.

• Specify the string size in the Minimum size pull-down menu on the
Parameters tab of the Call Library Function dialog box.

Use the Minimum size control to have LabVIEW check at run-time that the
memory LabVIEW allocated for a C string pointer is at least the Minimum
size. To indicate the Minimum size of a string, you can enter a numeric
value, or, if you configure an integer parameter in the Parameters list, you
can select the parameter from the pull-down menu. This option is available
only for C string pointers.

Note If you pass in a string that is smaller than the Minimum size, LabVIEW enlarges
the size of the string to the minimum. However, if you pass in a string that is bigger than
the minimum, the string retains the larger size.

String Options
LabVIEW stores strings as arrays, that is, structures pointed to by handles.
The Call Library Function Node works with C and Pascal-style string
pointers or LabVIEW string handles. The following illustration shows
an example of a LabVIEW string handle.

Think of a string as an array of characters. Assembling the characters in
order forms a string. LabVIEW stores a string in a special format in which
the first four bytes of the array of characters form a 32-bit signed integer
that stores how many characters appear in the string. Thus, a string with
n characters requires n + 4 bytes to store in memory. For example, the string
text contains four characters. When LabVIEW stores the string, the first
four bytes contain the value 4 as a 32-bit signed number, and each of the
following four bytes contains a character of the string. The advantage of this
type of string storage is that NULL characters are allowed in the string.
Strings are virtually unlimited in length, up to 231 characters.

String Data

t \04 t e x \00 \00 \00

String Length

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-9 LabVIEW Connectivity Course Manual

The Pascal string format is similar to the LabVIEW string format, but
instead of storing the length of the string as a 32-bit signed integer, it is
stored as an 8-bit unsigned integer. This limits the length of a Pascal-style
string to 255 characters. A graphical representation of a Pascal string
appears in the following illustration. A Pascal string that is n characters
long requires n + 1 bytes of memory to store.

C strings are probably the type of strings you deal with most often.
The similarities between the C-style string and normal numeric arrays in
C becomes much clearer when you notice that C strings are declared as
char *. Unlike LabVIEW and Pascal strings, C strings do not contain
information that indicates the length of the string. Instead, C strings use a
special NULL character to indicate the end of the string, as shown in the
following illustration. NULL has a value of zero in the ASCII character set.
Notice that this is the number zero and not the character 0.

In C, a string containing n characters requires n + 1 bytes of memory to
store, n bytes for the characters in the string and one additional byte for the
NULL termination character. The advantage of C-style strings is that they
are limited in size only by available memory. However, if you acquire data
from an instrument that returns numeric data as a binary string, as is
common with serial or GPIB instruments, values of zero in the string are
possible. For binary data where NULLs might be present, use an array of
8-bit unsigned integers or use a string handle. If you treat the string as a
C-style string, when the instrument returns a numeric value of zero, the
program assumes incorrectly that the end of the string has been reached.

Waveform
When you call a shared library that includes a waveform data type, you do
not have to specify a numeric value from the Data Type pull-down menu;
the default is 8-byte Double. However, you must specify Dimensions. If the
parameter is a single waveform, specify Dimensions as 0. If the parameter

String Length

String Data

t \04 t e x

NULL Character

String Data

t \00 t e x

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-10 ni.com

is an array of waveforms, specify Dimensions as 1. LabVIEW does not
support an array of waveforms with more than one dimension.

Digital Waveform
Specify Dimensions as 0 if the parameter is a single digital waveform.
Specify Dimensions as 1 if the parameter is an array of digital waveforms.
LabVIEW does not support an array of digital waveforms with more than
one dimension.

Digital Data
Specify Dimensions as 1 if the Parameter is an array of digital data.
Otherwise, specify Dimensions as 0. LabVIEW does not support an array of
digital data with more than one dimension.

Note You can pass waveforms, digital waveforms, and digital data through shared
libraries, but you cannot access the data inside the shared libraries.

ActiveX
Select one of the following items from the Datatype pull-down menu:

• ActiveX Variant Pointer—passes a pointer to ActiveX data.

• IDispatch* Pointer—passes a pointer to the IDispatch interface of an
ActiveX Automation server.

• IUnknown* Pointer—passes a pointer to the IUnknown interface of an
ActiveX Automation server.

Adapt to Type
Use Adapt to Type to pass arbitrary LabVIEW datatypes to DLLs. The
arbitrary LabVIEW data types are passed to DLLs in the following ways:

• Scalars are passed by reference. A pointer to the scalar is passed to the
library.

• Arrays and strings are passed according to the Data format setting. You
can choose from the following Data format settings:

– Handles by Value passes the handle to the library. The handle is not
NULL.

– Pointers to Handles passes a pointer tothe handle to the library. If
the handle is NULL, treat the handle as an empty string or array. To
set a value when the handle is NULL, you must allocate a new
handle.

– Array Data Pointer passes a pointer to the first element of the array,
allowing the called library to access the array data as the data type of
the array data.

• Clusters are passed by reference.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-11 LabVIEW Connectivity Course Manual

• Scalar elements in arrays or clusters are in line. For example, a cluster
containing a numeric is passed as a pointer to a structure containing a
numeric.

• Clusters within arrays are in line.

• Strings and arrays within clusters are referenced by a handle.

Note When one or more of the parameters of the function you want to call in a DLL are
of types that do not exist in LabVIEW, ensure that each parameter is passed to the
function in a way that allows the DLL to correctly interpret the data. Create a skeleton
.c file from the current configuration of the Call Library Function Node. By viewing the
.c file, you can determine whether LabVIEW will pass the data in a manner compatible
with the DLL function. You then can make any necessary adjustments.

Instance Data Pointer
Use Instance Data Pointer to access data allocated for each instance of the
Call Library Function Node. The Instance Data Pointer references a
pointer sized allocation that you may use at your own discretion. This
allocation is also passed to each of the callback functions on the Callbacks
tab.

Working with Unusual Data Types
You might encounter a function that expects data in a form that the Call
Library Function Node cannot pass. Specifically, the Call Library Function
Node does not support structures or arrays containing a pointer to other data
or structures containing flat arrays that can be variably sized. You can call a
function that expects an unsupported data type in the following ways:

• If the data contains no pointers, you might be able to use the Flatten To
String function to create a string containing the binary image of the data
required and pass this string as a C string pointer. You will probably
want to use the byteorder input to Flatten To String to specify that the
data be flattened in native byte order.

• Write a library function that accepts the data in the form used by
LabVIEW and builds the data structure expected by the other library.
This function then can call the other library and retrieve any returned
values before returning. Your function will probably accept the data
from the block diagram as Adapt to Type, so that any block diagram data
type can be passed.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-12 ni.com

Thread-Safe and Thread-Unsafe DLLs
You can select the thread to execute the library call from the Thread section
on the Function tab of the Call Library Function dialog box. The thread
options are Run in UI thread and Run in any thread. If you select Run in
UI thread, the Call Library Function Node switches from the thread the VI
is currently executing in to run in the LabVIEW user interface thread. If you
select Run in any thread, the Call Library Function Node continues in the
currently executing thread. By default, all Call Library Function Nodes run
in the LabVIEW user interface thread.

Before you configure a Call Library Function Node to run in any thread,
make sure that multiple threads can call the function simultaneously. In a
shared library, code can be considered thread-safe when:

• It does not store any global data, such as global variables, files on disk,
and so on.

• It does not access any hardware. In other words, the code does not
contain register-level programming.

• It does not make any calls to any functions, shared libraries, or drivers
that are not thread safe.

• It uses semaphores or mutexes to restrict access to global resources.

• It is called by only one non-reentrant VI.

Refer to the Execution Properties Page topic of the LabVIEW Help for more
information about reentrancy. Refer to the Benefits of Multithreaded
Applications topic of the LabVIEW Help for more information about
multithreading in LabVIEW.

To practice the concepts in this section, complete Exercise 1-1.

C. Using the Import Shared Library Wizard
Use the Import Shared Library wizard to create or update a LabVIEW
project library of wrapper VIs for functions in a Windows .dll file, a Linux
.so file, or a Macintosh .framework file. The Import Shared Library
wizard supports most C and C++ header files. The wrapper VIs the wizard
creates use the Call Library Function Node, which does not support the C++
this pointer or calling methods in C++ classes.

Note If you want to import a shared library file for an instrument driver, you can
download the LabVIEW Instrument Driver Import Wizard from the Instrument Driver
Network on ni.com.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-13 LabVIEW Connectivity Course Manual

The Import Shared Library wizard parses the header file, lists the
functions in the shared library, converts data types in the shared library to
LabVIEW data types, and generates a wrapper VI for each function. The
wizard saves the VIs in a LabVIEW project library that you can edit and
creates an HTML report about the generated library that you can launch
when you complete the wizard.

In the wizard, you can specify include paths and preprocessor definitions,
configure the individual VIs that wrap each function, and configure memory
allocation and error handling. The wizard also creates custom controls for
structure elements in the original functions and adds the controls to the
project library. You can use the custom controls to modify all the VIs in the
library that contain the corresponding data type.

You can run the wizard multiple times on the same shared library file. If you
select the Update VIs for a shared library option on the Specify Create
or Update Mode page, the wizard overwrites the previous version of the
project library file and the existing VIs within that file. If you choose not to
re-import generated VIs within the project library file, the VIs remain
unchanged in the directory. The wizard retains the most recent settings for
each individual function in a particular shared library. For example, if you
have a shared library that contains three functions, you might update only
the second function. The next time you run the wizard on that shared library
file, it retains the original settings for functions one and three and uses the
new settings for function two.

Select Tools»Import»Shared Library to launch the Import Shared
Library wizard. Follow the prompts to create wrapper VIs for shared
library files. You must provide the name of a shared library file and a header
(.h) file for the wizard to parse.

Refer to the Importing Functions from a Shared Library File topic of the
LabVIEW Help for step-by-step instructions for importing a shared library
and creating wrapper VIs.

Refer to the Import Shared Library Tutorial GUI VI in the labview\
examples\dll\regexpr directory for examples of using the Import
Shared Library wizard.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-15 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. Which of the following do you need to know to call a function in a
shared library?

a. Data type returned by the function

b. Calling convention

c. Development environment that created the shared library

d. Order of parameters to be sent to the function

2. You have inherited a DLL that accesses hardware and is known not to be
thread safe. Which configuration would you choose for your Call
Library Function Node?

a. Run in UI thread

b. Run in any thread

3. True or False? The only file the Import Shared Library wizard
requires is a shared library.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

© National Instruments Corporation 1-17 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. Which of the following do you need to know to call a function in a
shared library?

a. Data type returned by the function

b. Calling convention

c. Development environment that created the shared library

d. Order of parameters to be sent to the function

2. You have inherited a DLL that accesses hardware and is known not to be
thread safe. Which configuration would you choose for you Call Library
Function Node?

a. Run in UI thread

b. Run in any thread

3. True or False? The only file the Import Shared Library wizard
requires is a shared library.

False. The Import Shared Library requires both a shared library
and its header file.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 1 Calling Shared Libraries in LabVIEW

LabVIEW Connectivity Course Manual 1-18 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 2-1 LabVIEW Connectivity Course Manual

2
Using VI Server

The VI Server allows you to programmatically control VIs and LabVIEW.
You can access the VI Server through block diagrams, ActiveX technology,
and the TCP protocol. You can perform VI Server operations on a local
computer or remotely across a network.

Topics
A. Capabilities of the VI Server

B. VI Server Programming Model

C. VI Server Functions

D. Remote Communication

E. Dynamically Calling and Loading VIs

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-2 ni.com

A. Capabilities of the VI Server
The VI Server is an object-oriented, platform-independent technology that
provides programmatic access to LabVIEW and LabVIEW applications.
The VI Server is a set of functions that allows you to dynamically control
front panel objects, VIs, and the LabVIEW environment. These functions
are located in the Functions»Application Control subpalette. Use the
VI Server to perform the following programmatic operations:

• Edit the properties of a VI and LabVIEW. For example, you can
dynamically determine the location of a VI window or scroll a front
panel so that a part of it is visible. You also can programmatically save
any changes to disk.

• Dynamically load VIs into memory when another VI needs to call them,
rather than loading all subVIs when you open a VI.

• Call a VI dynamically.

• Call a VI remotely.

• Control a LabVIEW application from another program.

• Update the properties of multiple VIs rather than manually using the
File»VI Properties dialog box for each VI.

• Retrieve information about an application instance, such as the version
number and edition. You also can retrieve environment information,
such as the platform on which LabVIEW is running.

• Create a plug-in architecture for the application to add functionality to
the application after you distribute it to customers. For example, you
might have a set of data filtering VIs, all of which take the same
parameters. By designing the application to dynamically load these VIs
from a plug-in directory, you can ship the application with a partial set
of these VIs and make more filtering options available to users by
placing the new filtering VIs in the plug-in directory.

Note The VI Server also allows you to programmatically inspect, modify and create
block diagram options using VI Scripting. Refer to the Programatically Scripting VIs in
LabVIEW topic of the LabVIEW Help.

VI Server Clients
The VI Server has a set of methods and properties that are accessible
through the different clients, as shown in Figure 2-1. The different client
interfaces are ActiveX Automation client, TCP/IP client, and LabVIEW
functions that allow LabVIEW VIs to access the VI Server.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-3 LabVIEW Connectivity Course Manual

Figure 2-1. VI Server Clients

• Block Diagram Access—LabVIEW includes a set of built-in functions
located on the Application Control palette you can use to access the
VI Server on a local or remote computer.

• Network Access—If you are using the VI Server on a remote computer,
LabVIEW uses the TCP/IP protocol as the means of communication.

• ActiveX Interface—ActiveX clients such as Visual Basic, Visual C++,
and Excel applications can use the VI Server to run LabVIEW
applications.

Application and VI Objects
You access VI Server functionality through references to two main classes
of objects—the Application object and the VI object. After you create a
reference to one of these objects, you can pass the reference to a VI or
function that performs an operation on the object.

An Application reference refers to a local or remote LabVIEW application
instance. You can use Application properties and methods to change
LabVIEW preferences and return system information. A VI refnum refers
to a VI in an application instance.

With a reference to an application instance, you can retrieve information
about the LabVIEW environment, such as the platform on which LabVIEW
is running, the version number, or a list of all VIs currently in memory.
LabVIEW opens a new application instance when you create a LabVIEW
project or a target for a LabVIEW project. You also can set information,
such as the list of VIs exported to other application instances. Because you
can open multiple application instances at once, you must use an application
reference when you are using VI Server properties and methods in one
application instance, and you want to interact with a different application
instance.

VI Server

ActiveX Interface
Block

Diagram Functions
TCP/IP

ActiveX
Automation Client

TCP/IP ClientLabVIEW

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-4 ni.com

When you create a refnum to a VI, LabVIEW loads the VI into memory.
With a refnum to a VI, you can update all the properties of the VI available
in the File»VI Properties dialog box as well as dynamic properties, such as
the position of the owning pane. You also can print the VI documentation
programmatically, save the VI to another location, and export and import its
strings to translate into another language.

For more information about VI references, refer to the VI Properties and
VI Methods topics of the LabVIEW Help.

B. VI Server Programming Model
The programming model for VI Server applications is based on refnums.
Refnums also are used in file I/O, network connections, and other objects in
LabVIEW.

Typically, you open a refnum to an application instance or to a VI. You then
use the refnum as a parameter to other VIs. The VIs get (read) or set (write)
properties, execute methods, or dynamically load and call a referenced VI.
Finally, you close the refnum, which releases the referenced object.

Figure 2-2 illustrates the VI Server programming model.

Figure 2-2. VI Server Programming Model

Complete the following steps to create a VI Server application.

1. (Optional) Configure the VI Server to allow the TCP/IP protocol. This
allows other LabVIEW applications or other application instances in the
LabVIEW application to communicate with this LabVIEW.

2. (Optional) Use the Open Application Reference function to open a
reference to a local or remote application instance.

Note If you have multiple application instances open simultaneously, such as if you are
working with a LabVIEW project or targets of a LabVIEW project, there can be multiple
VI Servers listening on different ports. Open an application reference to a specific
application instance by stating the machine name and the port or service name.

Create
Reference
to Object

Operate on
Properties
or Methods

Close
Reference
to Object

Check for
Errors

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-5 LabVIEW Connectivity Course Manual

3. Use the Open VI Reference function to open a reference to a VI on the
local or remote computer that already exists in memory for the
application instance, to dynamically load a VI from disk, or to
dynamically load a VI from disk.

4. Use the Property Node to get or set properties or the Invoke Node to
invoke methods.

You also can use a Call By Reference Node to call a dynamically loaded
VI. The Call By Reference Node requires a strict VI reference.

5. Use the Close Reference function to close any open references.

6. Check for errors.

Refer to labview\examples\viserver for examples of using the
VI Server.

C. VI Server Functions
Use the following Application Control functions and nodes to build
VI Server applications:

• Open Application Reference—Opens a reference to a local or remote
application instance.

• Open VI Reference—Opens a reference to a VI on the local or remote
computer or dynamically loads a VI from disk.

• Property Node—Gets and sets VI, object, or application properties.

• Invoke Node—Invokes methods on a VI, object, or application.

• Call By Reference Node—Calls a dynamically loaded VI.

• Close Reference—Closes open references to the VI, object, or
application you accessed using the VI Server.

• Static VI Reference—Maintains a static reference to a VI.

Open Application Reference Function
The Open Application Reference function returns a reference to a VI Server
application instance running on the specified computer. If you specify an
empty string for machine name, the function returns a reference to the local
LabVIEW application instance in which this function is running. If you do
specify a machine name, the function attempts to establish a TCP
connection with a remote VI Server on that machine on the specified port.
machine name can be in dotted decimal notation, such as
123.23.45.100, or domain name notation, such as
remotemachine.ni.com.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-6 ni.com

The port number or service name input can accept a numeric or a string
input. The default is numeric. port number or service name is the port
number on which the remote LabVIEW application is listening. If you
specify a service name, LabVIEW queries the NI Service Locator for the
port number that the server registered. The default is to use the default VI
Server listener port number (3363).

You use the application reference output of the function as an input to
Property Nodes and Invoke Nodes to get or set properties and invoke
methods on the LabVIEW application. You also use application reference
as an optional input to the Open VI Reference function to get references to
VIs that are running in the LabVIEW application.

Open VI Reference Function
The Open VI Reference function returns a reference to a VI, custom control,
or global variable specified by a name string or path to the location of the VI
on disk.

You can get references to VIs in another LabVIEW application instance by
wiring an application reference, obtained from the Open Application
Reference function, to this function. If you do not wire data to the application
reference input unwired, the Open VI Reference function refers to the
application instance the Open VI Reference function is running in.

Property Nodes
Use the Property Node to get and set various properties of an application or
VI. Select properties from the node by using the Operating tool to click the
property terminal or by right-clicking the white area of the node and
selecting Properties from the shortcut menu. You also can create an
implicitly linked Property Node by right-clicking a front panel object,
selecting Create»Property Node, and selecting a property from the
shortcut menu.

The following are examples of how properties can enhance ease of use in an
application or VI:

• Set the front panel window size.

• Set the VI window title.

You can read or write multiple properties using a single node. However,
some properties are not readable and some are not writable. Use the
Positioning tool to resize the Property Node to add new terminals. A small
direction arrow to the right of the property indicates a property you read. A
small direction arrow to the left of the property indicates a property you
write. Right-click the property and select Change to Read or Change to
Write from the shortcut menu to change the operation of the property.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-7 LabVIEW Connectivity Course Manual

The Property Node executes from top to bottom. The node does not execute
if an error occurs before it executes, so always check for the possibility of
errors. If an error occurs in a property, LabVIEW ignores the remaining
properties and returns an error. If you right-click the Property Node and
select Ignore Errors inside Node, LabVIEW executes the remaining
properties on the Property Node. The Property Node returns only the first
error. The error out cluster contains information about which property
caused the error.

Invoke Nodes
Use the Invoke Node to perform actions, or methods, on an application or
VI. Unlike the Property Node, a single Invoke Node executes only a single
method on an application or VI. Select a method by using the Operating tool
to click the method terminal or by right-clicking the white area of the node
and selecting Methods from the shortcut menu. You also can create an
implicitly linked Invoke Node by right-clicking a front panel object,
selecting Create»Invoke Node, and selecting a method from the shortcut
menu.

Close Reference Function
The Close Reference function releases the application or VI reference. If
you close a reference to a specified VI and there are no other references to
that VI, LabVIEW can unload the VI from memory.

This function does not prompt you to save changes to the VI. By design,
VI Server actions should avoid causing user interaction. You must use the
Save:Instrument method to save the VI programmatically.

The VI stays in memory until you close the reference and until the VI meets
the following conditions:

1. There are no other open references to the referenced VI.

2. The front panel of the VI is not open.

3. The VI is not a subVI of another VI in memory.

4. The VI is not a member of an open project library.

Note If you do not close the application or VI reference with this function, the
reference closes automatically when the top-level VI associated with this function
finishes execution. However, it is a good programming practice to conserve the
resources involved in maintaining the connection by closing the reference when
you finish using it.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-8 ni.com

Static VI Reference
The Static VI Reference function acts as a subVI and appears in the VI
hierarchy of the top-level VI. By default, the output is a generic VI
reference.

You can change the output of this function to a strictly typed VI reference.
Right-click the function and select Strictly Typed VI Reference from the
shortcut menu to change the output. A red star in the center of the function
icon indicates the reference is strictly typed. The strictly typed VI reference
identifies the connector pane of the VI you are calling. You can create a
strictly typed VI reference only from a VI or VI template, not from a
polymorphic VI or other non-VI file such as a global variable or custom
control.

Use a strictly typed VI reference if you want to call the referenced VI with
the Call By Reference Node. When you create a strictly typed VI reference,
you cannot wire vi reference to the Run VI method. You cannot use the Run
VI method to run a VI that is already reserved for execution by another VI.
A strictly typed static VI reference also reserves any subVIs when a
top-level VI is reserved, thus making it ineligible for the Run VI method.
Refer to the Run VI Method topic of the LabVIEW Help for more
information.

LabVIEW loads the referenced VI into memory when you load the top-level
VI. When the Static VI Reference function outputs a strictly typed VI
reference, LabVIEW reserves the referenced VI as long as the top-level VI
is running. LabVIEW closes this reference when the top-level VI is no
longer in memory.

Properties of the Application or VI Classes
Use Property Nodes to modify properties of the LabVIEW application
instance or VI object defined with the Open Application Reference or Open
VI Reference function. There are different properties available for the
Application class and the VI class.

Application Class Properties
Most Application class properties are read-only. They allow you to check
a whole range of parameters, such as what VIs are loaded into memory,
the operating system, and so on. For more information, refer to the
Application Properties topic of the LabVIEW Help.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-9 LabVIEW Connectivity Course Manual

The following block diagram opens an application reference to the calling
LabVIEW application instance and reads four properties of the LabVIEW
application instance:

• The display properties of all the display monitors

• The name of the operating system, such as Windows 2000, Windows XP,
and so on

• The version of the operating system

• Whether the LabVIEW VI Server is active

You can use this information to ensure that the computer running LabVIEW
is configured correctly and prompt the user to reconfigure the computer if
necessary.

VI Class Properties
Many of the properties of the VI class correspond to the properties available
in the VI Properties dialog box. You can access the VI Properties dialog
box by selecting File»VI Properties.

Tip After you select a property, you can access its help topic by right-clicking the
property and selecting Help for Property Name from the shortcut menu, where Property
Name is the name of the property.

Methods of the Application or VI Classes
Invoke Nodes are used to perform functions on the LabVIEW application
instance or VI object defined with the Open Application Reference or Open
VI Reference function. There are different methods available for the
Application class and the VI class.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-10 ni.com

Application Class Methods
When you place the Invoke Node on the block diagram you can access
the Application class methods. You do not have to wire an Application
reference to the Invoke Node to access the Application class methods
because the node defaults to the current Application if reference is unwired.

Some of the important methods available are Mass Compile, Get VI
Version, and Bring To Front. The Mass Compile method loads and compiles
all the VIs in a directory and all its subdirectories. The Get VI Version
method gets the version of LabVIEW in which the VI was last saved. The
Bring To Front method brings the application window to the front.

Refer to the Application Methods topic of the LabVIEW Help for more
information.

VI Class Methods
When you wire the VI reference to the Invoke Node, you can access the VI
class methods. If you do not wire a VI reference in, it will refer to the VI that
called the method.

Some of the important methods available to the VI Server are Export
VI Strings, Set Lock State, Run VI, and Save Instrument. The Export VI
Strings method exports strings pertaining to VI and front panel objects to a
tagged text file. The Set Lock State method sets the lock state of a VI. The
Run VI method starts VI execution. The Save:Instrument method saves a VI.

Tip After you select a method, you can access its help topic by right-clicking the method
and selecting Help for Method Name from the shortcut menu, where Method Name is
the name of the method.

VI Server Configuration
To configure the VI Server, select Tools»Options on the server computer
and select VI Server from the Category list to display the VI Server page.
If a target in a LabVIEW project supports the VI Server, you also can
right-click the target, such as My Computer, select Properties from the
shortcut menu, and select VI Server from the Category list to display this
page.

Use this page to configure the VI Server. If you are using a project, display
this page from the Options dialog box to configure the VI Server for the
main application instance. To configure the VI Server for a target, display
this page from the Properties dialog box for the target.

The default VI Server settings are ActiveX enabled and TCP/IP disabled.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-11 LabVIEW Connectivity Course Manual

This page includes the following components.

• Protocols—Sets the protocols for the VI Server.

– TCP/IP—Enables VI Server support for TCP/IP. If you allow
remote applications to connect using TCP/IP, you also should
specify which machine addresses can access the VI Server on the
Machine Access section. This checkbox is unchecked by default.

• Port—Sets the TCP/IP port at which the VI Server listens for
requests. By default, this port number is 3363, which is a
registered port number reserved for use by LabVIEW. For
targets, the default is 0, causing the operating system to
dynamically select a port. If you want to run multiple application
instances on the machine, each with its own VI Server running,
you must have a unique VI Server port number. You also can use
the Server:Port property to set the LabVIEW VI Server port
programmatically.

Note The VI Server settings in the Options dialog box apply to the main application
instance, or VIs not in a project. To set VI Server settings for a project application
instance, right-click the target in the Project Explorer window.

• Service name—Sets the service name for the VI Server TCP
Instance. To retrieve an application reference without the port
number, use service name in conjunction with the Open
Application Reference function by wiring a service name to the
polymorphic port number or Service name input. If you display
this page from the Options dialog box, this service name is Main
Application Instance/VI Server by default. If you
display this page from the Properties dialog box for a target, the
service name is target name/VI Server by default. You can
use the Server:Service Name property to set the service name
programmatically.

– Use default—Sets Service name to its default value. This
checkbox is checked by default. To edit Service name,
remove the checkmark from the checkbox.

– ActiveX—(Windows) Enables VI Server support for ActiveX
Automation. This checkbox is only available from the Tools»
Options navigation. This checkbox is checked by default.

• VI Scripting—Use this section to enable VI Scripting.

– Show VI Scripting functions, properties and methods—Enables
VI Scripting functions on the VI Scripting palette and additional
VI Server properties and methods. All functions, properties, and
methods you enable through VI Scripting display as blue.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-12 ni.com

• Display additional VI Scripting information in Context Help
window—Displays connector pane terminal numbers in the
Context Help window. Place a checkmark in the Show VI
Scripting functions, properties and methods checkbox to enable
this option.

• Accessible Server Resources—Indicates the tasks that remote
applications can accomplish.

– VI calls—Allows remote applications to call VIs exported through
the VI Server. If you allow remote applications access to VIs,
specify which VIs can be exported. This checkbox is checked by
default.

– VI properties and methods—Allows remote applications to read
and set the properties of VIs through the VI Server. If you allow
remote applications access to VIs, specify which VIs can be
exported. This checkbox is checked by default.

– Application methods and properties—Allows remote
applications to read and set the properties of the VI Server. This
checkbox is checked by default.

– Control methods and properties—Allows remote applications to
read and set the properties of controls in exported VIs. You also can
call methods that are usable with controls. This checkbox is checked
by default.

• Machine Access Configuration—Use this section to control machine
access to VIs through the VI Server.

When you allow remote applications to access the VI Server using the
TCP/IP protocol, you should specify which Internet hosts have access to
the server.

Use this section to control machine access through the VI Server. To
control the machine access for the main application instance, display
this section from the Options dialog box. To control machine access for
a target, display this page from the Properties dialog box for the target.

When a remote LabVIEW application attempts to open a connection to
the VI Server, the VI Server compares the IP address to the entries in the
Machine access list to determine whether it should grant access. If an
entry in the Machine access list matches the IP address, the VI Server
permits or denies access based on how you set up the entry. If no entry
matches the IP address, the VI Server denies access. When you add new
Machine access list entries, edit existing entries, or remove entries, use
the correct syntax, order, and wildcards in the entries.

An IP address, such as 130.164.15.138, might have more than
one domain name associated with it. The conversion from a domain
name to its corresponding IP address is called name resolution. The

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-13 LabVIEW Connectivity Course Manual

conversion from an IP address to its domain name is called name lookup.
A name lookup or a resolution can fail when the system does not have
access to a DNS (Domain Name System) server or when the address or
name is not valid.

– Machine access list—Lists machines that do and do not have access
to the VI Server. You also can use the Server:TCP/IP Access List
property to list programmatically the TCP/IP addresses of machines
that may access the VI server.

Note If you change the Machine access list, machines that are currently connected to
the VI Server will not be disconnected even if they are no longer allowed access to the
server.

– Machine name/address—Enter the name or IP address of the
machine you want to add to the Machine access list.

– Allow Access—Allows access to the machine(s) selected in
Machine access list.

– Deny Access—Denies access to the machine(s) selected in
Machine access list.

– Add—Adds a new entry to the Machine access list. The new entry
appears below the selected entry in the Machine access list.

– Remove—Removes the selected entry from the Machine access
list.

• Exported VIs—Use this section to add, edit, and remove VIs from
the Exported VIs list.

When you allow remote applications to access VIs through the
VI Server, you should specify which VIs these applications can access.

– Exported VIs list—Lists the VIs that can be exported. You also can
use the Server:VI Access List property to list programmatically the
VIs on the VI Server that are accessible by remote clients.

– Exported VI—Enter a VI to list in Exported VIs. You can use
wildcards in the VI name or directory path you enter.

– Allow Access—Allows access to the VI(s) selected in Exported
VIs. This option is selected by default.

– Deny Access—Denies access to the VI(s) selected in Exported VIs.

– Add—Adds a new entry to Exported VIs.

– Remove—Removes the selected entry from Exported VIs.

If an entry is allowed access to VIs, a checkmark appears next to the entry.
If an entry is denied access to VIs, an X appears next to the entry. If no
symbol appears next to the entry, the syntax of the entry is incorrect.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-14 ni.com

Each entry in the Exported VIs list describes a VI name or a VI path and
can contain wildcard characters. When a remote client tries to access a VI,
the VI Server examines the Exported VIs list to determine whether to grant
access to the requested VI. If an entry in the list matches the requested VI,
the server allows or denies access to that VI based on how you set up that
entry. If a subsequent entry also matches the VI, its access permission is
used in place of the previous permission. If there is not a VI in the list that
matches the requested VI, access to the VI is denied.

You can use the ?, *, and ** characters as wildcard characters. The ? and
* wildcards do not include the path separator. ** includes the path separator.

To practice the concepts in this section, complete Exercise 2-1.

To practice the concepts in this section, complete Exercise 2-2.

D. Remote Communication
 An important aspect of both Application and VI refnums is their network
transparency. This means you can open refnums to objects on remote
computers in the same way you open refnums to those objects on your
computer.

After you open a refnum to a remote object, you can treat it in exactly the
same way as a local object, with a few restrictions. For operations on a
remote object, the VI Server sends the information about the operation
across the network and retrieves the results. The application looks almost
identical regardless of whether the operation is remote or local.

To open an application reference to a remote version of LabVIEW, you
must specify the machine name input of the Open Application Reference
function. Then LabVIEW attempts to establish a TCP connection with a
remote VI Server on that computer on the specified port.

Example—Accessing a Remote VI Property
Figure 2-3 shows how to access the properties of a VI object on a remote
computer. The Open Application Reference function opens a connection to
a remote computer. The Open VI Reference function opens a VI on the
specified remote computer. The Property Node opens the front panel of the
specified VI. The Invoke Node runs the specified VI and waits for execution
to complete before exiting the function. Because the Auto Dispose Ref is set
to FALSE, a Close Reference function must be used to free the reference.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-15 LabVIEW Connectivity Course Manual

Figure 2-3. Accessing a Remote VI Property

Open VI Reference Inputs
VI path accepts a string containing the name of the VI you are referencing
or a path containing the path to the VI you are referencing. If the VI is not
in memory, the VI must be at the specified path for this function to succeed.
If a path is wired, the function loads the specified VI into memory, if it is not
already in memory, and returns a reference to this VI. If you wire a name
string, the VI must already be in memory. If you wire a path and a VI of the
same name is already in memory, the function returns a reference to the open
VI, regardless of whether its path is the same as the input.

If the path is relative, the VI interprets the path as relative to the caller VI or
to the application directory, if the caller VI is not saved.

application reference is a reference to a LabVIEW application instance.
The default is a reference to an application instance on the local instance of
LabVIEW. If wired and the reference is to a remote instance of LabVIEW,
the remote instance of LabVIEW is queried to return the VI reference.

Refer to the Open VI Reference Function topic of the LabVIEW Help for
more information about using the Open VI Reference function.

To practice the concepts in this section, complete Exercise 2-3.

E. Dynamically Calling and Loading VIs
You can dynamically load VIs instead of using statically linked subVI calls.
A statically linked subVI is one you place directly on the block diagram of
a caller VI. It loads at the same time the caller VI loads.

Unlike statically linked subVIs, dynamically loaded VIs do not load until
the caller VI loads them with the Open VI Reference. If you have a large
caller VI, you can save load time and memory by dynamically loading the
VI because the VI does not load until the caller VI needs it, and you can

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-16 ni.com

release it from memory after the operation completes. You also can use the
VI Call Configuration dialog box to configure when to load the subVI.

You use two types of VI refnums to dynamically load and call VIs in
LabVIEW—strictly typed VI references and weakly typed VI references.

Types of VI References
• Weakly Typed VI Reference—Refers to a VI in memory. The type of

the VI reference is not specified. If you create an indicator from the
vi reference output of the Open VI Reference function, it looks like the
control shown at left if it is weakly typed.

Use a weakly typed VI reference to pass a VI reference from an Open VI
Reference function or an Open Application Reference function to a
Property Node or an Invoke Node. Create a weakly typed VI reference
by not specifying the type specifier VI Refnum input.

• Strictly Typed VI Reference—Includes the connector pane
information of the VI to be called. An indicator created from the
vi reference output of the Open VI Reference function looks similar
to the control shown at left if it is strictly typed.

Use a strictly typed VI reference to dynamically call or load a VI. Wire
a strictly typed VI refnum to the type specifier input of the Open VI
Reference function to use the vi reference output with the Call By
Reference Node. Strictly typed means that the connector terminals of a
called VI and the data type they can accept are fixed. When you use the
Open VI Reference function, it checks to see if the VI specified by vi
path has the same connector pane and data type as defined in the type
specifier vi refnum input. If it does not, the function returns an error.

Note The VI you use to specify the type of a strictly typed refnum provides only the
connector pane information. That is, no permanent association is made between the
refnum and the VI. In particular, avoid confusing selecting the VI connector pane with
opening a reference to the selected VI. You specify a particular VI using the vi path input
on the Open VI Reference function.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-17 LabVIEW Connectivity Course Manual

Dynamically Calling VIs with the Call By Reference Node
Use the Call By Reference Node to dynamically call VIs.

The Call By Reference Node requires a strictly typed VI refnum. The
strictly typed VI refnum identifies the connector pane of the VI you are
calling. You can wire the Call By Reference Node inputs and outputs just
like you wire any other VI.

Strictly typed VI refnums allow you to save load time and memory because
the subVI does not load until the caller VI needs it and you can release the
subVI from memory after the operation completes.

Figure 2-4 shows how to use the Call By Reference Node to dynamically
call the Frequency Response VI. The Call By Reference Node requires the
use of the Open VI Reference and Close Reference functions, similar to the
functions you use for the Property Node and the Invoke Node.

Figure 2-4. Call by Reference Node Dynamically Calls VIs

Call By Reference Programming Model
Complete the following steps to call a VI dynamically using the VI Server.

1. Use the Open VI Reference function to specify the VI you want to call.
The Open VI Reference function needs a strictly typed refnum in order
to call the VI dynamically. To create a strictly typed refnum, right-click
the type specifier terminal of the Open VI Reference function and select
Create»Constant.

Right-click the refnum and select Select VI Server Class»Browse from
the shortcut menu. Then Choose the VI to Open dialog box prompts
you to select a VI. Select the VI that you want to replicate. Wire the

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-18 ni.com

strictly typed VI refnum to the type specifier VI Refnum input of the
Open VI Reference function, as shown in the following figure.

Tip You also can create a strictly typed refnum by dragging and dropping a VI icon onto
the refnum.

2. Use the Call by Reference Node to dynamically call the VI, as shown in
the following figure. The Call By Reference Node works in the same
way as calling a subVI. The only difference is that normally LabVIEW
loads subVIs into memory when the application first opens, whereas
with a Call by Reference Node, LabVIEW loads a VI into memory when
the Open VI Reference function generates a reference to it.

Figure 2-5. Use Call by Reference Node to Dynamically Call the VI

A strictly typed refnum stores the connector pane information of the VI
to which it is strictly typed. The type specifier displays its connector
pane. Notice that you are opening a reference to a VI that has a
connector pane of the type you have just selected. It does not store
any link to the VI you select.

3. Use the Close Reference function to close the reference to the VI and
add a Simple Error Handler VI, as shown in the following figure.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-19 LabVIEW Connectivity Course Manual

Figure 2-6. Use the Close Reference function to Close the Reference to the VI

Using Weakly Typed VI References
You can use methods in LabVIEW to modify the values of controls in a VI
and read the values of indicators using a weakly typed VI refnum, as shown
in Figure 2-7.

Figure 2-7. Use Methods to Modify and Read Values

Using a Call by Reference Node and a strictly typed VI refnum instead, as
shown in Figure 2-8, you can write or read data to a VI in a much simpler
manner.

Figure 2-8. Use Call By Reference Node to Write or Read Data

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-20 ni.com

Behavior of Strictly Typed VI References
When you open a strictly typed reference, the referenced VI is reserved for
running and cannot be edited.

For example, you can open a VI reference to a target VI and edit the VI with
Property and Invoke Nodes. While this reference is open, you can open
another reference—such as a strictly typed reference—and call the target VI
as a subVI through the Call By Reference Node. However, until you close
the strictly typed reference, editing operations through the Property and
Invoke Nodes fail because the VI to which they refer is reserved for running
by the strictly typed reference.

Because opening a strictly typed VI reference puts the referenced VI in the
reserved for running state, it means that the VI has been checked to make
sure it is not corrupted, that it is not currently running as a top-level VI, that
it has been compiled (if necessary), and a few other checks. A VI referenced
by a strictly typed VI reference can be called using the Call By Reference
Node at any moment without having to check all these conditions again.
Thus, in the reserved for running state you cannot edit the VI or do anything
to it that would change the way it would execute.

To practice the concepts in this section, complete Exercise 2-4.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-21 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. Which of the following does VI Server allow you to do?

a. Programmatically access and control VIs and LabVIEW

b. Call a VI remotely

c. Load VIs into memory dynamically

d. Call a shared library

2. Which of the following VIs are necessary for accessing a remote VI?

a. Open Application Reference

b. Open VI Reference

c. Call By Reference Node

3. True or False? Dynamically loaded subVIs do not load until the caller
VI makes the call to the subVI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

© National Instruments Corporation 2-23 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. Which of the following does VI Server allow you to do?

a. Programmatically access and control VIs and LabVIEW

b. Call a VI remotely

c. Load VIs into memory dynamically

d. Call a shared library

2. Which of the following VIs are necessary for accessing a remote VI?

a. Open Application Reference

b. Open VI Reference

c. Call By Reference Node

3. True or False? Dynamically loaded subVIs do not load until the caller
VI makes the call to the subVI.

True. Dynamically loaded subVIs do not load until the caller VI
makes the call to the subVI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 2 Using VI Server

LabVIEW Connectivity Course Manual 2-24 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 3-1 LabVIEW Connectivity Course Manual

3
Using .NET and ActiveX Objects
in LabVIEW

LabVIEW provides access to other Windows applications using .NET or
ActiveX technologies.

.NET refers to Microsoft’s .NET technology. The .NET Framework is the
programming basis of the .NET environment you use to build, deploy, and
run Web-based applications, smart client applications, and XML Web
services. You must install the .NET Framework. Refer to the Microsoft
Developer Network (MSDN) Web site for more information about .NET
and installing the framework.

Note Creating and communicating with .NET objects requires the .NET Framework 2.0
or later. National Instruments strongly recommends that you always put VIs that use
.NET objects in a LabVIEW project and not leave them as stand-alone VIs.

ActiveX refers to Microsoft’s ActiveX technology and OLE technology.
With ActiveX Automation, a Windows application, such as LabVIEW,
provides a public set of objects, commands, and functions that other
Windows applications can access. Refer to the MSDN documentation for
more information about ActiveX.

1. Inside OLE, by Kraig Brockschmidt, second edition

2. Essential COM, by Don Box

Topics
A. Using .NET Objects in LabVIEW

B. Accessing .NET in LabVIEW

C. Registering .NET Events

D. Using ActiveX Objects in LabVIEW

E. Using LabVIEW as an ActiveX Client

F. Using LabVIEW as an ActiveX Server

G. ActiveX Events

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-2 ni.com

A. Using .NET Objects in LabVIEW
The .NET Framework allows you to access Windows services such as the
performance monitor, event log, and file system, as well as advanced
Windows APIs such as the Speech Recognition and Generation service. The
.NET Framework also provides access to Web protocols such as SOAP,
WSDL, and UDDI.

You can use LabVIEW as a .NET client to access the objects, properties,
methods, and events associated with .NET servers. You also can host .NET
user interface controls on the front panel of a VI. Although LabVIEW is not
a .NET server, you can communicate to LabVIEW remotely with the
ActiveX server interface through .NET support for COM objects.

Note Creating and communicating with .NET objects requires the .NET Framework 2.0
or later.

Be sure to save .NET assemblies in appropriate locations to ensure that they
load and behave as expected.

.NET Functions and Nodes
Use the following LabVIEW VIs, functions, and nodes located on the .NET
palette to access the objects, properties, and methods associated with .NET
servers:

• Constructor Node—selects a constructor of a .NET class from an
assembly and creates an instance of that class to be used during VI
execution. When you place this node on the block diagram, LabVIEW
displays the Select .NET Constructor dialog box.

• Property Node (.NET)—gets (reads) and sets (writes) the properties
associated with a .NET class. Many .NET classes have an EnableEvents
property. If you are not receiving events, you might need to set an
EnableEvents property.

• Invoke Node (.NET)—invokes methods associated with a .NET class.

• Close Reference function—closes all references to .NET objects when
you no longer need the reference.

• Register Event Callback function—registers and handle .NET events.

• Unregister For Events function—unregisters a .NET event.

• To More Generic Class function—upcasts a .NET reference to a base
class.

• To More Specific Class function—downcasts a .NET reference to
one of a derived class.

• To .NET Object VI—converts a LabVIEW type to a .NET object.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-3 LabVIEW Connectivity Course Manual

• .NET Object To Variant VI—converts a .NET object to a LabVIEW
variant.

• Static VI Reference function—creates a strictly typed VI reference to
a callback VI you create.

B. Accessing .NET in LabVIEW
You can use .NET in LabVIEW in the following ways:

• Creating .NET objects

• Setting .NET properties and invoking .NET methods

• Registering .NET events

• Loading .NET assemblies

• Configuring a .NET client application

Creating .NET Objects
You can create .NET objects on the front panel or the block diagram. Use a
Constructor Node to create a .NET object on the block diagram. Use a .NET
container to create a .NET control on the front panel. You also can add .NET
controls to the Controls palette for later use.

.NET objects can be visible or invisible to the user. For example, buttons,
windows, pictures, documents, and dialog boxes are visible to users.
Application objects are invisible to users.

Use the .NET functions to access the .NET objects and their associated
properties and methods.

Setting.NET Properties and Invoking .NET Methods
.NET objects expose properties and methods that other applications can
access. You access an application by accessing an object associated with
that application and setting a property or invoking a method of that
object.On the front panel or block diagram, right-click a .NET object and
select Create»Property Node or Create»Invoke Node, and select a
property or method from the shortcut menu to set a property or invoke a
method for the object. You also can select .NET-specific properties or
invoke .NET-specific methods for a .NET object. On the block diagram,
right-click a .NET object and select Create»Property Node or Create»
Invoke Node, and select a .NET-specific property or method from the
shortcut menu.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-4 ni.com

Loading .NET Assemblies
If you reference a .NET object from the front panel or block diagram of a
VI, ensure that LabVIEW can load the .NET assembly for that object. The
Common Language Runtime (CLR) is responsible for locating .NET
assemblies that you call. Refer to the Microsoft Developer Network
(MSDN) Web site for more information about how the CLR locates
assemblies. If the CLR cannot find the assembly, LabVIEW then searches
for the assembly in the same manner it searches for missing VIs. LabVIEW
searches for missing VIs in the directories you specify on the Paths page of
the Options dialog box. If LabVIEW cannot find the .NET assembly for a
.NET object referenced directly on the front panel or block diagram,
LabVIEW generates a load-time error. If LabVIEW cannot load a dependent
assembly needed during run-time, LabVIEW generates a run-time error.

The CLR uses the directory of the running executable as the default search
path when it loads private .NET assemblies. If you reference a .NET object
from a VI that does not belong to a LabVIEW project, the CLR considers
LabVIEW.exe to be the running executable. The CLR therefore searches
for private assemblies in the directory in which the LabVIEW.exe file is
located. If you reference a .NET object from a VI that does belong to a
LabVIEW project, the CLR considers the project to be the running
executable. The CLR therefore searches for private assemblies in the project
directory. If you reference a .NET assembly from a VI and the assembly
does not belong to the .NET Framework, National Instruments strongly
recommends that you store the VI in a project to avoid having to place files
in the directory in which the LabVIEW.exe file is located.

If you call a .NET assembly from a VI that does not belong to a project, you
technically can save the assembly in the same directory as its calling VI.
LabVIEW searches certain VI directories, including the calling VI
directory, for assemblies that the CLR cannot load by default. However,
calling assemblies stored in this location can result in name conflicts and
other unexpected .NET behavior. Therefore, National Instruments does not
recommend that you save assemblies in this location.

Configuring a .NET Client Application
.NET provides administrative capability to an application through
configuration files. For example, you can specify the Common Language
Runtime (CLR) version of a .NET application in a configuration file.
LabVIEW automatically loads the latest installed version of the CLR. If you
develop a .NET application using an earlier version of .NET, it can work on
machines with later versions of the CLR. However, if you develop the
application with a later version of the CLR than is on the target machine, the
application does not work. If you want to build an application using
.NET 1.1 and you have both 1.1 and 2.0 on your machine, specify the CLR
version with a configuration file.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-5 LabVIEW Connectivity Course Manual

You also can use configuration files for any of the following tasks:

• loading assemblies

• setting up remote .NET access

• setting logging options

• setting security

A configuration file contains XML content and typically has a .config
extension. To configure a LabVIEW .NET client application, you can
provide a configuration file for a saved project, shared library, or stand-alone
application. Name the configuration file the name of the project, library, or
application with a .config extension, for example,
MyApp.lvproj.config, MyApp.dll.config, or
MyApp.exe.config. Save the configuration file in the directory that
contains the project, library, or application.

If you build a stand-alone application from a saved project with a
configuration file, you must rename and save the configuration file in the
directory that contains the stand-alone application. For example, if you build
a stand-alone application from foo.lvproj that has the configuration file
foo.lvproj.config, rename the file foo.exe.config and save it in
the directory that contains foo.exe, the stand-alone application.

When working with .NET assemblies, you can use a .config file to store
preconfiguration code before running the assembly or application. If you
call an assembly from a VI within a project, library, or stand-alone
application, the assembly references the corresponding configuration file. If
you call an assembly from a VI that is not in a project, library, or stand-alone
application, the assembly references the LabVIEW.exe.config
configuration file.

Review the specific documentation for your .NET type to ensure you are
using the .config file correctly.

To practice the concepts in this section, complete Exercise 3-1.

To practice the concepts in this section, complete Exercise 3-2.

C. Registering .NET Events
.NET events are the actions taken on a .NET object, such as clicking a
mouse, pressing a key, or receiving notifications about things such as
running out of memory or tasks completing. Whenever these actions occur

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-6 ni.com

to the object, the object sends both an event to alert the .NET container and
the event-specific data. The .NET object defines the events available for an
object.

To use .NET events in an application, you must register for the event and
handle the event when it occurs. .NET event registration is similar to
dynamic event registration. However, the architecture of a .NET event VI is
different from the architecture of an event-handling VI. The following
components make up a typical .NET event VI:

• .NET object for which you want to generate an event.

• Register Event Callback function to specify and register for the type of
event you want to generate. The Register Event Callback function is a
growable node capable of handling multiple events, similar to the
Register For Events function.

• Callback VI that contains the code you write to handle the event you
specify.

When you wire a .NET object to the Register Event Callback function and
specify the event you want to generate for that object, you are registering the
.NET object for that event. After you register for the event, create a callback
VI that contains the code you write to handle the event. Different events
might have different event data formats so changing the event after you
create a callback VI might break wires on the block diagram. Select the
event before you create the callback VI.

You can handle events on .NET controls in a container. For example, you
can place a calendar control in a .NET container and specify that you want
to handle a DoubleClick event for the items displayed in the calendar.

Handling .NET Events
A callback VI contains the code you write to handle an ActiveX or .NET
event you specify. You must create a callback VI to handle events from
ActiveX controls or .NET objects when the controls or objects generate the
registered events. The callback VI runs when the event occurs. When you
create a callback VI, LabVIEW creates a reentrant VI that you can open and
edit to handle an event. A callback VI contains the following elements:

• Event Common Data contains the following elements:

– Event Source is a numeric control that specifies the source of the
event, such as LabVIEW, ActiveX, or .NET. A value of 1 indicates
an ActiveX event. A value of 2 indicates a .NET event.

– Event Type specifies which event occurred. This is an enumerated
type for user interface events and a 32-bit unsigned integer type for
ActiveX, .NET, and other event sources. For ActiveX events, the

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-7 LabVIEW Connectivity Course Manual

event type represents the method code, or ID, for the event
registered. You can ignore this element for .NET.

– Time Stamp is the time stamp in milliseconds that specifies when
the event was generated.

• Control Ref is a reference to the ActiveX or automation refnum or .NET
object on which the event occurred.

• Event Data is a cluster of the parameters specific to the event the
callback VI handles. LabVIEW determines the appropriate Event Data
when you select an event from the Register Event Callback function. If
an event does not have any data associated with it, LabVIEW does not
create this control in the callback VI.

• Event Data Out is a cluster of the modifiable parameters specific to the
event the callback VI handles. This element is available only if the
ActiveX or .NET event has output parameters.

• (Optional) user parameter is data that you want to pass to the callback
VI when the ActiveX or .NET object generates the event.

Note You can use an existing VI as a callback VI as long as the connector pane of the
VI you intend to use matches the connector pane of the event data. The callback VI must
be reentrant, and the reference to the callback VI must be strictly typed.

To allow callback VIs to execute without interruption, LabVIEW delays the
processing of operating system messages until any callback VIs stop
execution or until you load a modal window. When LabVIEW delays the
processing of operating system messages, you cannot interact with any
LabVIEW front panels. A modal window is a type of window that remains
active or remains on top of all other LabVIEW windows until you close the
window or open another modal window. You cannot interact with other
windows while a modal window is open. Most dialog boxes in LabVIEW
are modal windows.

You cannot open a non-modal window from a LabVIEW callback VI nor a
DLL while any other process is running. Refer to Calling Non-Modal
Windows Programmatically for more information about calling a
non-modal window from a callback VI or DLL.

To practice the concepts in this section, complete Exercise 3-3.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-8 ni.com

D. Using ActiveX Objects in LabVIEW
You can use LabVIEW as an ActiveX client to access the objects, properties,
methods, and events associated with other ActiveX-enabled applications.
LabVIEW also can act as an ActiveX server, so other applications can
access LabVIEW objects, properties, and methods.

ActiveX Objects, Properties, Methods, and Events
ActiveX-enabled applications include objects that have exposed properties
and methods that other applications can access. Objects can be visible to the
users, such as buttons, windows, pictures, documents, and dialog boxes, or
invisible to the user, such as application objects. You access an application
by accessing an object associated with that application and setting a
property or invoking a method of that object.

Events are the actions taken on an object, such as clicking a mouse, pressing
a key, or receiving notifications about things such as running out of memory
or tasks completing. Whenever these actions occur to the object, the object
sends an event to alert the ActiveX container along with the event-specific
data. The ActiveX object defines the events available for an object.

Data Type Mapping
LabVIEW converts the data types of some ActiveX properties and methods
into LabVIEW data types so LabVIEW can read and interpret the data. The
following table lists the ActiveX data types and the corresponding converted
LabVIEW data types.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-9 LabVIEW Connectivity Course Manual

ActiveX VIs, Functions, Controls, and Indicators
Use the following VIs, functions, controls, and indicators to access the
objects, properties, methods, and events associated with other
ActiveX-enabled applications:

• Automation Refnum control—creates a reference to an ActiveX
object. Right-click this control on the front panel to select an object from
the type library you want to access.

• Automation Open function—opens an ActiveX object.

• ActiveX container—accesses and display an ActiveX object on the
front panel. Right-click the container, select Insert ActiveX Object
from the shortcut menu, and select the object you want to access.

• Property Node—gets (reads) and sets (writes) the properties associated
with an ActiveX object.

ActiveX Data Type LabVIEW Data Type

char

short

long

hyper

float

double

BSTR

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-10 ni.com

• Invoke Node—invokes the methods associated with an ActiveX object.

• Register Event Callback function—handles events that occur on an
ActiveX object.

• Variant control and indicator—passes data to or from ActiveX
controls.

Tip Select Tools».NET & ActiveX»Add ActiveX Controls to Palette to add custom
control files to the ActiveX Controls palette.

E. Using LabVIEW as an ActiveX Client
When LabVIEW accesses the objects associated with another
ActiveX-enabled application, it is acting as an ActiveX client. You can use
LabVIEW as an ActiveX client in the following ways:

• Open an application, such as Microsoft Excel, create a document, and
add data to that document.

• Embed a document, such as a Microsoft Word document or an Excel
spreadsheet, on the front panel in a container.

• Place a button or other object from another application, such as a Help
button that calls the other application help file, on the front panel.

• Link to an ActiveX control you built with another application.

LabVIEW accesses an ActiveX object with the automation refnum control
or the ActiveX container, both of which are front panel objects. Use the
automation refnum control to select an ActiveX object. Use the ActiveX
container to select a displayable ActiveX object, such as a button or
document, and place it on the front panel. Both objects appear as automation
refnum control terminals on the block diagram.

The implementation, or the object you select, is necessary when COM
creates the implementation. However, COM can only return interfaces.
When LabVIEW creates an implementation, LabVIEW matches the
implementation to the correct interface. A single implementation can
implement multiple interfaces. In that case, LabVIEW picks the default
interface on the object and returns that interface. The Automation Open
function returns the default interface and you can use Variant To Data to
convert to a different interface. You cannot return the implementation, only
the interface.

Note The block diagram displays the default interface wired to the Automation Open
function, not the implementation class. If you open the Select Object From Type Library
dialog box, LabVIEW selects the implementation class by default.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-11 LabVIEW Connectivity Course Manual

Figure 3-1 shows how LabVIEW, acting as an ActiveX client, interacts with
server applications.

Figure 3-1. LabVIEW as an ActiveX Automation Client

LabVIEW accesses the server type library to obtain information about its
objects, methods, and properties. LabVIEW can perform actions such as
invoking methods, getting or setting properties, and so on.

Accessing an ActiveX-Enabled Application
To access an ActiveX-enabled application, use the automation refnum
control terminal on the block diagram to create a reference to an application.
Wire the control terminal to the Automation Open function, which opens the
calling application. Use the Property Node to select and access the
properties associated with the object. Use the Invoke Node to select and
access the methods associated with the object. Close the reference to the
object using the Close Reference function. Closing the reference removes
the object from memory.

For example, you can build a VI that opens Microsoft Excel so it appears on
the user's screen, creates a workbook, creates a spreadsheet, creates a table
in LabVIEW, and writes that table to the Excel spreadsheet.

Refer to the Write Table To XL VI in the labview\examples\comm\
ExcelExamples.llb for an example of using LabVIEW as an Excel
client.

Client Application: LabVIEW

Possible Actions:
Creates Object Instance
Gets an Existing Object
Gets or Sets Properties

Invokes Methods

Maps Names
to Interface

Dispatches Action

Sets Properties
Gets Properties

LabVIEW also can act as the ActiveX server

Automation Server

Defines and Exposes
Automation Objects

Type Library (.TLB)

Describes Programmable Objects
(Can be Part of DLL or Stand-Alone)

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-12 ni.com

Inserting an ActiveX Object on the Front Panel
To insert an ActiveX object on the front panel, right-click the ActiveX
container, select Insert ActiveX Object from the shortcut menu, and select
the ActiveX control or document you want to insert. You can set the
properties for an ActiveX object using the ActiveX Property Browser or
property pages, or you can set the properties programmatically using the
Property Node.

Use the Invoke Node to invoke the methods associated with the object.

For example, you can display a Web page on the front panel by using an
ActiveX container to access the Microsoft Web Browser control, selecting
the Navigate class of methods, selecting the URL method, and specifying
the URL.

If you use the ActiveX container, you do not have to wire the automation
refnum control on the block diagram to the Automation Open function or
close the reference to the object using the Close Reference function. You can
wire directly to the Invoke Node or Property Node because the ActiveX
container embeds the calling application in LabVIEW. However, if the
ActiveX container includes properties or methods that return other
automation refnums, you must close these additional references.

Design Mode for ActiveX Objects
Right-click an ActiveX container and select Advanced»Design Mode from
the shortcut menu to display the container in design mode while you edit the
VI. When you select the design mode option, the ActiveX container owns
the references to the controls and is responsible for creating and releasing
new controls. There are distinct design and run modes for controls. Each
time you run a VI, LabVIEW removes the design mode control and replaces
it with a new control in run mode. When the VI stops, LabVIEW removes
the run mode control and creates a new design mode control. In a built
application there is no design mode control. LabVIEW creates the run mode
control when the VI starts and releases the control when the VI stops. In
design mode, events are not generated and event procedures do not run. The
default mode is run mode, where you interact with the object as a user
would.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-13 LabVIEW Connectivity Course Manual

Setting ActiveX Properties
After you open an ActiveX server or insert an ActiveX control or document,
you can set the properties associated with that control or document using the
ActiveX Property Browser, property pages, and the Property Node.

ActiveX Property Browser
Use the ActiveX Property Browser to view and set all the properties
associated with an ActiveX control or document in an ActiveX container. To
access the ActiveX Property Browser, right-click the control or document in
the container on the front panel and select Property Browser from the
shortcut menu. You also can select View»ActiveX Property Browser. The
ActiveX Property Browser is an easy way to set the properties of an ActiveX
object interactively, but you cannot use the browser to set properties
programmatically, and you can use the ActiveX Property Browser only with
ActiveX objects in a container. The ActiveX Property Browser is not
available in run mode or while a VI runs.

ActiveX Property Pages
Many ActiveX objects include property pages, which organize the
properties associated with the object on separate tabs. To access ActiveX
property pages, right-click the object in the container on the front panel and
select the name of the object from the shortcut menu.

Like the ActiveX Property Browser, ActiveX property pages are an easy
way to set the properties of an ActiveX object interactively, but you cannot
use them to set properties programmatically, and you can use property pages
only with ActiveX objects in a container. Property pages are not available
for all ActiveX objects. Property pages also are not available in run mode or
when the VI is running.

Property Nodes
Use the Property Node to set ActiveX properties programmatically. For
example, if you use an ActiveX object to warn a user when a temperature
exceeds a limit, use the Property Node to set the Value property of the object
to specify the limit.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-14 ni.com

The block diagram in Figure 3-2 shows an example that changes the Value
property of the CWButton ActiveX control, which is part of the National
Instruments Measurement Studio User Interface ActiveX Library, when the
temperature reaches 85 degrees Fahrenheit or higher.

Figure 3-2. Using a Property Node to Set ActiveX Properties Programatically

In this case, the CWButton control acts as an LED, changes colors, and
displays Warning when the temperature reaches the limit, which is the on
state of the CWButton control.

Note In this example, you could use the ActiveX Property Browser or property pages to
set the OffText, OffColor, OnText, and OnColor properties for the CWButton control
because you do not need to set those properties programmatically.

To practice the concepts in this section, complete Exercise 3-4.

F. Using LabVIEW as an ActiveX Server
The LabVIEW application, VIs, and control properties and methods are
available through ActiveX calls from other applications. Other
ActiveX-enabled applications, such as Microsoft Excel, can request
properties, methods, and individual VIs from LabVIEW, and LabVIEW acts
as an ActiveX server.

For example, you can embed a VI graph in an Excel spreadsheet and, from
the spreadsheet, enter data in the VI inputs and run the VI. When you run
the VI, the data plot to the graph.

Refer to the labview\examples\comm\freqresp.xls for an example
of using LabVIEW properties and methods in an Excel spreadsheet.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-15 LabVIEW Connectivity Course Manual

LabVIEW supports an ActiveX interface to the VI Server. This server
interface allows client applications to programmatically access LabVIEW.
Figure 3-3 shows how LabVIEW acts as an ActiveX server to interact with
client applications.

Figure 3-3. LabVIEW ActiveX Automation Server

The LabVIEW type library, labview.tlb, provides information about
LabVIEW objects, methods, and properties. Client applications can access
methods and set or get properties of the LabVIEW ActiveX server.

You can use LabVIEW as an ActiveX server, enabling other
ActiveX-enabled clients to request properties and methods from LabVIEW
and individual VIs. To configure LabVIEW as an ActiveX server,
select Tools»Options to display the Options dialog box. Select
VI Server:Configuration from the top pull-down menu and place a
checkmark in the ActiveX checkbox.

Support for Custom ActiveX Automation Interfaces
If you are writing an ActiveX client that accesses properties and methods
from an ActiveX server using LabVIEW, you can access custom interfaces
exposed by the server. You do not need to use IDispatch to do so. However,
the developer of the ActiveX server must make sure the parameters of the
properties and methods in these custom interfaces have Automation
(IDispatch) data types. The developer of the server must do so to expose
multiple interfaces from one object, rather than through multiple objects.
You still can use the interfaces in the LabVIEW environment. Refer to your
server development programming environment documentation for more
information about accessing custom interfaces.

Client Application

Possible Actions:
Creates Object Instance
Gets an Existing Object
Gets or Sets Properties

Invokes Methods

Automation Server:
LabVIEW

Defines and Exposes
Automation Objects

Maps Names
to Interface

LabVIEW also can act as an ActiveX server

Dispatches Action

Sets Properties

Gets Properties

Describes Programmable Objects
(Can be Part of DLL or Stand-Alone)

Type Library (.tlb)

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-16 ni.com

G. ActiveX Events
To use ActiveX events in an application, you must register for the event and
handle the event when it occurs. ActiveX event registration is similar to
dynamic event registration. However, the architecture of an ActiveX event
VI is different than the architecture of an event-handling VI. The following
components make up a typical ActiveX event VI:

• ActiveX object for which you want to generate an event.

• Register Event Callback function to specify and register for the type of
event you want to generate.

• Callback VI that contains the code you write to handle the event you
specify.

You can generate and handle events on ActiveX objects in a container or on
ActiveX objects you specify by using an automation refnum. For example,
you can call a Windows tree control from an ActiveX container and specify
that you want to generate a Double Click event for the items displayed in the
tree control.

The Register Event Callback function is a growable node capable of
handling multiple events, similar to the Register For Events function.

When you wire an ActiveX object reference to the Register Event Callback
function and specify the event you want to generate for that object, you are
registering the ActiveX object for that event. After you register for the event,
create a callback VI that contains the code you write to handle the event.
Different events may have different event data formats so changing the event
after you create a callback VI might break wires on the block diagram.
Select the event before you create the callback VI.

National Instruments recommends that you unregister for events when you
no longer need to handle them using the Unregister For Events function. If
you do not unregister for events, LabVIEW continues to generate and queue
the events as long as the VI runs, even if no Event structure is waiting to
handle them, which consumes memory and can hang the VI if you enable
front panel locking for the events.

Handling ActiveX Events
A callback VI contains the code you write to handle an ActiveX or .NET
event you specify. You must create a callback VI to handle events from
ActiveX controls or .NET objects when the controls or objects generate the
registered events. The callback VI runs when the event occurs. When you

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-17 LabVIEW Connectivity Course Manual

create a callback VI, LabVIEW creates a reentrant VI that you can open and
edit to handle an event. A callback VI contains the following elements:

• Event Common Data contains the following elements:

– Event Source is a numeric control that specifies the source of the
event, such as LabVIEW, ActiveX, or .NET. A value of 1 indicates
an ActiveX event. A value of 2 indicates a .NET event.

– Event Type specifies which event occurred. This is an enumerated
type for user interface events and a 32-bit unsigned integer type for
ActiveX, .NET, and other event sources. For ActiveX events, the
event type represents the method code, or ID, for the event
registered. You can ignore this element for .NET.

– Time Stamp is the time stamp in milliseconds that specifies when
the event was generated.

• Control Ref is a reference to the ActiveX or automation refnum or .NET
object on which the event occurred.

• Event Data is a cluster of the parameters specific to the event the
callback VI handles. LabVIEW determines the appropriate Event Data
when you select an event from the Register Event Callback function. If
an event does not have any data associated with it, LabVIEW does not
create this control in the callback VI.

• Event Data Out is a cluster of the modifiable parameters specific to the
event the callback VI handles. This element is available only if the
ActiveX or .NET event has output parameters.

• (Optional) user parameter is data that you want to pass to the callback
VI when the ActiveX or .NET object generates the event.

Note You can use an existing VI as a callback VI as long as the connector pane of the
VI you intend to use matches the connector pane of the event data. The callback VI must
be reentrant, and the reference to the callback VI must be strictly typed.

To allow callback VIs to execute without interruption, LabVIEW delays the
processing of operating system messages until any callback VIs stop
execution or until you load a modal window. When LabVIEW delays the
processing of operating system messages, you cannot interact with any
LabVIEW front panels. A modal window is a type of window that remains
active or remains on top of all other LabVIEW windows until you close the
window or open another modal window. You cannot interact with other
windows while a modal window is open. Most dialog boxes in LabVIEW
are modal windows.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-18 ni.com

You cannot open a non-modal window from a LabVIEW callback VI nor a
DLL while any other process is running. Refer to the Calling Non-Modal
Windows Programmatically topic of the LabVIEW Help for more
information about calling a non-modal window from a callback VI or DLL.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-19 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. For each of the following functions, identify if it is used in ActiveX
applications, .NET applications or both.

a. Constructor Node

b. Invoke Node

c. Property Node

d. Automation Open

e. Register Event Callback

f. Close Reference

2. True or False? LabVIEW can act as an ActiveX client and/or an ActiveX
server.

3. Which of the following are ways to call objects in LabVIEW?

a. ActiveX Automation

b. ActiveX Container

c. User parameter

d. Constructor Node

e. .NET Container

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

© National Instruments Corporation 3-21 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. For each of the following functions, identify if it is used in ActiveX
applications, .NET applications or both.

a. Constructor Node—.NET

b. Invoke Node—Both

c. Property Node—Both

d. Automation Open—ActiveX

e. Register Event Callback—Both

f. Close Reference—Both

2. True or False? LabVIEW can act as an ActiveX client and/or an
ActiveX server.

3. Which of the following are ways to call objects in LabVIEW?

a. ActiveX Automation

b. ActiveX Container

c. User parameter

d. Constructor Node

e. .NET Container

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 3 Using .NET and ActiveX Objects in LabVIEW

LabVIEW Connectivity Course Manual 3-22 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 4-1 LabVIEW Connectivity Course Manual

4
Connecting to Databases

Databases are useful for storing large, complex systems of data and make
enterprise connectivity to the data possible. This lesson defines database
terminology and demonstrates the fundamentals of database programming
in LabVIEW. The LabVIEW Database Connectivity Toolkit allows you to
use LabVIEW to connect to a database, view its contents, insert data into it,
and execute SQL statements on it.

Topics
A. What is a Database?

B. Database Standards

C. Connecting to a Database

D. Performing Standard Database Operations

E. Structured Query Language

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-2 ni.com

A. What is a Database?
A database is an organized collection of data. A Database Management
System (DBMS) is a group of software for organizing the information in a
database. This software may include routines for data input, verification,
storage, retrieval, and combination. Microsoft Access, Oracle, SQL Server,
and MySQL are a few examples of DBMSs. Most modern DBMSs store
data in tables. These tables are organized into records, also known as rows,
and fields, also known as columns. Every table in a database must have a
unique name and every field within a table must have a unique name.

Database tables have many uses. Table 4-1 is an example table that you
could use with a simple test executive program to record test sequence
results. It contains columns for the unit under test number, the test name, the
test result, and two measurements. The data in the table is not inherently
ordered. Ordering, grouping, and other manipulations of the data occur
when you use a SELECT statement to retrieve the data from the table. A row
can have empty columns, which means that the row contains NULL values.
NULL values for databases are not exactly the same as NULL values in the
C programming language. Refer to Handling Null Values in the Database
Connectivity Toolkit User Manual for more information about how
LabVIEW handles NULL values.

Note This manual refers to NULL values in tables as SQL NULL values, to distinguish
them from standard NULL values.

Non-relational and Relational Databases
Non-relational databases allow you to store all of your information in one
large table like Table 4-1. This method is sometimes inefficient, because all
of the information is in one table, and searching for a specific piece of data
can be difficult and time-consuming. Relational databases store information
in multiple structures, or tables, where each table can be smaller and contain

Table 4-1. Sample Test Sequence Results

UUT_NUM TEST_NAME RESULT MEAS1 MEAS2

20860B456 TEST1 PASS 0.5 0.6

20860B456 TEST2 PASS 1.2 —

20860B123 TEST1 FAIL –0.1 0.7

20860B789 TEST1 PASS 0.6 0.6

20860B789 TEST2 PASS 1.3 —

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-3 LabVIEW Connectivity Course Manual

a specific subset of information. Figure 4-1 shows two database tables that
are related to each other through the lot field.

Figure 4-1. Relational Database Table Concept

Each column in a table has a data type, such as CHARACTER (fixed and
variable length), NUMBER, DECIMAL, INTEGER, FLOAT, REAL,
DOUBLE PRECISION,DATE, LONG, and RAW. The available data types
vary depending on the DBMS. The LabVIEW Database Connectivity
Toolkit uses a set of common data types. The toolkit automatically maps
these data types into the appropriate type in the underlying database. By
using the common data types, the toolkit can access a variety of databases
with little or no modification.

B. Database Standards
The LabVIEW Database Connectivity Toolkit contains a set of VIs with
which you can perform both common database tasks and more advanced
and customized tasks.

The LabVIEW Database Connectivity Toolkit works with any database
driver that complies with one of the following standards:

• Open Database Connectivity (ODBC)

• Object Linking Embedding Database (OLE DB)

ODBC Standard
The SQL Access Group, including representatives of Microsoft, Tandem,
Oracle, Informix, and Digital Equipment Corporations, developed the Open
Database Connectivity (ODBC) standard as a uniform method for
applications to access databases. ODBC 1.0 released in September 1992.
The standard consists of a multilevel API definition, a driver packaging
standard, an SQL implementation based on ANSI SQL, and a means for
defining and maintaining Data Source Names (DSN). A DSN is a quick way
to refer to a specific database. You specify a DSN with a unique name and

product

Database Table: prodstats

lot build_time

widget1 R43E2 32

R43E5

E43U1

53Q8 13

59

50widget2

widget3

widget4

lot

Database Table: prodspecs

date material

R43E2 10/24/93 aluminum

10/27/93

06/23/93

01/09/94 copper

steel

steelR43E5

E43U1

53Q8

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-4 ni.com

by the ODBC driver that communicates with the physical database, local or
remote. You must define a DSN for each database to which an application
program connects.

OLE DB Standard
The ODBC standards was designed to access only relational databases.
Microsoft realized this as a limitation and developed a platform called
Universal Data Access (UDA) where applications can exchange relational
or non-relational data across intranets or the Internet, essentially connecting
any type of data with any type of application. OLE DB is the Microsoft
system-level programming interface to diverse sources of data. The
Microsoft ActiveX Data Object (ADO) standard is the application-level
programming interface.

The Microsoft Data Access Components (MDAC) are the practical
implementation of the Microsoft UDA strategy. MDAC includes ODBC,
OLE DB, and ADO components. MDAC also installs several data providers
you can use to open a connection to a specific data source, such as an MS
Access database.

OLE DB specifies a set of Microsoft Component Object Model (COM)
interfaces that support various database management system services. These
interfaces enable you to create software components that comprise the UDA
platform. OLE DB is a C++ API that allows for lower-level database access
from a C++ compiler. Three general types of COM components for OLE DB
include:

• OLE DB Data Providers—Data source-specific software layers that
access and expose data.

• OLE DB Consumers—Data-centric applications, components, or tools
that use data through OLE DB interfaces. Using networking terms, OLE
DB consumers are the clients, and the OLE DB data provider is the
server.

• OLE DB Service Providers—Optional components that implement
standard services to extend the functionality of data providers. Examples
of these services include cursor engines, query processors, and data
conversion engines.

All data access in the LabVIEW Database Connectivity Toolkit occurs
through an OLE DB provider. If you do not specify a provider, the toolkit
uses the OLE DB provider for ODBC provider. Microsoft provides some
relational data providers as part of the MDAC installation.

To practice the concepts in this section, complete Exercise 4-1.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-5 LabVIEW Connectivity Course Manual

C. Connecting to a Database
Before you can access data in a table or execute SQL statements, you must
establish a connection to a database. The LabVIEW Database Connectivity
Toolkit supports multiple simultaneous connections to a single database or
to multiple databases. Use the DB Tools Open Connection VI to establish
the connection to a database.

Determining how to connect to a database can be a complex process because
each DBMS uses different parameters for a connection and different levels
of security. The different standards also use different methods of connecting
to databases. For example, ODBC uses Data Source Names (DSN) for the
connection, whereas the Microsoft ActiveX Data Object (ADO) standard
uses Universal Data Links (UDL) for the connection. Fortunately, the DB
Tools Open Connection VI supports all methods for connecting to a
database.

DSNs and Data Source Types
A DSN is the name of the data source, or database, to which you are
connecting. The DSN also contains information about the ODBC driver and
other connection attributes including paths, security information, and
read-only status of the database. You can use the ODBC Data Source
Administrator to create and configure DSNs. Two main types of DSNs exist:
machine DSNs and file DSNs.

Machine DSNs are a restrictive type of DSN that reside in the system
registry. Machine DSNs that apply to all users of a computer system are
called system DSNs. These DSNs are restrictive because they are limited to
only one system. Machine DSNs that apply to single users are called user
DSNs. These DSNs are restrictive because they are limited to individual
users.

The second main type of DSNs, File DSNs, are not restrictive. A file DSN
is a text file with a .dsn extension and is accessible to anyone with proper
permissions. File DSNs are not restricted to a single user or computer
system.

ODBC Data Source Administrator
Use the ODBC Data Source Administrator to register and configure drivers
to enable them as data sources for applications. In the Windows Control
Panel, select Administrative Tools»Data Sources (ODBC) to display the
ODBC Data Source Administrator as shown in Figure 4-2. The system
saves the configuration for each data source in the registry or in a file.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-6 ni.com

Figure 4-2. Data Sources Dialog Box

The ODBC Data Source Administrator dialog box lists all the registered
ODBC data sources. On various tabs you can select the type of DSN—User,
System, or File. You then can click Add or Configure to display a
driver-specific dialog box where you can configure a new or an existing data
source. The system then saves the configuration for the data source in the
registry or to a file. When you create a new DSN, the Create New Data
Source dialog box displays a list of all the ODBC drivers for your system,
as shown in Figure 4-3.

Figure 4-3. Available ODBC Drivers

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-7 LabVIEW Connectivity Course Manual

The Database Connectivity Toolkit complies with the ODBC standard, so
you can use the toolkit with any ODBC-compliant database drivers. The
Database Connectivity Toolkit does not provide custom ODBC drivers.
However, Microsoft Data Access Components (MDAC) includes several
ODBC drivers. Database system vendors and third-party developers also
offer large selections of ODBC drivers. Refer to the vendor documentation
for information about registering the specific database drivers in the ODBC
Data Sources Administrator.

After you select a particular driver, a second dialog box displays the specific
settings for that driver. ODBC drivers for databases such as SQL Server and
Oracle contain settings and additional dialog boxes for configuring items
such as server information, user identification, and passwords. Figure 4-4
shows the ODBC Access Driver Setup dialog box for the system DSN
named LabVIEW that is used for the Database Connectivity Toolkit
examples in the Example Finder.

Figure 4-4. ODBC Access Driver Setup Dialog Box

Connecting to Databases Using DSNs
You can use the DB Tools Open Connection VI to connect to various
databases that you specify with DSNs.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-8 ni.com

You can use a string to specify a system DSN or user DSN. The VI in
Figure 4-5 specifies a DSN called MS Access to open a connection to that
specific database.

Figure 4-5. Connecting to an Access Database Using a System DSN

You can use a path to specify a file DSN. The VI in Figure 4-6 specifies a
path to a file DSN called access.dsn to open a connection to the database.

Figure 4-6. Connecting to an Access Database Using a File DSN

Notice that the connection information input of the DB Tools Open
Connection VI is polymorphic. This VI accepts either a string or path for the
DSN.

The VI in Figure 4-7 connects to an Oracle database using a system DSN.
Notice that the userID and password parameters are wired. Some DBMS
require that these parameters be set in order to connect to a database.

Figure 4-7. Connecting to an Oracle Database Using a System DSN

As shown in the previous examples, connecting to a database using the
DB Tools Open Connection VI requires only a string or path value
specifying the DSN along with optional user ID and password strings
depending upon the DBMS. Therefore, the majority of problems in defining
a connection occur when creating the DSN. Some ODBC drivers have an
option to test the connection. Test the connection between the DSN and the
database before you try to do anything with the Database Connectivity
Toolkit.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-9 LabVIEW Connectivity Course Manual

UDLs
A UDL is similar to a DSN in that it describes more than just the data source.
A UDL specifies what OLE DB provider is used, server information, the
user ID and password, the default database, and other related information.

You can create a UDL in one of the following three ways:

• Use the prompt? input of the DB Tools Open Connection VI, as shown
in Figure 4-8.

Figure 4-8. Using a Prompt to Create a UDL

The prompt? input displays the Data Link Properties dialog box when
the DB Tools Open Connection VI runs. You can select the appropriate
options in this dialog box to make the database connection.

• Select Tools»Create Data Link in LabVIEW to display the Data Link
Properties dialog box.

Note The Database Connectivity Toolkit installer creates a directory called
data links inside the labview/Database directory. Save all UDL files and file
DSNs to this directory so you can find them easily.

• In Windows Explorer, right-click an empty location in a folder and
select New»Text Document from the shortcut menu. Change the
file extension of this document from .txt to .udl. You then can
double-click the UDL file to display the Data Link Properties
dialog box.

Configuring a UDL
Any method of creating a UDL involves the Data Link Properties dialog
box. Select a data provider from the Provider page of this dialog box.

After you select a data provider from the list on the Provider page, you can
configure the database connection on the Connection page. The options on
the Connection page are different depending upon which provider you
choose. For example, the Connection page for an ODBC provider contains
a selection for a DSN or connection string along with user name and
password information. Click the Test Connection button to test the
database connection after you configure the various properties. Be sure the
connection test passes before you click the OK button to exit.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-10 ni.com

Connecting to Databases Using UDLs
Use a path control or constant to specify the path to a UDL file unless you
set the prompt? input of the DB Tools Open Connection VI to TRUE. The
VI in Figure 4-9 uses a path constant to specify the UDL for a Microsoft
Access database.

Figure 4-9. Connecting to a Microsoft Access Database Using a UDL

Although you may have created the DSN or UDL correctly, you still may
not be able to connect to a specific database because of situations beyond
your control. The following situations can prevent you from connecting to a
database:

• The requested server is down.

• The network is down.

• All server connections are full, and no other users can connect.

• The maximum number of user licenses has been reached.

• You do not have permission to access the specified database.

• The specified DSN does not exist. Either you are on a different machine,
or the specified DSN was deleted.

• The selected data provider is the wrong one for the database.

If the DB Tools Open Connection VI returns errors, you can open the UDL
file manually and click the Test Connection button on the Data Link
Properties dialog box to verify that you have the correct settings and that
you have access to the database. If the test connection fails, you cannot
connect to that database with the Database Connectivity Toolkit. Contact the
database administrator for help.

To practice the concepts in this section, complete Exercise 4-2.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-11 LabVIEW Connectivity Course Manual

D. Performing Standard Database Operations
You can use the Database VIs and function to write data to or read data
from, as well as update and delete data from databases.

Writing Data to a Database
Writing data to a database with the LabVIEW Database Connectivity
Toolkit is similar to writing data to a file. You open a connection, insert the
data, and close the connection when you are finished.

Figure 4-10. Writing Data to a Database Table Front Panel

Figures 4-10 and 4-11 show the front panel and block diagram of a VI that
writes the test information to a database table. The connection information
is a path to the UDL called test.udl and the table name is testdata.

Figure 4-11. Writing Data to a Database Table Block Diagram

Figure 4-11 uses three Database VIs: the DB Tools Open Connection VI, the
DB Tools Insert Data VI, and the DB Tools Close Connection VI. The
create table? input of the DB Tools Insert Data VI is set to TRUE to create
the specified table if it does not already exist. If this table does exist, then
the data is appended to the existing table. The DB Tools Insert Data VI
accepts any type for the data input. If the input type is a cluster, each cluster
element is placed into a different field. The LabVIEW data types are
converted to the appropriate database data types.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-12 ni.com

Figure 4-12 shows the testdata table as it appears in Microsoft Access.
Note that the front panel and block diagram shown in Figures 4-10 and 4-11
respectively do not specify the type of database to use. That configuration
occurs when the test.udl is created.

Figure 4-12. Database Table Displayed in Microsoft Access

Notice that the column names are not specified in the VI, so the table uses
default column names. You can specify column names using the columns
input of the DB Tools Insert Data VI. Wiring an empty array to this input
assumes that all columns in the table are to be used.

Reading Data From a Database
Reading data from a database table is similar to writing data to the database.
You open a connection to the database, select the data from a table, and then
close the connection.

Figure 4-13. Reading Data from a Database Table Front Panel

Figures 4-13 and 4-14 show how you can read the data back from the
testdata table used in the previous example.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-13 LabVIEW Connectivity Course Manual

Figure 4-14. Reading Data from a Database Table Block Diagram

Notice in Figures 4-13 and 4-14 that the database data is returned as a
two-dimensional array of variants. As the name implies, the Microsoft
ActiveX Data Object (ADO) standard is based on ActiveX, which defines
variants as its data types. Variants work well in languages such as Visual
Basic that are not strongly typed. Because LabVIEW is strongly typed, you
must use the Database Variant To Data function to convert the variant data
to a LabVIEW data type before you can display the data in standard
indicators such as graphs, charts, and LEDs.

Figures 4-15 and 4-16 show the front panel and block diagram for a VI that
reads all data from a database table and then converts the data to appropriate
data types in LabVIEW.

Figure 4-15. Reading and Converting Data from a Database Table Front Panel

In Figure 4-15, notice that the fourth column of data that does not display
properly in either Microsoft Access or the variant is now displayed in a
waveform graph.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-14 ni.com

Figure 4-16. Reading and Converting Data from a Database Table Block Diagram

You can use the table input of the DB Tools Select Data VI to read data from
more than one table in a database. Figure 4-17 shows how you can use a
comma-delimited string to specify multiple table names. The data array
includes all rows and columns from both tables in the order they appear in
the table string.

Figure 4-17. Specifying Multiple Database Tables for Reading Data

Limiting Data to Read
If you are reading data from a large table or set of tables, it might take
several seconds to return all the data. There is no limit to the size of the
database table you can read other than your computer resources, memory,
and speed. Read only the necessary fields or perform an SQL query to limit
the amount of information to read into LabVIEW at one time. Figure 4-18
shows how you can use the columns string array to specify which columns
to read to limit the returned data.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-15 LabVIEW Connectivity Course Manual

Figure 4-18. Specifying Column Names for Reading Data

In Figure 4-18, only the testid and pass fields are returned from a table
named testdata. You can limit the returned data further by specifying
conditions using the optional clause string. Figure 4-19 shows how you can
limit the results from the previous example by returning the testid and
testdate fields for the records where the pass field equals TRUE.

Figure 4-19. Specifying Conditions for Reading Data

The statement where pass='true' is part of an SQL query. Refer to the
Structured Query Language section of this lesson for information about
SQL queries.

Note If you receive an error while using the DB Tools Select Data VI, either a specified
field in the columns string array does not exist in the table, or a column name contains
characters such as a space, -, \, /, or ?. Do not use these characters when naming tables
in a database. However, if an existing database contains such characters, enclosing the
column name in double quotes, or single quotes for mysql, often solves the problem.

Updating Data in a Database
You can use the DB Tools, Update Data VI to update data records in a
database. You open a connection, update data, and close the connection
when you are finished.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-16 ni.com

Figure 4-20 and Figure 4-21 show the front panel and block diagram of a VI
that updates the data record in a database table with specific condition. The
connection information is a path to the UDL called test.udl and the table
name is salary.

Figure 4-20. Update Data in a Database Table Front Panel

Figure 4-21. Update Data in a Database Block Diagram

The DB Tools Update Data VI accepts any type for the data input. If the
input type is a cluster, each cluster element is replaced into a different field.
The LabVIEW data types are converted to the appropriate database data
types. The Condition input specifies an SQL clause that this VI uses to filter
the selection criteria. If you do not specify a value for this input or if the
input is an empty string, this VI updates all rows in Table.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-17 LabVIEW Connectivity Course Manual

Figures 4-22 and 4-23 show the salary table before and after update as it
appears in Microsoft Access.

Note The front panel and block diagram shown in Figure 4-20 and Figure 4-21 do not
specify the type of database to use. That configuration occurs when the test.udl is
created.

Figure 4-22. Database Table Before Update

Figure 4-23. Database Table After Update

Deleting Data in a Database
You can use the DB Tools Delete Data VI to delete data records in a
database. You open a connection, delete data, and close the connection when
you are finished.

Figures 4-24 and 4-25 show the front panel and a block diagram of a VI that
deletes the data records in a database table with specific condition. The
Connection Information is a path to the UDL called test.udl and the
table name is salary.

Figure 4-24. Delete Data in a Database Table Front Panel

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-18 ni.com

Figure 4-25. Delete Data in a Database Table Block Diagram

Figure 4-25 uses three Database VIs: the DB Tools Open Connection VI, the
DB Tools Delete Data VI, and the DB Tools Close Connection VI.

The DB Tools Delete Data VI deletes data from a database identified by
connection reference. The condition input specifies an SQL clause that this
VI uses to filter the selection criteria. If you wire an empty string to this
input, this VI deletes all data from table.

Figures 4-26 and 4-27 show the salary table before and after delete as it
appears in Microsoft Access.

Figure 4-26. Database Table Before Deleting Data

Figure 4-27. Database Table After Deleting Data

Note The front panel and block diagram shown in Figures 4-16 and 4-17 respectively
do not specify the type of database to use. That configuration occurs when the test.udl
is created.

Database Variant to Data
You can use Database Variant to Data VI to convert a database variant to the
LabVIEW data type specified in type so you can use the data in another
function or VI.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-19 LabVIEW Connectivity Course Manual

Database Variant to Data is designed so you can convert a single database
variant or, row (or column) of data, or even a whole table of data at one time.
Figure 4-28 shows the inputs and outputs of this function.

Figure 4-28. Database Variant to Data VI

You can wire a variant, a 1D array of variants or a 2D array of variants to the
database variant input. Depending on the data type that you wire to the type
and database variant inputs. The Database Variant to Data function performs
the different conversions shown in Table 4-2.

Table 4-2. Database Variant to Data Function Conversions

Data Type of
“database
variant”

Data Type of “type”

Cluster
1D Array of

Non-Clusters
1D Array of

Clusters 2D Array Others

Variant This function converts the variant to the LabVIEW data type specified in type

1D Array of
Variants

Each element in
the cluster
defines a
column. This
function
converts each
element of the
1D array to a
column in
sequence.

This function
converts each
element of the
1D array to the
element data
type specified in
type. The output
is a 1D array.

This function
converts each
element of the
1D array to a
cluster. The
output is a 1D
array of clusters.

The wire of
database
variant is
broken.

The wire of
database
variant is
broken.

2D Array of
Variants

The wire of
database
variant is
broken.

The wire of
database
variant is
broken.

This function
converts each
row of the 2D
array to a
cluster. The
output is a 1D
array of clusters.

This function
converts each
element of the
2D array to the
element data
type specified in
type. The output
is a 2D array.

The wire of
database
variant is
broken.

Others The wire of database variant is broken.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-20 ni.com

Using the Database Connectivity Toolkit Examples
The Database Connectivity Toolkit provides several examples that
demonstrate how to perform common database operations with the
Database VIs. These examples use a UDL called LabVIEW.udl to link to a
Microsoft Access database named LabVIEW.mdb.

Using the Examples with Other Databases
You can use the Database Connectivity Toolkit example VIs by modifying
the LabVIEW.udl file. Double-click this UDL file in the labview/
examples/database directory to display the Data Link Properties
dialog box. You then can select a different provider and set the connection
properties for your DBMS. The default values for some of the example VIs
assume the presence of a particular table in the database from which to read
data or to which to add data. You must modify the example to fit the table
names, column names, and data types required.

Using the Example without a Database
You do not need to have Microsoft Access or any other database installed to
use the Database Connectivity Toolkit examples. If you run the examples
with their default values, the data is read from or written to the
LabVIEW.mdb file even if you do not have Microsoft Access installed. If
you want to create a new database file to write data to and read data from,
you can copy and rename the LabVIEW.mdb file and use the DB Tools Drop
Table VI to remove the existing tables. You then can use the DB Tools
Create Table VI to create new tables specific to the application.

To practice the concepts in this section, complete Exercise 4-3.

To practice the concepts in this section, complete Exercise 4-4.

E. Structured Query Language
The Structured Query Language (SQL) consists of a set of character string
commands and is a widely supported standard for database access. SQL is
the language that relational databases use. You can use the SQL commands
to describe, store, retrieve, and manipulate the rows and columns in database
tables.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-21 LabVIEW Connectivity Course Manual

SQL is a non-procedural language for processing sets of records in database
tables. The following are three pertinent classes of SQL statements:

• Data Definition/Control Language (DDL/DCL) statements—Define
and control the structure of the database. They also define and grant
access privileges to database users. Use the statements to create, define,
and alter databases and tables.

• Data Manipulation Language (DML) statements—Operate on the
data contents of database tables. You use these statements to insert rows
of data into a table, update rows of data in a table, delete rows from a
table, and conduct database transactions.

• Queries—Are SQL SELECT statements that specify which tables and
rows are retrieved from the database.

Table 4-3 describes some frequently used SQL commands.

The following line is an example of a typical SQL statement:

SELECT product, lot FROM prodstats WHERE lot=R43E2

Table 4-3. Common SQL Commands

Command Function

CREATE
TABLE

Creates a database table and specifies the name and
data type for each column therein. The result is a
named table in the database. CREATE TABLE is a
DDL command. DROP TABLE is the complementary
DDL command.

INSERT Adds a new data row to the table, allowing values to
be specified for each column. INSERT is a DML
command.

SELECT Initiates a search for all rows in a table whose column
data satisfy specified combinations of conditions. The
result is an active set of rows that satisfy the search
conditions. SELECT is a query command.

UPDATE Initiates a search as in SELECT, then changes the
contents of specific column data in each row in the
resulting active set. UPDATE is a DML command.

DELETE Initiates a search as in SELECT, then removes the
resulting active set from the table. DELETE is a DML
command.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-22 ni.com

This SQL command retrieves the product and lot columns from the
prodstats table, including only those rows where the value contained in the
lot column equals R43E2. This query creates a one-row, two-column active
set as shown in Table 4-4.

SQL Dialects
Several database publishers use their own SQL dialects in their products.
These dialects usually consist of extensions to the standard SQL commands
that perform higher-level or database-specific functions. Conversely, certain
accessible databases do not directly support standard SQL functions.
Differences are most noticeable when using the CREATE TABLE and
ALTER TABLE commands. Most of the databases use their own particular
column type keywords. Many of the databases have different syntax for
date-and-time formats. ODBC-compliant SQL Toolkit software helps to
minimize the effects of these SQL variants.

Executing SQL Statements and Fetching Data
With SQL, you can perform common operations like creating and deleting
tables, inserting data into databases, querying databases for particular
recordsets, and manipulating data in tables. This section describes how you
can use SQL statements with the LabVIEW Database Connectivity Toolkit
and how you can fetch the data resulting from an SQL query.

Use the DB Tools Execute Query VI to send an SQL string to a database, as
shown in Figure 4-29. You then can use the DB Tools Fetch Element Data
VI, the DB Tools Fetch Next Recordset VI, or the DB Tools Fetch Recordset
Data VI to return the results of a query.The SQL string does not have to
specify only a query. You can enter any SQL statement in the SQL string.

Figure 4-29. Fetching Query Results

Table 4-4. Example Query Results

widget R43E2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-23 LabVIEW Connectivity Course Manual

The SQL query string shown in Figure 4-29 asks for all records in the
testdata table where the fifth field contains a TRUE value. The DB Tools
Fetch Recordset Data VI returns a two-dimensional array of variants for
which all tests passed. Refer to the Performing Standard Database
Operations section for more information about converting variant data to
LabVIEW data types. Because the DB Tools Execute Query VI creates a
Recordset reference, you then must use the DB Tools Free Object VI to
release the Recordset reference value.

The DB Tools Fetch Recordset Data VI returns all records from a query such
as the one shown in Figure 4-29.

Note A record is a single row of data and a recordset is a collection of records, or
multiple rows, from a database table.

To practice the concepts in this section, complete Exercise 4-5.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-25 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. Match each item to its description:

2. Which of the following are valid ways of connecting to a database using
the OLE DB standard?

a. Wire a TRUE constant to the Prompt input of the DB Tools Open
Connection VI

b. Wire the filepath of a valid UDL file to the Filepath input of the DB
Tools Open Connection VI

c. Wire the name of a DSN to the Filepath input of the DB Tools Open
Connection VI

3. Which VI converts database data into a more usable LabVIEW data
type?

a. DB Tools Open Connection

b. DB Tools Select Data

c. DB Tools Insert Data

d. Database Variant to Data

Database a. Contains records and fields

Tables b. Set of string commands for database access

SQL c. Organized collection of data

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

© National Instruments Corporation 4-27 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. Match each item to its description:

2. Which of the following are valid ways of connecting to a database using
the OLE DB standard?

a. Wire a TRUE constant to the Prompt input of the DB Tools
Open Connection VI

b. Wire the filepath of a valid UDL file to the Filepath input of the
DB Tools Open Connection VI

c. Wire the name of a DSN to the Filepath input of the DB Tools Open
Connection VI

3. Which VI converts database data into a more usable LabVIEW data
type?

a. DB Tools Open Connection

b. DB Tools Select Data

c. DB Tools Insert Data

d. Database Variant to Data

Database c. Organized collection of data

Tables a. Contains records and fields

SQL b. Set of string commands for database access

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Connecting to Databases

LabVIEW Connectivity Course Manual 4-28 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 5-1 LabVIEW Connectivity Course Manual

5
Broadcasting Data Using UDP and
Serving Data to a Client Using TCP

You can use TCP/IP to communicate over single networks or interconnected
networks. The individual networks can be separated by large geographical
distances. TCP/IP routes data form one network or Internet-connected
computer to another. Because TCP/IP is available on most computers, it can
transfer information among diverse systems.

The Transport Control Protocol, or TCP, uses the Internet Protocol (IP) to
provide reliable transmission across networks, delivering data in a sequence
without errors, loss, or duplication. This lesson describes using a
client/server model to reliably send data using TCP.

The User Data Protocol, or UDP, also uses the Internet Protocol to transfer
data but does so in a lighter weight way than TCP. UDP provides a means
for communicating short packets of data to one or more recipients. This
lesson describes using UDP and LabVIEW to implement the broadcast
model.

Topics
A. Broadcasting Data Overview

B. Implementing Broadcast Models

C. TCP Overview

D. Implementing the Client/Server Model

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-2 ni.com

A. Broadcasting Data Overview
Broadcasting data is a method of placing data onto a network. Broadcasting
data is not concerned with the network entities who are listening to the data
being broadcast. Also, broadcasting data cannot guarantee that the data
reaches its destination. The User Datagram Protocol, otherwise known as
UDP, is the networking protocol that implements broadcasting.

Broadcast Communication Model Definition
 UDP provides simple, low-level communication among processes on
computers. Processes communicate by sending datagrams to a destination
computer or port. A port is the location where you send data. Internet
Protocol (IP) handles the computer-to-computer delivery. After the
datagram reaches the destination computer, UDP moves the datagram to its
destination port. If the destination port is not open, UDP discards the
datagram. UDP shares the same delivery problems of IP.

Use UDP in applications in which reliability is not critical. For example, an
application might transmit informative data to a destination frequently
enough that a few lost segments of data are not problematic.

The broadcast model is very similar to a radio tower broadcasting a signal.
The radio station doesn’t need to know who is listening to the broadcast
signal. Also, there is the possibility that the listener is not able to receive the
signal due to interference from other signals. The advantage to the broadcast
model is there is no limit to the number of listeners, similar to a radio
broadcast, as shown in Figure 5-1.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-3 LabVIEW Connectivity Course Manual

Figure 5-1. Broadcast Model

UDP Communication Capabilities and Issues
Unlike TCP, UDP does not guarantee the safe arrival of data to the
destination. Furthermore, data sent in multiple packets may not arrive at the
destination in the order they were sent. Therefore you should use UDP only
to send short, non-critical messages to one or more destinations.

Because UDP has little communication control, you do not need an explicit
connection to the other side of communication to send or receive data.
A receiver listens on a specified UDP port to receive any data broadcast to
that port.

In the example shown in Figure 5-2 and Figure 5-3, any data received is
printed on a string indicator, along with the source address and port. If a
timeout occurs on the UDP read function (after 250 ms) the VI ignores the
error, nothing prints to the indicator, and the loop returns to the beginning
and listens for data on the UDP port. Notice that the UDP connection must
be opened and closed with the corresponding UDP functions.

101.5 MHz

101.5 MHz
99.1 MHz
9.1 MH

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-4 ni.com

Figure 5-2. UDP Receiver

The broadcaster is simpler because it does not require a wait. The
broadcaster opens the UDP port, sends the data, and closes the port.

Figure 5-3. UDP Broadcaster

Even though UDP has reliability issues, some applications may be better
suited to UDP for the following reasons:

• No connection establishment—Unlike TCP, UDP does not wait to
confirm a connection before transferring data, so no delay is introduced.

• No connection state—Because UDP does not maintain a connection
state, which includes send and receive buffers and congestion control
settings, a UDP broadcaster can support more receivers.

• Small overhead—UDP segments have 8 bytes of overhead, compared
to 20 bytes of overhead for TCP segments.

• Unregulated send rate—UDP send rate is only limited by the rate of
data generation, CPU, clock rate, and access to Internet bandwidth

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-5 LabVIEW Connectivity Course Manual

B. Implementing Broadcast Models
You can create a UDP-based distributed system by using the LabVIEW
UDP VI and functions.

Creating a Broadcast Model Distributed System
You can use the UDP functions to communicate to a single client
(single-cast) or to all computers on the subnet through a broadcast. If you
want to communicate to multiple specific computers, you must write custom
code for the UDP functions to iterate through a list of clients or use
multicasting. Using this technique creates duplicate network traffic because
LabVIEW sends a separate copy of the data to each client and maintains a
list of clients interested in receiving the data.

Use multicasting to communicate between a single sender and multiple
clients on a network without requiring the sender to maintain a list of clients
or send multiple copies of the data to each client. To receive data broadcast
by a multicast sender, all clients must join a multicast group. The sender
does not have to join a group to send data. The sender specifies a multicast
IP address, which defines a multicast group. Multicast IP addresses are in
the 224.0.0.0 to 239.255.255.255 range. When a client wants to join
a multicast group, it subscribes to the multicast IP address of the group.
After subscribing to a multicast group, the client receives data sent to the
multicast IP address.

To multicast in LabVIEW, use the UDP Multicast Open VI to open
connections capable of reading, writing, or reading and writing UDP data.
Specify the time-to-live (TTL) for writing data, the multicast address for
reading data, and the multicast port number for reading and writing data.
The default TTL is 1, which means LabVIEW sends the datagram only to
the local subnet. When a router receives a multicast datagram, it decrements
the datagram TTL. If the TTL is greater than 1, the router forwards the
datagram to other routers. The following table lists what action occurs to a
multicast datagram when you specify a value for the time-to-live parameter.

0 Datagram remains on the host computer.

1 Datagram sent to every client on the same local subnet that
subscribes to that IP address. Hubs/repeaters and
bridges/switches forward the datagram. Routers do not
forward the datagram if the TTL is 1.

>1 Datagram is sent and routers forward it through TTL –1
layers.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-6 ni.com

UDP VI and Functions
Use the UDP VI and functions to exchange data with devices on a remote
UDP socket.

• UDP Open—Opens a UDP socket on the port. Close the socket with
the UDP Close function. Use the UDP Multicast Open VI instead of this
function to open connections capable of reading, writing, or reading and
writing data to or from UDP Multicast sockets.

• UDP Multicast Open—Opens a UDP multicast socket on the port. You
must manually select the polymorphic instance you want to use. Use the
pull-down menu to select an instance of this VI. You can select from
Read-Only, Read-Write and Write-Only instances.

• UDP Read—Reads a datagram from a UDP socket, returning the results
in data out. The function returns data when it receives any bytes, and
waits the full timeout ms only if it receives no bytes.

• UDP Write—Writes to a remote UDP socket.

• UDP Close—Closes a UDP socket.

C. TCP Overview
TCP ensures reliable transmission across networks, delivering data in
sequence without errors, loss, or duplication. TCP retransmits the datagram
until it receives an acknowledgment.

TCP is a connection-based protocol, which means that sites must establish
a connection before transferring data. The data transmission occurs between
a client and a server. TCP permits multiple, simultaneous connections.

You initiate a connection by waiting for an incoming connection or by
actively seeking a connection with a specified address. In establishing TCP
connections, you have to specify the address and a port at that address.
Different ports at a given address identify different services at that address.

Client/Server Model Overview
The client/server model is a common model for networked applications.
In this model, one set of processes (clients) requests services from another
set of processes (servers) as shown in Figure 5-4.

Figure 5-4. Client/Server Model

Service Provider

Server

Service Requestor

Client

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-7 LabVIEW Connectivity Course Manual

Client Model Overview
Figure 5-5 shows the flowchart model for TCP/IP communication in
LabVIEW.

Figure 5-5. LabVIEW TCP/IP Client Model

For higher performance, you can process multiple commands after you
open the connection. After executing the commands, you can close the
connection. This flowchart serves as a model to demonstrate implementing
a given protocol in LabVIEW.

Client Model Communication Steps
The client model allows a client to communicate to a server by first opening
a connection to the server, sending a command to the server, receiving a
command from the server, and then closing the connection to the server.

Open a Connection to the Server
The first step is to open a connection to the server. The client must open a
network port on the local machine, and then specify the IP address of the
server to connect to.

Send Commands to the Server
After a connection is established to the server, the client sends a message
that the server recognizes. This message causes the server to perform work.

Receive Responses from the Server
After a message is sent to the server, the client needs to know that the
message was accepted and work was performed by the server. This occurs
by the server responding to the client.

Close the Connection to the Server and Report Errors
After all of the commands are sent to the server, the client closes the
connection, and reports errors.

Yes

No

Execute
Command
on Server

Open
Connection
to Server

Close
Connection
to Server

Done?

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-8 ni.com

Server Model Overview
Figure 5-6 shows a simplified model for a server in LabVIEW.

Figure 5-6. LabVIEW TCP/IP Server Model

LabVIEW repeats this entire process until it is shut down remotely by
sending a command to end the VI. This VI does not report errors. It
might return a response indicating that a command is invalid, but it does
not display a dialog box when an error occurs. Because a server might
be unattended, consider carefully how the server should handle errors.
You probably do not want to display a dialog box on an error because it
requires user interaction at the server. Someone would need to click the
OK button. However, you might want LabVIEW to write a log of
transactions and errors to a file or a string.

You can increase performance by allowing the connection to stay open.
You can receive multiple commands this way, but it also blocks other clients
from connecting until the current client disconnects. You can restructure the
block diagram to handle multiple clients simultaneously, as shown in
Figure 5-7.

Done?
Execute

Command
Return

Command

Wait for a
Command

Wait for a
Connection

Initialize
Server

Close
Connection

Yes

No

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-9 LabVIEW Connectivity Course Manual

Figure 5-7. Handling Multiple Clients Simultaneously

The block diagram uses the LabVIEW multitasking capabilities to run two
loops simultaneously. The top loop continuously waits for a connection and
then adds the connection to a synchronized queue. The bottom loop checks
each of the open connections and executes any commands that have been
received. If an error occurs on one of the connections, the connection is
disconnected. When the user aborts the server, all open connections close.

Server Model Communication Steps
The server model is more complex to allow for multiple clients to access the
server. The server must first initialize itself, and then wait for a connection
from a client. Once the connection is established, the server will wait for a
command. The server will process and execute any commands and return
results back to the client. Once the client is finished sending commands to
the server, the connection between the server and client can be closed.

Initialize the Server
The server is initialized by listening for a connection on a particular network
port.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-10 ni.com

Wait for a Connection
The server model allows for multiple clients to connect to the server. This is
accomplished by waiting for a connection from a client, and then placing the
connection information into a queue using a producer/consumer design
pattern. The consumer waits for a command to be received from the client.

Wait for a Command
Waiting for a command allows multiple commands to be received from
multiple clients. This is accomplished by using a consumer to iterate
through each of the clients to determine if a message has been sent by a
client.

Execute the Command and Return Results
After a command is received by the server from a client, the server executes
the command by performing work. Once the work is finished, the server
responds with the results of the work or an error if it was not possible to
perform the work.

Close the Connection
After all of the clients have finished sending messages to the server, the
connection to the network port must be closed.

Client/Server Model Capabilities and Issues
The client/server model provides a reliable mechanism for sending data on
a network. But, with the added reliability, the client/server model adds
complexity over the broadcast model. This complexity is due to the extra
amount of communication between the client and the server to verify that
messages are being received. This extra amount of communication causes
the client/server model to be slower.

To practice the concepts in this section, complete Exercise 5-1.

D. Implementing the Client/Server Model
Use the TCP/IP VI and functions located on the TCP palette to implement
the client/server model using LabVIEW as a client or server application.

TCP/IP VI and Functions
The TCP/IP VIs are organized similar to other LabVIEW functions, where
you must first open, then read/write, and close. The LabVIEW TCP/IP VIs
have other functionality that is specific to the maintenance of a TCP/IP
network connection such as the TCP Listen VI, and the IP to String, and
String to IP functions.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-11 LabVIEW Connectivity Course Manual

TCP Open Connection Function (Client)
Use the TCP Open Connection function to actively establish a connection
with a specific address and port. If the connection is successful, the function
returns a network connection refnum that uniquely identifies that
connection. Use this connection refnum to refer to the connection in
subsequent VI calls.

If the connection is not established in the specified timeout period, the
function completes and returns an error.

connection ID is a network connection refnum that uniquely identifies the
TCP connection. error in and error out clusters describe any error
conditions.

The address identifies a computer on the network and can be expressed in
IP dot notation or as the hostname. The remote port or service name is an
additional number that identifies a communication channel on the computer
that the server uses to listen for communication requests. When you create
a TCP server, you specify the port that you want the server to use for
communication. If the connection is successful, the TCP Open Connection
function returns a connection ID that uniquely identifies that connection.
You use this connection ID to refer to the connection in subsequent VI calls.

TCP Read Function (Client and Server)
The TCP Read function reads a number of bytes from a TCP network
connection, returning the results in data out. mode indicates the behavior
of the read operation based on the following four options.

• Standard (default)—Waits until all bytes you specify in bytes to read
arrive or until timeout ms runs out. Returns the number of bytes read so
far. If fewer bytes than the number of bytes you requested arrive, returns
the partial number of bytes and reports a timeout error.

• Buffered—Waits until all bytes you specify in bytes to read arrive or
until timeout ms runs out. If fewer bytes than the number you requested
arrive, returns no bytes and reports a timeout error.

• CRLF—Waits until all bytes you specify in bytes to read arrive or until
the function receives a CR (carriage return) followed by a LF (linefeed)
within the number of bytes you specify in bytes to read or until timeout
ms runs out. The function returns the bytes up to and including the CR
and LF if it finds them in the string.

• Immediate—Waits until the function receives any bytes from those you
specify in bytes to read. Waits the full timeout only if the function
receives no bytes. Returns the number of bytes so far. Reports a timeout
error if the function receives no bytes.TCP Write Function (Client and
Server).

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-12 ni.com

The TCP Write function writes data to a TCP network connection.

All the data written or read is in a string data type. The TCP/IP protocol does
not state the type or format of the data transferred, so a string type is the
most flexible method. You can use the Flatten to String function to send
binary or complicated data types.

If you send binary or complicated data types, you must inform the receiver
of the exact type and representation of the data sent to reconstruct the
original information. Also, when you use the TCP Read function, you must
specify the number of bytes to read. A common method is to send a 32-bit
integer first to specify the length of the data string that follows. The TCP
example VIs provided with LabVIEW and the exercises in this lesson
provide more information about these topics and about how the data
typically is formatted for TCP/IP communications.

TCP Close Connection Function (Client and Server)
Use the TCP Close Connection function to close the connection to the
remote application. If unread data remains and the connection closes, you
might lose data. Use a higher level protocol for your computer to determine
when to close the connection.

TCP Listen VI, TCP Create Listener Function and TCP Wait on
Listener Function (Server)
A communication program needs the ability to wait for an incoming
connection. The procedure is to create a listener and wait for an accepted
TCP connection at a specified port. If the connection is successful, the
function returns a connection ID and the address and port of the remote
machine. Refer to the Data Server VI located in examples\comm\
TCP.llb for an example of this architecture.

String to IP
The String to IP function converts a string to an IP network address or an
array of IP network addresses. If String to IP is in single output mode, the
net address is the first result returned by the operating system resolver. If
String to IP is in multiple output mode, the result is an array of all IP
network addresses returned by the operating system resolver. If the node
fails to convert the string, the result is a value of zero in single output mode
or an empty array in multiple output mode.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-13 LabVIEW Connectivity Course Manual

IP to String
The IP to String function converts an IP network address to a string.

To practice the concepts in this section, complete Exercise 5-2.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-15 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. Match the protocols to the statements that best describes them.

2. Match each term to its description.

3. For each of the following TCP functions, identify if it is used in client
applications, server applications, or both client and server applications.

a. TCP Open Connection

b. TCP Create Listener

c. TCP Wait on Listener

d. TCP Write

e. TCP Read

f. TCP Close

UDP a. Connection based

TCP b. Does not guarantee safe arrival

c. Packets guaranteed to be received in same order they were
sent

d. Small overhead

Client a. Waits for a connection and then reads or writes data as
instructed

Server b. Initiates the connection and instructs to read and/or write
data

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

© National Instruments Corporation 5-17 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. Match the protocols to the statements that best describes them.

a. Connection based—TCP

b. Does not guarantee safe arrival—UDP

c. Packets guaranteed to be received in same order they were
sent—TCP

d. Small overhead—UDP

2. Match each term to its description.

3. For each of the following TCP functions, identify if it is used in client
applications, server applications, or both client and server applications.

a. TCP Open Connection—client

b. TCP Create Listener—server

c. TCP Wait on Listener—server

d. TCP Write—both

e. TCP Read—both

f. TCP Close—both

Client b. Initiates the connection and instructs to read and/or write
data

Server a. Waits for a connection and then reads or writes data as
instructed

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 5 Broadcasting Data Using UDP and Serving Data to a Client Using TCP

LabVIEW Connectivity Course Manual 5-18 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation 6-1 LabVIEW Connectivity Course Manual

6
Using LabVIEW Web Services

In Lesson 5, you learned to use the TCP and UDP VIs for network
communication. These VIs are available for users who are interested
developing networked applications at a lower-level. Low-level networked
applications are beneficial for quickly establishing extremely simple data
communication, but requires expertise in order to develop any advanced
functionality.

In this lesson, you will learn how to use LabVIEW Web services to provide
a standard, Web-based interface for communication with a LabVIEW
application. LabVIEW can be used on both the server side and the client
side. You can use LabVIEW Web services when LabVIEW is not available
on the client machine.

Topics
A. Web Services

B. LabVIEW Web Services Overview

C. LabVIEW as an HTTP Client

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-2 ni.com

A. Web Services
Use LabVIEW Web services to exchange data with VIs over a network. Any
HTTP-capable Web client, including a standard Web browser, can invoke
VIs and exchange data using a URL and standard HTTP methods such as
GET and POST. You can conduct application-to-application data exchange
between numerous HTTP-capable devices and software from both National
Instruments and third parties

What is a Web Server?
A Web server is a software program running on a computer that listens on
one or more ports for resource requests arriving from other computers,
formatted as valid HTTP requests.

When a request arrives, the Web server breaks the request down into its
component pieces, then uses the information in those pieces to determine
exactly what service or resource the requester, commonly called a client, is
requesting. The URL is the primary part of the request, as it is the effective
“address” of the request. By looking at a requested URL and comparing it
against the services and resources it is configured to supply, the Web server
can tell instantly if it is equipped to service the request. If the server can
satisfy the request, it locates whatever resource is being requested and
returns it in a response, formatting the response according to the HTTP
protocol.

Figure 6-1. Web Server Example

A Web server can typically service multiple requests at one time. The largest
Web servers can service thousands of simultaneous requests.

Internet

HTTP Client
HTTP Request

HTTP Response

Web Service 1

Web Server

Web Service 2

Web Service N

Computer 1 Computer 2

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-3 LabVIEW Connectivity Course Manual

What is a Web Service?
Web services are Web-based APIs that can be accessed over a network, such
as the Internet, and executed on a remote system hosting the requested
services. Web services communicate using open protocols, such as HTTP.

LabVIEW Web services are special LabVIEW applications that can be
loaded and run within the NI Application Web Server.

What is a Browser?
A browser is a software program that acts as an HTTP client to request
resources, such Web pages, pictures, and so on, from HTTP servers. It
graphically renders the resources to be read by a human, printed, and so on.
Browsers are complex programs, relying on many different technologies
including HTTP, SSL, XHTML, CSS, XML, audio/video codecs, and
browser plugins (Flash, JavaScript, PDF, Silverlight).

What is HTTP?
HTTP protocol is an agreement between two communicating computers
(typically a client and a server) for the formatting of request and response
message sent across a network.

Hypertext Transport Protocol (HTTP) was invented in the late 80s, and first
used globally during the birth of the World Wide Web in 1990.

HTTP was conceived as a way to access a distributed collection of
documents on an internetwork of multiple computers. Any given document
could be referenced (addressed) by a URL. This URL could be embedded
within any document to refer or link to another document. If documents had
these links embedded within them, they would allow a reader to start reading
one document, then navigate to another, read through part of it, and navigate
to yet another document. This is the basis of Hypertext.

This approach to distributing linked documents was so successful that it has
become the basis for the global phenomenon we know today as the World
Wide Web. All Web browsers use HTTP or a protocol derived from HTTP
to communicate with Web servers.

What is a URL?
A Uniform Resource Locator (URL) is the address of a resource on a
network. You can think of a URL as the name of a document on a network.
That address could point to your corporate network or someplace on the
other side of the planet via the World Wide Web.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-4 ni.com

Most URLs refer to files of some kind on a machine on a network, but URLs
can also point to other resources on a network, such as database queries and
command output.

The following is an example of a URL which addresses a file on the
www.mydomain.com Web site:

http://www.mydomain.com:80/path/to/some/
resource?param1=something¶m2=something_else

In this example, http identifies the protocol to be used on the network for
communicating with the remote machine that has the resource. The colon
specifies the end of the protocol string.

The double-slashes specify that host name follows (the name of the
computer containing the target document). The host name in this case is
www.mydomain.com.

The colon followed by a number specifies a port number on the computer
where the target document can be found. Specific resources are served by
servers that reside at particular port numbers within a given server computer.
If the host name were an office building, the port number would be the
number of a room within that building.

By convention, Web servers serve their resources over the HTTP protocol at
port 80. This is so common that the protocol permits clients to skip the port
number in the URL. Unless specified, the port number defaults to 80. When
the port number is not specified, the colon and port number are both dropped
from the URL. This means that the following two URLs are equivalent:

• http://www.mydomain.com:80/aFile

• http://www.mydomain.com/aFile

Following the host name (or port number if it is present) is a string beginning
with a slash, including one or more elements, all separated by slashes. This
string represents the pathname to a resource.

You can think of it like a pathname on the filesystem on the hard drive of
modern PCs and laptops. The slash-delimited path is a representation of a
hierarchical tree that sifts through hundreds or thousands of resources to
identify a particular one.

After the resource path, there may be a question mark (?) followed by a list
of parameters. These are optional for most URLs. If present, this parameter
list is formed of key/value pairs separated by ampersands (&).

In the above example, there are two key/value pairs param1 and param2,
each with the value of that key specified after an equals (=). These

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-5 LabVIEW Connectivity Course Manual

parameters specify additional information that the Web server may use for
various purposes while servicing the request.

Given what we've learned so far, we can now completely decode the URL
given at the beginning of this section.

http://www.mydomain.com:80/path/to/some/
resource?param1=something¶m2=something_else

Taken together, this is all the information that a Web server needs to service
this particular request.

Static and Dynamic Resources

Static Resources
URLs may reference static documents. Issuing a request for a static
document is like checking a book out of a library. The server has a collection
of static documents, all addressed by URLs. It simply finds the book
referenced by the URL, makes a copy of it, and gives it to the requester. The
original resource remains on the server, unaffected. The client now has a
snapshot copy of the resource as it existed at the time of the request. If the
requester was a Web browser, the response may be a Web page, an image,
or a file to be downloaded and stored to the remote user's hard drive.

Dynamic Resources
Requesters may also request dynamic content instead of static content. A
dynamic resource specifies one that does not yet exist, but can be created
specifically to match a particular request.

In this case, the Web server has to do more than simply find and return a
copy of an original resource. It must examine the request and pass it on to
other software, typically called Web applications or Web services. These
programs examine the request much like the Web server did. Based on the
request, they do whatever is required to come up with a response. They may

protocol http

host name www.mydomain.com

port number 80

resource /path/to/some/resource

request parameter 1 something

request paramter 2 something_else

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-6 ni.com

search through databases, examine and report on other running programs, or
perform any of an infinite variety of programmed functions.

Ultimately, once a Web application has completed everything necessary to
satisfy the request, it formats a response according to HTTP and sends it
back to the client.

What Can Web Services Do?
Web services can do anything any software program can do in response to
an API call. For example, they can perform a service, such as look up and
return values in a database, read a measurement device and return current
values, or accept an uploaded file and store it on the file system. Web
services can return a copy of a requested resource, such as the current value
of some software variable or setting or a log file stored on disk.

Good Uses for Web Services
Web services are good for anything that fist the client-originated
request/response model. The following situations are examples of good uses
for Web services.

• Monitoring applications—one server, many clients retrieving the state
of the application.

• Controlling applications—one server, many clients that might try to
update the state of the application and/or hardware.

• Creating resources—uploading new applications or documents.

• Client machine has little or no processing capability. For example, a
mobile phone or a computer that does not LabVIEW installed.

When Not to Use Web Services
Web services are not a suitable solution for the following situations.

• Continuous streaming of data—streaming does not map easily to
request/response.

• When you need to closely monitor a rapidly changing value, or your
application requires fast response to events or value changes.

Unless you are running an HTTP server on the client, the server cannot
initiate responses. It must wait for a request.

The only way to monitor for rapidly-changing values is to poll rapidly
repeatedly. Periodic polling is okay. Rapid polling is not because it uses
bandwidth and target resources.

Key HTTP Characteristics
Because Web services are based on HTTP, you need to understand the
characteristics of HTTP.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-7 LabVIEW Connectivity Course Manual

HTTP uses standard resource addressing; that is, services are requested by
URLs. It allows resources to be requested in a standard fashion, regardless
of the platform the server is running on.

HTTP allows the use of hyperlinks, which are embedded references to other
resources. It is client-driven. Servers do not initiate requests.

HTTP is synchronous. Only one request can be outstanding at a time, and
the client must wait for the request to complete before the next can be started
on that same connection.

It uses a request/response model. It performs one service in response to one
request. Requests and responses consist of two parts: the header, which is
always plain text, and the content body, which can be any sequence of bytes.
Requests and responses are encoded using HTTP message formatting.

Query Variables
The (URL) specifies a resource on a server. The URL is used with many
protocols in addition to HTTP. An example of an HTTP URL is
http://www.example.com/

A resource is a file or the dynamic output of a Web method residing on the
server. A resource is accessed on a Web server using an HTTP request
method.

Request variables are parameters passed to a resource within a URL in
name/value pairs. Maps to front panel controls of Web method VIs using the
terminal output type. Resource variables can be used with any HTTP request
method.

The following is an example of request variable syntax:

?variable1=value1&variable2=value2

• ?—indicates the beginning of the query string

• =—separates a name from its value

• &—separates key value pairs within the query string

URL Character Sets
URLs use a standard set of characters that include upper and lower case
English characters, numbers, and the marks shown in Table 6-1.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-8 ni.com

All other characters must be escaped. The characters shown in Table 6-2 are
allowed within URLs, but may not be allowed within a particular
component of URL syntax (they are used as delimiters of the URL
components).

Escaped characters are encoded as triplets. Use the percent character (%)
followed by the two hexadecimal digits representing the octet code. For
example, %20 is the escaped encoding for the US-ASCII space character.

Common Escape Codes
All URLs use ASCII characters to define the location of a resource on a
server. But there are cases where a resource is encoded with non-ASCII
characters or characters reserved to format the URL. Some examples of
non-ASCII characters include ñ and ?. Some examples of reserved
characters include /, ?, and &. URLs that contain non-ASCII or reserved
characters use escape codes to represent these characters.

Table 6-1. Allowed URL Marks

URL Marks

- _

. !

~ *

) (

‘

Table 6-2. Reserved Characters

Reserved Characters

; /

? :

@ &

= +

$,

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-9 LabVIEW Connectivity Course Manual

Escaping URLs in LabVIEW
LabVIEW provides a simple way to escape or unescape a URL. Use the
Escape URL VI or the Unescape URL VI found on the Data
Communication»Protocols»HTTP Client»Utilities palette to escape or
unescape URLs as shown in Figure 6-2.

Figure 6-2. Escape or Unescape URLs in LabVIEW

B. LabVIEW Web Services Overview
Deploying a VI as a Web service in LabVIEW means that any Web-capable
device can now communicate with your application. The Web interface does
not require the LabVIEW run-time engine. Because this feature was
designed from the ground-up to work on LabVIEW Real-Time targets, VIs
not only can be deployed from your desktop, but they can also be deployed
as Web services on hardware such as CompactRIO and PXI. Because it uses
the standard HTTP Web protocol, users can use any client-side technology,

Table 6-3. Common Escape Codes

ASCII Character URL Encoding

space %20

! %21

“ %22

%23

$ %24

% %25

& %26

? %3F

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-10 ni.com

such as HTML, JavaScript, and Flash, to develop user interfaces and
interpret standard data formats such as XML.

Figure 6-3. LabVIEW as a Web Server

LabVIEW Web Services Protocol Layers
LabVIEW Web services use RESTful Web service architecture, which is
based upon the Representational State Transfer (REST) architecture.
RESTful provides a lightweight approach accessible to a wide variety of
HTTP-enabled clients and does not require complex message parsing.

Note The alternative to REST is SOAP, which is far more complex and not appropriate
for RT targets or hardware that has less horsepower.

Request

Response

Standard http protocol

Firewall friendly

No RTE required

Multiple connections

Desktop or RT

Custom clients

Web Clients Web Server

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-11 LabVIEW Connectivity Course Manual

Figure 6-4. LabVIEW Web Services Protocol Layers

LabVIEW as a Web Server
LabVIEW Web services are special LabVIEW applications that can be
loaded an run within the NI Application Web Server, which invokes Web
service methods. Multiple Web services can exist on the system
simultaneously and each Web service can contain multiple methods. Each
Web method corresponds to a Web method VI or static document (such as
an HTML file).

You use a LabVIEW project to build and deploy a Web service. No
NI software is required on the HTTP client machine. LabVIEW can act as
the client, but the client also can be any popular browser, such as Internet
Explorer, Mozilla Firefox, or Google Chrome.

Use Application Builder to define and compile Web services into files with
the .lvws extension.

Web Services File System and .LVWS Files
LabVIEW Web services use a .lvws file to deploy Web services to the
Application Web server. After you build a Web service, LabVIEW packages
all necessary files into a zip file with the .lvws extension. When you deploy
that Web service, LabVIEW deploys the .lvws file to the target Web server,
which can be located on the same system or another hardware target.
LabVIEW then unzips the file and installs the Web service components into
a unique directory on the target Web server.

HTTP

TCP

IP

Hardware

RESTful

Client

Computer 1

HTTP

TCP

IP

Hardware

Web Server

LabVIEW

Computer 2

Physical

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-12 ni.com

The deployed Web service root location differs based on operating system.

(Windows 7/Vista) C:\ProgramData\National Instruments\
WebServices\NI

(Windows XP) C:\Documents and Settings\All Users\
Application Data\National Instruments\WebServices\NI

(ETS and VxWorks) /c/tmp/webservices/

What Makes a Web Service RESTful?
RESTful Web Services are based on the following four verbs:

• GET—Give me the resource named.

• POST—Take this from me and do something with it.

• PUT—I changed what you gave me earlier. Overwrite your version with
mine.

• DELETE—Destroy this resource.

GET
Use GET to retrieve any data, such as a current variable or status in your
application, the current value of a temperature sensor, or a copy of the most
recently captured waveform. GET requests must not change the state of the
program. They are safe to call over and over without operational side effects.

POST
Use POST when you want to send new data to the server and have it store a
new copy of that data. For example, use POST to store a new measurement
to a database or log file, submit a complex query to be processed, or upload
a file or program to be instantiated. POST changes commonly alter the
server state.

PUT
Use PUT to update a particular named resource with a new value. For
example, PUT can flip a control from off to on or update a set point. It is
common to read a value with GET, modify it, then write it back with PUT
using the same resource name. PUT operations commonly change the state
of the server or application.

DELETE
Use DELETE for anything that maps logically to DELETE, DESTROY,
STOP, CANCEL, TERMINATE, and so on. DELETE usually alters the
server or application state.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-13 LabVIEW Connectivity Course Manual

GET Request Using Terminals
To receive data in a Web method VI, you must assign controls to terminals
on the connector pane of the Web method VI. Web clients can then send
values to a Web method VI using the label of the control as the identifier. To
return data from a Web method VI to a Web client, you must assign
indicators to terminals on the connector pane of the Web method VI.

Labels used to send and receive values in Web services can contain only
letters, numbers, hyphens, and underscores available in the US ASCII
character set. Labels cannot contain spaces or special characters.

Supported Data Types for terminal output
Many people are familiar with XML, Text and HTML. JavaScript Object
Notation (JSON) is another option. JSON is a lightweight, text-based open
standard designed for human-readable data interchange. It is derived from
the JavaScript programming language for representing simple data
structures and associative arrays, called objects. Despite its relationship to
JavaScript, it is language-independent, with parsers available for most
programming languages.

When you have created a VI that you want to access using Web services, you
must first build and deploy the Web service. Refer to the section for details
about creating a build specification for your LabVIEW Web service.

To practice the concepts in this section, complete Exercise 6-1.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-14 ni.com

Accept Form Data Using POST
In this section, you will learn how you can use an HTML form to send and
receive data from a VI using the POST method to pull data from a VI.

Figure 6-5. LabVIEW Web Services Palette

In Exercise 6-1, you used terminals to pass data to and from the Web method
VI. The Web Services palette, shown in Figure 6-5, allows for additional
functionality and alternative ways to communicate with Web Method VIs,
including:

• Server side scripting—similar to PHP, but it is called ESP

• Sessions—data stored in cookies on the client can be accessed and set.

• Returning data from an HTML form can be parsed by VIs on this palette.

• Streaming any MIME data type, including images, videos, application
and text.

In Exercise 6-2, you will use the Read Form Data VI to read data from a html
form. This is an alternative to using the connector pane and terminals.

The Read Form Data VI reads a single form data value associated with the
current HTTP request. Use this VI for requests that use the
multipart/form-data encoding type.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-15 LabVIEW Connectivity Course Manual

The Read Form Data VI includes the following inputs and outputs.

• httpRequestID—is an identifier that VIs on the Web Services palette
use to reference a specific HTTP request. The httpRequestID works
similarly to a refnum in LabVIEW, allowing you to wire together VIs
from the Web Services palette within your application. You must create
a new httpRequestID control or wire an existing value from the
httpRequestID out terminal of another VI. You also must assign the
original httpRequestID control to the connector pane of the top-level VI
that contains the VI(s) from the Web Services palette.

• key—specifies the name of the form data element for which to return a
value. For example, if an HTML form submits the post data, x=2&y=3,
you can enter either x or y as the key to retrieve the respective value.

• error in—describes error conditions that occur before this node runs.
This input provides standard error in functionality.

• httpRequestID out—is an identifier that VIs on the Web Services
palette use to reference a specific HTTP request. Use httpRequestID out
to wire together VIs from the Web Services palette within your
application. You also must assign the original httpRequestID control to
the connector pane of the top-level VI that contains VI(s) from the Web
Services palette.

• value—returns the value of the specified form data element.

• error out—contains error information. This output provides standard
error out functionality.

Security and Encryption
Security

• LabVIEW Web services support user authentication with role-based
authorization.

• Individual LabVIEW Web methods can be protected with a list of
permissions.

• The security extension in LabVIEW’s Web Based System Configuration
and Monitoring allows permissions to be assigned to roles, and roles
assigned to users.

• Only authenticated, authorized users with required permissions can
invoke a protected Web method.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-16 ni.com

Encryption

• LabVIEW’s Application Web Server supports SSL, the industry
standard encryption technology used to protect shopping and banking
transactions on the Internet.

• SSL support is standard on desktop systems, but it is an optional
installation for RT targets

Note SSL is available only in the LabVIEW Full Development System and the
LabVIEW Professional Development System.

To practice the concepts in this section, complete Exercise 6-2.

Modify Response Content Type
A common question is “how would I grab the image of a front panel object
and stream it to the browser?” To accomplish this, you modify the response
content type to be an image. In this section you learn how you can change
the response type to an image to send back snapshots of VI front panels or
complex controls.

MIME, or content-type, is an identifier for file formats on the Internet. It
comes after the name of the HTTP header that specifies the type of the
HTTP Message Body.

MIME types include a two-part identifier, type and subtype, and one or
more optional parameters. The following are common MIME types and
subtypes:

• Text types

– text/html—HTML documents

– text/css—cascading Style Sheets

– text/csv—comma-separated values

– text/plain—textual data

– text/xml—extensible Markup Language

• Image types

– image/gif—GIF image

– image/jpeg—JPEG JFIF image

– image/png—Portable Network Graphics

– image/svg+xml—SVG vector image

– image/tiff—Tag Image File Format

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-17 LabVIEW Connectivity Course Manual

Customizing Response Header and Body
When stream mode is selected, the Web services runtime does not generate
a response for you. It allows you to manipulate the response body and the
response headers.

Stream mode allows you to implement your own customized presentation
logic. It lets you choose how you want to format the information you send
back to the client. Use this method if you are using the Write Response VI
or the Render ESP Template VI

To practice the concepts in this section, complete Exercise 6-3.

Build and Deploy a Web Service
Use a LabVIEW project to organize the VIs and other files for your Web
service. To use LabVIEW Web services, you must build and deploy a Web
service using the Build Specification in the LabVIEW Project Explorer.

Web Services Properties
From the Project Explorer window, right-click Build Specifications and
select New»Web Service (RESTful) from the shortcut menu to display this
dialog box. You also can right-click a Web service specification name under
Build Specifications and select Properties from the shortcut menu, or you
can double-click the Web service specification name. If you rebuild a given
specification, LabVIEW overwrites the existing files from the previous
build that are part of the current build.

Use the Web Services Properties dialog box to access and configure settings
for LabVIEW Web services. This topic assumes familiarity with the Web
services introduction and the Building a LabVIEW Web Service
Application tutorial in the LabVIEW Help.

The Web Service Properties dialog box includes the following pages, which
you use to configure the settings for the build:

• Information

• Source Files

• URL Mappings

• Service Settings

• Destinations

• Source File Settings

• Advanced

• Additional Exclusions

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-18 ni.com

• Pre/Post Build Actions

• Preview

For additional information about all the pages in the Web Service Properties
dialog box, refer to the Web Service Properties Dialog Box topic of the
LabVIEW Help.

Information
Use this page of the Web Service Properties dialog box to name the Web
service and select the location to build the Web service.

Figure 6-6. Web Service Properties—Information Page

This page includes the following components:

• Build specification name—Specifies a unique name for the build
specification. The name appears under Build Specifications in the
Project Explorer window.

• Service name—Specifies the name for the Web service. The service
name must conform to standard URL syntax because the service name
is part of the URL that HTTP clients use to access the Web service. The
Application Builder also uses the service name and automatically
appends a .lvws extension when creating the Web service file.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-19 LabVIEW Connectivity Course Manual

• Destination directory—Specifies the location to save the build on the
local computer. You can enter a path or use the Browse button to
navigate to and select the location.

• Build specification description—Displays information about the build
specification. You can view and edit the description on this page only.

Source Files
Use this page of the Web Service Properties dialog box to add and remove
files to build into the Web service.

Figure 6-7. Web Service Properties—Source Files

This page includes the following components:

• Project Files—Displays the tree view of items under My Computer in
the Project Explorer window. Click the arrow buttons next to the Service
VIs and Always Included listboxes to add selected files from Project
Files to those lists or to remove selected files from the listboxes. The
Configure RESTful VI dialog box only appears when you move an
individual VI to the Service VIs listbox. Otherwise, if you move
multiple VIs to the Service VIs listbox, each VI uses default
configuration. You must select the individual VI and click the Configure
VI button to modify the configuration.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-20 ni.com

• Service VIs—Specifies the service VIs, also known as Web method
VIs, which users can access as functions of the Web service. You must
include at least one Web method VI. Click the arrow buttons next to the
Service VIs listbox to add selected Web method VIs from the Project
Files tree or to remove selected Web method VIs from the Service VIs
listbox.

When you add a Web method VI to the Service VIs listbox, LabVIEW
creates a default URL mapping on the URL Mappings page of the Web
Service Properties dialog box.

• Configure VI—Activates when you select a Web method VI in the
Service VIs listbox. Click the button to open the Configure RESTful VI
dialog box, which you can use to define the parameters of a Web
method VI.

• Always Included—Specifies the dynamic VIs, support files, and static
content always to include in the Web service. Click the arrow buttons
next to the Always Included listbox to add selected files from the Project
Files tree or to remove selected files from the Always Included listbox.
When you add a folder to the listbox, you add all items in the folder and
cannot remove individual items.

Dynamic VIs are VIs that LabVIEW dynamically calls through the
VI Server. Support files are non-VI files, such as drivers, text files, help
files, and .NET assemblies that the Web service uses.

You cannot move the following files to the Service VIs or Always Included
listbox:

Service VIs

• Polymorphic VIs

• Controls

• Private data controls

• Files that are not VIs, such as text, image, or .mnu files

• Library files, such as LabVIEW classes, or XControls

• Global variables

• VIs with Dynamic Dispatch Terminals

Always Included

• Private data controls

If you move a library or LabVIEW class to the Always Included listbox,
LabVIEW labels all items in the library or class referenced. You can still
designate any of the individual items as exported VIs. However, if you move
any part of an XControl to the Always Included listbox, LabVIEW dims the

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-21 LabVIEW Connectivity Course Manual

related XControl files and includes the related files in the build. You cannot
designate any of the related items as service VIs.

URL Mappings
Use this page of the Web Service Properties dialog box to configure URL
mappings for a LabVIEW Web service.

Figure 6-8. Web Service Properties—URL Mappings Page

URL mappings allow a Web client to specify the Web method VI and input
parameters to send data as an HTTP request. When you create a URL
mapping, you associate a string value with a unique Web method VI, HTTP
method, and optional input parameters. Web clients then use the URL
mapping string as part of the URL that the client uses to exchange data with
the Web service.

Note LabVIEW generates a default URL mapping string when you add a Web method
VI to the Web service on the Source Files page of the Web Service Properties dialog box.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-22 ni.com

This page includes the following components:

• URL mappings—Lists any configured URL mappings.

– Add URL Mapping—Adds a new URL mapping to the Web
service.

– Remove URL Mapping-—Removes the selected URL mapping
from the Web service.

– Move URL Mapping up—Moves the selected item up on the list of
URL mappings to establish URL mappings precedence.

– Move URL Mapping down—Moves the selected item down on the
list of URL mappings to establish URL mappings precedence.

• Mapping information—Displays the configuration options for the
selected URL mapping.

– Type—Specifies whether the URL mapping activates a Web method
VI or displays static content.

• Web method—Specifies the selected URL mapping to call a
specific Web method VI.

– Web method VI—Specifies the Web method VI to associate
with the selected URL mapping. All available Web method
VIs specified in Service VIs on the Source Files page appear
in the pull-down menu.

– Override terminal defaults—Displays the Override
terminal defaults dialog box for the selected URL map. You
must configure input parameters for the selected Web
method VI to view this dialog box.

– HTTP method—Lists HTTP methods available to access
the selected Web method VI.

• Static document—Specifies the selected URL mapping to
display static content.

– NI Auth permissions—Specifies a list of permissions that a user or
group must have to exchange data using the selected URL mapping.
You can establish permissions and assign those permissions to users
and groups using the Security Configuration page when you
configure a target using a Web browser.

– Add permission—Adds a new permission.

– Remove permission—Removes the selected permission.

– Require API key—Specifies whether the selected URL mapping
uses API key security.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-23 LabVIEW Connectivity Course Manual

Destinations
Use this page of the Web Services Properties dialog box to configure the
destination settings and add destination directories to a Web service.

Note Destinations do not appear in the output directory. The Application Builder creates
the destinations on the specified target when it deploys the Web service.

Caution The file path of a deployed Web service, including the directory hierarchy that
results from configurations on this page, cannot exceed 256 characters.

Figure 6-9. Web Service Properties—Destinations Page

This page includes the following components:

• Destinations—Specifies the destination directories in which you want
to include the files that the build generates.

Note To avoid receiving an error during the build process, ensure that file paths for the
destination directory, including the filename, are less than 255 characters.

• Click the Add Destination and Remove Destination buttons to add and
delete directories from the list.

• Add Destination—Adds a custom destination directory to the
Destinations listbox.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-24 ni.com

• Remove Destination—Removes the selected destination directory
from the Destinations listbox. You cannot remove any default
destination directory that is already present in the Destinations list.

• Destination label—Specifies the name that the Application Builder
uses for the directory selected in the Destinations listbox. You can select
these names as destinations on the Source File Settings page in the
pull-down menu. You cannot change the Destination label setting for the
destination or support directories. If you do not change the text in the
Destination path text box, editing the destination label updates the text
in the Destination path text box.

• Destination path—Specifies the path to the directory or LLB you select
in the Destinations listbox. Click the Browse button to navigate to and
select a path. If you change the path of the destination directory, any
destinations that are subdirectories automatically update to reflect the
new path.

• Destination type—Specifies the destination type of the item you select
in the Destinations listbox. You cannot change this setting for
applications or support directories.

– Directory—Specifies that the destination is a directory.

• Preserve disk hierarchy—Preserves the disk hierarchy of the files
targeted to this destination directory.

– LLB—Specifies that the destination is an LLB.

• Add files to new project library—Specifies that you want to add files
you move to the selected destination to a new project library.

– Library name—Name of the new project library to which
LabVIEW adds the files.

Source File Settings
Use this page of the Web Service Properties dialog box to edit destinations
and properties for the files included in a Web service. LabVIEW enables the
options in this page only if the item you select in the Project Explorer tree
supports the option. You can apply settings to all the items under
Dependencies, but not to individual items under Dependencies.

Note If you plan to distribute a Web service that uses shared variables, do not include
the .lvlib file in the Web service. Change the Destination of the .lvlib file to a
destination outside the Web service.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-25 LabVIEW Connectivity Course Manual

Figure 6-10. Web Service Properties—Source File Settings

This page includes the following components:

Note The following options appear only when you select a folder from the Project Files
tree. The settings apply to all items in the selected folder. You cannot specify settings for
individual items in the folder. The Inclusion Type indicator displays the inclusion type
for the folder.

• Set destination for all contained items

• Set VI properties for all contained items

• Set save settings for all contained items

• Set password for all contained items

• Apply prefix to all contained items

Caution The file path of a deployed Web service, including the directory hierarchy that
results from configurations on this page, cannot exceed 256 characters.

• Project Files—Displays the tree view of items under My Computer in
the Project Explorer window.

• Inclusion Type—Displays how LabVIEW includes the item in the
build. This option corresponds to the inclusion type you selected in the

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-26 ni.com

Source Files page. For example, a VI in the Always Included list appears
as Always Included.

If you select a folder, the inclusion type corresponds to the inclusion
type of the items inside the folder.

– Service VI—Includes the item in the build as a service VI.

– Always Included—Includes the item in the build.

– Include if referenced—Includes the item in the build if another
item references it.

• Destination—Sets the destination for the selected item. LabVIEW
enables this option if you have not designated the item as a startup VI.
The names in the Destination pull-down menu correspond to the options
in the Destination label text box on the Destinations page. The default
destination is Same as caller and LabVIEW places the item in the same
destination as the caller.

– Make top level in LLB—Appears when you select a destination
that is an LLB.

Place a checkmark in the Make top level in LLB checkbox if you
want the selected VI to be the top level item in the LLB.

• Customize VI Properties—Displays the VI Properties dialog box. Use
the dialog box to specify the properties for the selected VI. By default,
LabVIEW uses the property settings configured in the VI. Any settings
you configure in the VI Properties dialog box override any settings you
configured in the Customize Window Appearance dialog box.
LabVIEW dims this option for items other than VIs.

• Use default save settings—Saves the VIs using default save settings.
The default save setting for the VIs you add to the Service VIs and
Always Included listboxes on the Source Files page is to remove the
block diagram. The default for all other VIs is to remove the block
diagram and the front panel. Remove the checkmark from this checkbox
to change the default settings for each item you select in the Project Files
tree.

– Remove front panel—Removes the front panel from a VI in the
build. Removing the front panel reduces the size of the application
or shared library. If you select yes, LabVIEW removes the front
panel, but Property Nodes or Invoke Nodes that refer to the front
panel might return errors that affect the behavior of the source
distribution. LabVIEW enables this option if you remove the
checkmark from the Use default save settings checkbox.

– Remove block diagram—Removes the block diagram from a VI in
the build. LabVIEW enables this option if you remove the
checkmark from the Remove front panel checkbox. If you remove
the front panel, you also remove the block diagram. As a result, if

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-27 LabVIEW Connectivity Course Manual

you place a checkmark in the Remove front panel checkbox, a
checkmark automatically appears in the Remove block diagram
checkbox.

• No password change—Specifies for LabVIEW to not prompt for a
password if you use the VI in a build. LabVIEW also does not modify
or apply a password you previously applied to the VI.

• Remove password—Removes the password you previously applied to
a VI or library. Prior to removing the password, LabVIEW prompts you
to enter the current password during the build.

• Apply new password—Applies the password you supply in the text
box to a VI or library. Prior to applying the new password, LabVIEW
prompts you to enter the current password during the build. Enter the
password in the text box below the Apply new password option.

• Rename this file in the build—Appears when you select a file in the
Project Files list. Renames the selected file. Enter the new name of the
file in the text box.

• Set destination for all contained items—Appears when you select a
folder in the Project Files tree. Place a checkmark in the checkbox if you
want to set the destination directory for the items in the selected folder.

Note LabVIEW places an item set to Same as caller in the directory of the caller. If you
set an item to Same as caller and two different callers are in different directories,
LabVIEW places the item in the same directory as the build.

• Set VI properties for all contained items—Appears when you select a
folder in the Project Files tree. Place a checkmark in the checkbox if you
want to set the VI properties for the items in the selected folder. When
you place a checkmark in the checkbox, LabVIEW enables the
Customize VI Properties button.

• Set save settings for all contained items—Appears when you select a
folder in the Project Files tree. Place a checkmark in the checkbox if you
want to set the save settings for the items in the selected folder.

• Set password for all contained items—Appears when you select a
folder in the Project Files tree. Place a checkmark in the checkbox if you
want to configure the password for the items in the selected folder.

• Apply prefix to all contained items—Appears when you select a folder
in the Project Files tree. Place a checkmark in the checkbox to enter a
prefix in the text box and rename all items in the folder by applying the
prefix to the existing names.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-28 ni.com

C. LabVIEW as an HTTP Client
So far, you have learned to use LabVIEW as a server. The client was a Web
browser. A Web browser is a HTTP client that also has an engine for
rendering text and graphics. The HTTP client uses a HTTP request method
to receive or submit data to a Web server. The Web server returns data to the
Web browser. The Web browser then renders this data on screen for the user.

In this section, you will learn how to use LabVIEW as a HTTP client.

WSDL: Web Services Description Language
Use the Import Web Service wizard to transform a Web service into a library
of VIs that you then can use to access the Web service methods and
properties. To use the Import Web Service wizard, you must provide a valid
URL to a Web Service Description Language (WSDL), and the WSDL must
validate correctly with ASP.NET.

WSDL is an XML-formatted language used to describe a Web service and
its functionality.

In this lesson, you will learn about the HTTP Client VIs which are used to
build a Web client that interacts with servers, Web pages, and Web services.
The HTTP Client VIs use the RESTful architecture. These VIs also can
interact with LabVIEW Web services.

HTTP Client VIs
An HTTP Client is software that implements the standardized HTTP request
methods developed by the Internet Engineering Task Force and the World
Wide Web Consortium. All Web browsers are composed of two basic
components: an HTTP client and an engine for rendering text and graphics.
The HTTP client requests resources from a Web server, and this data is
rendered on screen for the user.

The LabVIEW HTTP Client API allows you to create LabVIEW
applications to interact with Web servers and Web services. The LabVIEW
HTTP Client API includes VIs for executing all common HTTP methods
including GET, HEAD, POST, PUT, and DELETE. The HTTP Client also
allows for Secure Socket Layer (SSL) communication, access to
authenticated resources, and custom headers.

Note SSL support for the HTTP Client requires a license for the Internet Toolkit.

The HTTP Client palette is found in Functions»Data Communication»
Protocols»HTTP Client.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-29 LabVIEW Connectivity Course Manual

The following definitions are important for understanding and using HTTP
client VIs in LabVIEW.

URL—specifies a resource on a server. The URL is used with many
protocols in addition to HTTP. An example of an HTTP URL is
http://www.example.com/.

Resource—a file or the dynamic output of an Web method residing on the
server. A resource is accessed on a Web server using an HTTP request
method.

Request Variable—parameters passed to resource within a URL in
name/value pairs. Maps to front panel controls of Web method VIs using the
terminal output type. Can be used with any HTTP request method

Figure 6-11. URL Passing Request Variables with the GET Request Method.

Header—contains a series of strings that define the request or response
parameters of the current HTTP session. Figure 6-12 shows the response
header sent by the Web server to an HTTP client VI in LabVIEW. A request
header (not shown) is sent to the Web server by the HTTP client. The HTTP
client API in LabVIEW is designed such that for most standard requests the
user does not need to define the request header. If the user does need to use
a custom header, this can be added with the AddHeader VI.

Body—contains the HTML, JavaScript, XML, and so on provided by the
currently accessed resource. This data can be almost anything, but the most
common types of data are either plain text or a variant of plain text including
HTML, XML, JavaScript, and CSS. The type of data that is returned is
implemented by the designer of the Web server or Web service.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-30 ni.com

Figure 6-12. The Response Header and Body Returned by a Request Method in
LabVIEW

HTTP Request Methods
The HTTP Client API supports all common HTTP request methods.
Request methods fall into two categories: safe, and not-safe. Safe request
methods should only return information from the server, and should not
result in any change of state or the addition or removal of a resource on the
server. Not-safe methods are the opposite and can, but not always, result in
a change of state on the server or the addition or removal of a resource. It is
the responsibility of the Web service developer to design Web methods that
follow these design practices.

Figure 6-13. Safe HTTP Request Method VIs

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-31 LabVIEW Connectivity Course Manual

The GET and HEAD VIs execute safe request methods. GET returns
both the header and body data from a resource. HEAD only requests the
header information of a resource. HEAD is often used to determine if a
resource exists. Because only the header is returned by the server the
request/response time is shorter than GET. Request variables can be used
with these two methods to submit data to the server.

Figure 6-14. Not-safe HTTP Request Method VIs

POST, PUT, and DELETE are all request methods that submit data to a
server, result in a change of state on the server, or add or remove a resource
on a server. POST is the most common of these methods and is often used
to submit form data to a server. Form data uses name/value pairs with syntax
similar to request variables. POST data can be encrypted for secure
communication between a client and a server. PUT is intended to be used to
create a resource on a server by submitting a file or data to the server. In
Figure 6-14, the PUT VI is submitting the HTML contents of a resource that
will be created on the server. DELETE is intended to be used when
requesting to remove a resource on the server. Request variables can also be
used with any of these methods.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-32 ni.com

Adding Web Services to an Existing Application
As the Web becomes more prevalent as the mechanism of choice for
presenting data over the network, more applications will have to be modified
so they can be accessed using Web services. All of these methods except
VI server require you to make code changes to the original application.

There are two primary ways you can extend an existing application to use
Web servers. We can either design our application such that it remains
running in LabVIEW or an EXE. It runs outside of the Web service
run-time, or convert the application to an auxiliary VI that runs in the Web
service run-time even though it is not Web extensible. The first scenario
requires us to transfer data between the original application and the Web
service through the TCP stack even if both the application and Web services
are local to the same machine. This is required because the application and
the Web service do not share the same memory space.

If the original application is configured to run as an auxiliary VI we can use
queues, global variables, RT FIFOs, etc to transfer data. Because the
auxiliary VI and Web methods all exist within the same memory space we
do not need to communicate through the TCP stack. This allows higher
throughput, lower latency communication to be possible.

Network Published Shared Variable Technique
Shared Variables can be easily added to the application and Web methods to
transfer data between the two. Be aware that it is possible to access network
published Shared Variables from locations outside your LabVIEW VIs. It
can be difficult to secure the data moving between the original application
and Web service.

Auxiliary VI Technique
If you convert your original application to an auxiliary VI, you can take
advantage of data transfer mechanisms that to not have to go through the
TCP stack. Some examples of these are queues, RT FIFOs, and single
process Shared Variables.

Using Auxiliary VIs to Keep References in Memory
References used in Web methods are discarded when the Web method
finishes executing. This presents a problem whenever we need to keep a
reference in memory between calls of the Web methods. This is commonly
necessary when we want to avoid taking the time to open a reference to a
resource for each call of the Web method. This can be avoided by using an
auxiliary VI, that can run continuously to maintain the reference in memory.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-33 LabVIEW Connectivity Course Manual

This reference can be then passed to a Web method VI using queues or
another data transfer mechanism.

To practice the concepts in this section, complete Exercise 6-4.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-35 LabVIEW Connectivity Course Manual

Self-Review: Quiz

1. Which of the following are client requirements to interface with
LabVIEW Web services?

a. Dependency on the LabVIEW Runtime Engine (RTE)

b. Use the RESTful architecture

c. Use HTTP protocol

d. Use a Web browser

2. Which of the following are valid terminal labels for a web method VI
that sends and receives data using the connector pane terminals?

a. Input_1

b. Input:1

c. Input&1

d. Input-1

3. Which of the following are server requirements, when using the HTTP
Client VIs?

a. Dependency on the LabVIEW Runtime Engine (RTE)

b. Use the RESTful architecture

c. Use HTTP protocol

d. Use a web browser

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

© National Instruments Corporation 6-37 LabVIEW Connectivity Course Manual

Self-Review: Quiz Answers

1. Which of the following are client requirements to interface with
LabVIEW Web Services?

a. Dependency on the LabVIEW Runtime Engine (RTE)

b. Use the RESTful architecture

c. Use HTTP protocol

d. Use a Web browser

2. Which of the following are valid terminal labels for a web method VI
that sends and receives data using the connector pane terminals?

a. Input_1

b. Input:1

c. Input&1

d. Input-1

3. Which of the following are server requirements, when using the HTTP
Client VIs?

a. Dependency on the LabVIEW Runtime Engine (RTE)

b. Use the RESTful architecture

c. Use HTTP protocol

d. Use a web browser

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Lesson 6 Using LabVIEW Web Services

LabVIEW Connectivity Course Manual 6-38 ni.com

Notes

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation A-1 LabVIEW Connectivity Course Manual

A
LabVIEW Connectivity Options

This appendix contains a table showing how communication flows between
LabVIEW technologies and other technologies.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Appendix A LabVIEW Connectivity Options

LabVIEW Connectivity Course Manual A-2 ni.com

LabVIEW

Another Program
Controls Flow Of
Communication

Either Labview Or Other
Program Controls Flow

Of Communication

LabVIEW Controls Flow
of Communication

Technology Examples
NI

Technology
Covered in
this Course

Covered in
other

Courses

Local
Machine

Only

ActiveX Automation

LV-built shared libraries

.NET Assembly Generator

Microsoft Excel,
Micosoft Word

LabWindows/CVI,
Microsoft VisualC++

Microsoft C#

Technology Examples
NI

Technology
Covered in
this Course

Covered in
other

Courses

Local
Machine

Only

LabVIEW on Real-Time Target

Other LabVIEW or Non-LabVIEW Applications

Other LabVIEW or Non-LabVIEW Applications

LabVIEW on Desktop or Real-Time Target

Nearby IrDA Device

Bluetooth-Enabled Device

Web Browser

Web Pages, Web Services

Modify Front Panel Objects, Run Local or Remote VIs

Edit Traverse VIs

Shared Variables

TCP Protocol

UDP Protocol

Network Streams

 IrDA (Infrared) protocol

Bluetooth

LabVIEW Web Services

HTTP Client

VI Server

VI Scripting

Covered in
other

Courses
Technology Examples

NI
Technology

Covered in
this Course

Local
Machine

Only

Registry Keys, Registry Values

Subversion, Perforce, ClearCase

Oracle, Microsoft Access, SQL Server

Keyboard, Mouse Movements

Joystick Movements, Keyboard Movements, Mouse Movements

Call Shared Libraries (e.g., DLLS)

Invoke Executables, Call System-Level Commands

Microsoft System Components

Microsoft Excel, Microsoft Word

OPC Devices

E-mail Communication

Web Services (e.g., Weather Information, Stock Information)

XML File, Text File, TDMS File, TDMS File, Binary File, INI File

DMMs, Oscilloscopes, Power Supplies

Windows Registry Access VIs

Source Code Control tools

NI LabVIEW Database
Connectivity Toolkit

Input Device Control VIs

Event Structure

Call Library Function Node

System Exec VI

ActiveX Container,
ActiveX Functions

.NET Functions

Instrument Drivers, VISA, or
other network/bus communication

DataSocket VIs and Functions

SOAP Web Services

File I/O

SMTP Protocol

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

© National Instruments Corporation B-1 LabVIEW Connectivity Course Manual

B
Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW resources.

National Instruments Technical Support Options
Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the
following resources:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs, tutorials,
application notes, instrument drivers, and so on. Registered
users also receive access to the NI Discussion Forums at ni.com/
forums. NI Applications Engineers make sure every question
submitted online receives an answer.

– Standard Service Program Membership—This program entitles
members to direct access to NI Applications Engineers via phone
and email for one-to-one technical support as well as exclusive
access to on demand training modules via the Services Resource
Center. NI offers complementary membership for a full year after
purchase, after which you may renew to continue your benefits.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program ensures
qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit ni.com/
alliance.

You also can visit the Worldwide Offices section of ni.com/niglobal
to access the branch office Web sites, which provide up-to-date contact
information, support phone numbers, email addresses, and current events.

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Appendix B Additional Information and Resources

LabVIEW Connectivity Course Manual B-2 ni.com

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visit ni.com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification
Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. areas. Visit ni.com/training for more information about the
NI certification program.

LabVIEW Resources
This section describes how you can receive more information regarding
LabVIEW.

LabVIEW Publications
Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all the
LabVIEW books and links to places to purchase these books. Publisher
information is also included so you can directly contact the publisher for
more information on the contents and ordering information for LabVIEW
and related computer-based measurement and automation books.

info-labview Listserve
info-labview is an email group of users from around the world who
discuss LabVIEW issues. The list members can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

To subscribe to info-labview, send email to:

info-labview-on@labview.nhmfl.gov

To subscribe to the digest version of info-labview, send email to:

info-labview-digest@labview.nhmfl.gov

To unsubscribe to info-labview, send email to:

info-labview-off@labview.nhmfl.gov

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

Appendix B Additional Information and Resources

© National Instruments Corporation B-3 LabVIEW Connectivity Course Manual

To post a message to subscribers, send email to:

info-labview@labview.nhmfl.gov

To send other administrative messages to the info-labview list manager,
send email to:

info-labview-owner@nhmfl.gov

You also may want to search previous email messages at:

www.searchVIEW.net

The info-labview web page is available at www.info-labview.org

Na
tio

na
l I

ns
tru

m
en

ts

No
t f

or
 D

ist
rib

ut
io

n

