
Build a GCC-based cross compiler for
Linux

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. Cross-compiling... 4
3. Preparation.. 7
4. Configuration and building... 10
5. Install and use your cross-compiler ... 14
6. Summary and resources ... 16

Build a GCC-based cross compiler for Linux Page 1 of 17

Section 1. Before you start

About this tutorial

There are times when the platform you're developing on and the computer
you're developing for don't match. For example, you might want to build a
PowerPC/Linux application from your x86/Linux laptop. Using the gcc, gas, and
ld tools from the GNU toolkits, you can specify and build a cross-compiler that
will enable you to build for other targets on your machine. With a bit more work,
you can even set up an environment that will build an application for a variety of
different targets. In this tutorial, I describe the process required to build a
cross-compiler on your system. I also discuss building a complete environment
for a range of targets, show you how to integrate with the distcc and ccache
tools, and describe the methods required to keep up-to-date with the latest
revisions and updates on your new development platform.

To build a cross-compiler, you need a basic knowledge of the build process of a
typical UNIX open source project, some basic shell skills, and a lot of patience.

Prerequisites

To build a cross-compiler, you need a working C compiler (gcc is generally a
good idea). A C compiler is supplied with most Linux /UNIX-based operating
systems. You also need the source code for the various tools used to build the
cross-compiler. You can download GNU tools from GNU (http://www.gnu.org) .
(Use a local mirror where possible.)

In addition to these tools, you need a copy of the header files for your target
platform. For a Linux target, use the generic Linux kernel headers available
from Kernel.org (http://www.kernel.org) .

About the author

Martin C. Brown is a former IT Director with experience in cross-platform
integration. A keen developer, he has produced dynamic sites for blue-chip
customers, including HP and Oracle, and is the Technical Director of
Foodware.net. Now a freelance writer and consultant, MC (as he is better
known) works closely with Microsoft as an SME, is the LAMP Technologies
Editor for LinuxWorld magazine, is a core member of the AnswerSquad.com

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 17 Build a GCC-based cross compiler for Linux

http://www.gnu.org
http://www.kernel.org

team, and has written several books on topics as diverse as Microsoft
certification, iMacs, and open source programming. Despite his best attempts,
he remains a regular and voracious programmer on many platforms and
numerous environments.

For technical questions or comments about the contents of this tutorial, contact
the author, MC, at questions@mcslp.com or through his Web site
(http://www.mcslp.com/contact) , or click Feedback at the top of any panel.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 3 of 17

mailto:questions@mcslp.com
http://www.mcslp.com/contact

Section 2. Cross-compiling

The need for a cross-compiler

It isn't always possible to write and build an application on the same platform.
For many embedded environments, for example, the reduced memory space --
often less than 256 MB, maybe even less than 64 MB, both for RAM and for
storage -- just isn't practical. A reasonable C compiler, the associated tools, and
the C Library required won't fit into such a small space much less run.

Actually developing in such an environment is obviously even more difficult.
Niceties like a full-blown editor (for example, emacs) or a full-blown
development environment are unavailable, assuming that you can even access
and use the system with a keyboard and display. Many embedded solutions
don't even have the benefit of network access.

Cross-compilers enable you to develop on one platform (the host) while actually
building for an alternative system (the target). The target computer doesn't need
to be available: All you need is a compiler that knows how to write machine
code for your target platform. Cross-compilers can be useful in other situations,
too. I once had to work on a computer with no C compiler installed, and I had no
easy way of obtaining a precompiled binary. I did, however, have the necessary
source code for the GNU Compiler Collection (GCC), a C library (newlib), and
the binary utilities on a computer that did have a C compiler. With these tools, I
was able to build first a cross-compiler and then a native compiler for the target
computer that I could copy across and use directly.

Cross-compilers can also be handy when you have a slow machine and a much
faster one and want to build in minutes rather than hours or days. I've used this
method to perform an upgrade to a new software version on a computer on
which it would have taken 2-3 days to rebuild all the components -- all while the
machine was performing its already-significant server duties.

Before I show you the specifics of building a cross-compiler, let's take a closer
look at how compilation works so that you can better understand why -- and
more importantly how -- cross-compilation works.

How cross-compilation works

Compilers work in a simple fashion. (In this tutorial, I discuss the GCC, but the
basic principles apply to any compiler.) Several different components work
together, with the ultimate goal being to produce the bytecode that the target

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 17 Build a GCC-based cross compiler for Linux

CPU uses. When you can generate the assembled bytecode, you've
successfully cross-compiled.

The main components of any compiler are:

° Parser: The parser converts the raw language source code into assembly
language. Because you're converting from one format to another (C to
assembly), the parser needs to know the target assembly language.

° Assembler: The assembler converts the assembly language code into the
bytecode that the CPU executes.

° Linker: The linker combines the individual object files that the assembler
generates into an executable application. Different operating system and
CPU combinations generally use different encapsulation mechanisms and
standards. The linker needs to know this target format to work.

° Standard C library: The core C functions (for example, printf) are provided
in a central C library. This library is used in combination with the linker and
the source code to produce the final executable, assuming that functions
from the C library are used in the application.

In a standard, host-based C compiler, each of these components is designed to
produce the corresponding assembly code, bytecode, and target execution
format of the host itself. In a cross-compiler, although the application is built to
execute on the host, the assembly language, linker, and C library are all
designed for the target platform and processor. For example, on an Intel-based
Linux machine, you might cross-compile an application so that the assembly
language and ultimate application are for a Solaris-based SPARC host.

Building a cross-compiler, therefore, relies on building an alternative version of
the C compiler suite that generates and links applications for the target host.
Fortunately, because you can compile GCC and the associated tools, you can
build your own cross-compilers.

The cross-compiler build process

The GNU utilities (that is, the GCC), including the C compiler, binary utilities,
and the C library, have benefits, not the least of which is that they're free, open
source, and easily compiled. A much bigger benefit -- from a cross-compiler
point of view -- is that because GCC has been ported onto many platforms, the
code supports several different CPU and platform types. There are, however,
some limitations. GCC doesn't support all processor types (although it produces
most), nor does it support all platforms. The configuration tools will warn you
about this when executed.

To build a cross-compiler, you need to build three components from the GNU

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 5 of 17

suite:

° binutils: The binutils package includes basic binary utilities such as the
assembler, the linker, and associated tools such as Size and Strip. The
binary utilities encompass both the core components for building an
application and the tools that can be used to build and manipulate the target
execution format. For example, the Strip utility removes symbol table,
debugging, and other "useless" information from an object file or application,
but to do so, the utility needs to know the target format so that it doesn't
remove the wrong information.

° gcc: The gcc is the main component of the compilation process. Gcc
encompasses the C preprocessor (cpp) and the translator, which converts
the C code into the target CPU assembly language. Gcc also acts as an
interface to the overall process, calling cpp, the translator, the assembler,
and the linker accordingly.

° newlib/glibc: This library is the standard C library. Newlib was developed
through Redhat and can be slightly more user friendly in cross-compilers
designed to be used for embedded targets. You can also use the GNU
Library (glibc), but I focus on using newlib in this tutorial.

You also need the header files for the target operating system, which are
required so that you have access to all the operating system-level functions and
system calls that are required to build the application. With Linux, you can get
the headers fairly easily. For other operating systems, you can copy an existing
set of headers. I look at headers in more detail later.

Optionally, you may want to build the GNU debugger -- gdb -- for the target
host. You can't build a debugger that can execute code for the target while
running on the host, because doing so would require emulation. However, you
can build a gdb executable for your target host.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 17 Build a GCC-based cross compiler for Linux

Section 3. Preparation

Destinations and coexistence

Before you begin the configuration process, you need to determine where the
compiler and associated tools will be installed. You have two choices: Either
you can install them into a completely separate directory, or you can install
them as part of your existing installation.

Among the many benefits of the GNU toolset is the design built into the
installation structure, which enables tools and components for different target
platforms to coexist. When the software is installed, the installation prefix that
you supply is organized according to the normal layout, with the addition of a
target directory for the target-specific tools. For example, the structure below is
taken from a system on which I've installed a cross-compiler for a generic
PowerPC/Linux platform:

drwxrwxrwx 2 root root 4096 Nov 16 16:48 bin/
drwxrwxrwx 2 root root 4096 Nov 17 12:53 info/
drwxrwxrwx 2 root root 4096 Nov 17 12:53 lib/
drwxrwxrwx 3 root root 4096 Nov 16 16:44 man/
drwxrwxrwx 4 root root 4096 Nov 16 16:48 ppc-linux/
drwxrwxrwx 3 root root 4096 Nov 16 16:43 share/

If you look into the bin directory, you'll see that each of the main binary utilities
is prefixed with your build-target:

-rwxr-xr-x 1 root root 2108536 Nov 16 16:46 ppc-linux-addr2line*
-rwxr-xr-x 2 root root 2157815 Nov 16 16:45 ppc-linux-ar*
-rwxr-xr-x 2 root root 3398961 Nov 16 16:48 ppc-linux-as*
-rwxr-xr-x 1 root root 2062804 Nov 16 16:47 ppc-linux-c++filt*
-rwxr-xr-x 2 root root 2907348 Nov 16 16:48 ppc-linux-ld*
-rwxr-xr-x 2 root root 2140893 Nov 16 16:46 ppc-linux-nm*
-rwxr-xr-x 1 root root 2552661 Nov 16 16:46 ppc-linux-objcopy*
-rwxr-xr-x 1 root root 2708801 Nov 16 16:45 ppc-linux-objdump*
-rwxr-xr-x 2 root root 2157810 Nov 16 16:46 ppc-linux-ranlib*
-rwxr-xr-x 1 root root 371010 Nov 16 16:46 ppc-linux-readelf*
-rwxr-xr-x 1 root root 2008330 Nov 16 16:45 ppc-linux-size*
-rwxr-xr-x 1 root root 1982880 Nov 16 16:46 ppc-linux-strings*
-rwxr-xr-x 2 root root 2552660 Nov 16 16:46 ppc-linux-strip*

The main tools, such as gcc, are merely wrappers to the background tools that
perform the compilation, so gcc can determine which tool to use when building
for a different platform. As long as you continue to use gcc for your building
requirements and the other libraries and components that you build use the
GNU configure structure, you should be able to install your cross-compilation
tools alongside your standard toolset. On most Linux platforms, this location is
/usr/local. (I like to keep my cross-compiler and host compiler separate, so that I

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 7 of 17

can keep different versions of the host and cross-compiler toolsets.)

Identify your target platform

The next step in preparing for cross-compilation is identifying your target
platform. Targets within the GNU system have a specific format, and this
information is used throughout the build process to identify the correct version
of the various tools to use. Thus, when you run GCC with a specific target, GCC
looks in your directory path for an application path that includes that target
specification.

The format of a GNU target specification is CPU-PLATFORM-OS. For example,
Solaris 8 for x86 is i386-pc-solaris2.8, while Macintosh OS X is
powerpc-apple-darwin7.6.0. Linux on a PC has the target i686-pc-linux-gnu.
The -gnu tag in this instance indicates that the Linux operating system in
question uses a GNU-style environment.

There are many ways of identifying the target, including simply knowing or
guessing the target specification. For example, most Linux targets can be
specified according to their CPU; hence, PowerPC/Linux is ppc-linux. The best
method, however, is to use the config.guess script, which comes with any
GNU suite, including those I use in this tutorial. To use this script, simply run it
from a shell:

$ config.guess
i686-pc-linux-gnu
$

For those systems on which you don't have the ability to run this script, it's
worth examining the file to determine some possible targets. Simply using grep
on your target CPU will give you some idea of the target specification you need.
For purposes of this tutorial, I'll create a cross-compiler for the i386-linux
platform, a common target and one of the best supported.

Set up your build environment

The final stage before you start building is to create a suitable environment.
Doing so is straightforward: You just need to create a simple set of directories
that you can use to build the different components.

First, create a build directory:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 17 Build a GCC-based cross compiler for Linux

$ mkdir crossbuild

Next, obtain the latest versions of gcc, binutils, gdb, and newlib and extract
them into the directories:

$ bunzip2 -c gcc-3.3.2.tar.bz2|tar xf -
$ bunzip2 -c binutils-2.14.tar.bz2 |tar xf -
$ bunzip2 -c linux-2.6.9.tar.bz2 |tar xf -
$ bunzip2 -c gdb-6.3.tar.bz2|tar xf -
$ bunzip2 -c glibc-2.3.tar.bz2|tar xf -

If you're building for a Linux target, you'll also need to unpack the linux-threads
package (if your target platform supports it).

Now, create the directories in which you'll actually build the software. The basic
layout is to create a single directory for each component:

$ mkdir build-binutils build-gcc build-glibc build-gdb

If you're creating several different cross-compilers, you might consider creating
individual directories for each target, then creating the directories above in each
target directory.

With preparation complete, you're ready to configure and build each tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 9 of 17

Section 4. Configuration and building

Set up the environment variables

Retyping everything is frustrating, and you risk typing the wrong thing. To make
life easier, I created several environment variables to save on typing. I've
assumed a Bourne-like shell below; if you are using csh, tcsh, or similar shells,
you might need to use shell-specific techniques.

export TARGET=i386pc
export PREFIX=/usr/local/crossgcc
export TARGET_PREFIX=$PREFIX/$TARGET
export PATH=$PATH:$PREFIX/bin

Obtain the operating system headers

The operating system headers are necessary for getting the information the
compiler needs for the system function calls that the target platform supports.
For Linux targets, the best way to obtain the headers is to download the latest
copy of the appropriate kernel. (I used the generic kernel in the previous panel.)
You'll need to do a basic configuration of the kernel so that the correct headers
are generated for you to copy; you don't, however, need to build or compile the
kernel. For my sample target, i386-linux, the necessary steps are:

$ cd linux-2.6.9
$ make ARCH=i386 CROSS_COMPILE=i386-linux- menuconfig

Note that the trailing hyphen above is not a typo. By running the command
above, you'll be prompted to configure the components for the kernel. Because
you don't need to worry too much about the contents of the kernel itself, you
can just use the default options, save the configuration, and quit the tool.

Now, you need to copy the headers to your target directory:

$ mkdir -p $TARGET_PREFIX/include
$ cp -r include/linux $TARGET_PREFIX/include
$ cp -r include/asm-i386 $TARGET_PREFIX/include/asm
$ cp -r include/asm-generic $TARGET_PREFIX/include/

Obviously I've made some assumptions in the code above based on the sample
target. If you were building for a PowerPC target, you would have copied files
from asm-ppc.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 17 Build a GCC-based cross compiler for Linux

You're now ready to start building the utilities.

Build binutils

The binutils utility is the core of the entire system. It provides the basic
assembler and linker functionality that the rest of the system requires. The first
stage in each case is to configure each package for an alternative target
platform. Build binutils first:

$ cd build-binutils
$../binutils-2.14/configure --target=$TARGET --prefix=$PREFIX --disable-nls -v
$ make all

The target and prefix should be obvious. The --disable-nls command
disables National Language Support (NLS). Many embedded platforms can't
support the necessary tables anyway. For most cross-compilers, the usefulness
of NLS is debatable because the targets (usually embedded devices) aren't
capable of holding the necessary NLS tables in memory.

This stage of the build will take some time. Because you're still building using
the host compiler and tools, you can use ccache and distcc tools to help
speed up the process. (For more information about these tools, see the
Resources (#resources) section at the end of this tutorial.)

Now, you're ready to build GCC, which is slightly more complex.

Build a first-stage GCC

GCC is more complex than binutils only because the standard method for
building GCC builds two compilers. GCC uses the GNU tools to build a primary
(that is, a first-stage, or bootstrap) compiler that can build and parse the basic
code. GCC then uses the available library and header files for the target to build
the full compiler. Building the GCC first-stage compiler requires a few minor
changes to the options for the configuration script so that you can build the
first-stage compiler without proper headers. (Strictly speaking, you don't have
the headers until you've built a library.) The --with-newlib command doesn't
necessarily mean you're using newlib: It just tells the configuration script not to
worry about headers.

$ cd build-gcc
$../gcc-3.3.2/configure --target=$TARGET --prefix=$PREFIX \

--without-headers --with-newlib -v

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 11 of 17

#resources

$ make all-gcc
$ make install-gcc

Like building binutils, this stage will take a while to complete. The length of time
depends on your host, but expect anything from an hour (even on a fast
machine) to as many as five or six hours on a slower or busier host.

Building newlib

You can use either newlib of glibc. In general, newlib is better on embedded
platforms, because such systems are what newlib was designed to support.
Glibc is better for Linux-style hosts.

When building newlib, you need to build the library using the target compiler
and tools. The library should, of course, be in the format and language of the
target CPU and platform for it to be used to build applications that rely on the
library components:

$ cd build-newlib
$ CC=${TARGET}-gcc ../newlib-1.12.0/configure --host=$TARGET --prefix=$PREFIX
$ make all
$ make install

When newlib has been built, you can create the final GCC based on this code to
create the final compiler. Alternatively, you can use glibc, which I cover in the
next panel.

Build glibc

The glibc package is straightforward to build; the primary difference from the
previous builds is that, as with newlib, you now start to use the bootstrap
cross-compiler you just built. You also need to tell the configure script where
the header files for the operating system are kept. Finally -- and here's the big
difference -- you define the host you're building on rather than the target. That's
because the GCC and binary utilities you've already built mean that this
machine is your development host; the GCC you specify will generate the
necessary target code for you.:

$ CC=${TARGET}-gcc ../glibc-2.3/configure --target=$TARGET \
--prefix=$PREFIX --with-headers=${TARGET_PREFIX}/include

$ make all

If you wanted to include the Linux threads option, you need to add the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 17 Build a GCC-based cross compiler for Linux

--enable-add-ons option to the configure script. Again, this process will
take some time to complete. Nobody ever said building cross-compilers was
quick!

To install glibc, you still use make, but you explicitly set the installation root and
empty the prefix (otherwise, the two are concatenated, which is not what you
want):

$ make install_root=${TARGET_PREFIX} prefix="" install

Finally, you can build the final version of gcc, which now uses the above library
and header information.

Build the final GCC

The final GCC makes use of the headers and libraries that you've just compiled
(using your chosen target) to build the full gcc system. Unfortunately, this
means an even longer wait while the full version of gcc is built. I build only a C
compiler with gcc rather than building the full suite.

You don't need to worry about the old gcc build, so you can remove that content
and start again in the build-gcc directory. The configuration is just like the
previous examples. Note that because you're building a tool that will be
executed on this platform, you're back to using the host GCC compiler rather
than the bootstrap GCC compiler you built earlier:

$ cd build-gcc
$ rm -rf *
$../gcc-3.3.2/configure --enable-languages=c --target=$TARGET --prefix=$PREFIX
$ make all
$ make install

Because you're building with the full newlib and gcc components for the target
platform, using distcc is not possible without also installing those components
on the other machines in your distcc host list. Even with distcc, it's going to take
some time, even on a fast machine. I tend to leave these builds running
overnight if at all possible -- partly because of the time, but partly because of the
increased load it puts on the build machine (or machines), which can be
annoying if your machine is used for other purposes at the same time.

When the build is finished, though, you're ready to start using your
cross-compiler to build other the applications and libraries you need for your
target platform.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 13 of 17

Section 5. Install and use your cross-compiler

Use your cross-compiler

Actually using the cross-compiler is easy. To compile a simple C file, just call
the cross-compiler directly:

$ i386-linux-gcc myapp.c -o myapp

The GCC cross-compiler works just like your local version: It just creates a
different type of executable for an alternate platform. This means that you can
use the same command-line options, such as header and library locations,
optimization, and debugging. (Remember, however, that you can't link libraries
for different target platforms together and expect them to work.) In the next
panel, I show you how to build libraries and extensions with your new
cross-compiler.

For applications and projects where you have a Makefile, specify the
cross-compiler on the command line to make. For example:

$ make CC=i386-linux-gcc

Alternatively, change the CC definition within your Makefile.

Compiling other tools and libraries

Any libraries you might want to use on your target platform need to be compiled
with the cross-compiler for them to work. For most libraries, the same basic
rules apply as for building your own projects. If a system uses a simple
Makefile, use:

$ make CC=i386-linux-gcc

Or, if you're using a configure script, prefix the configure command with the
re-definition of the CC environment variable:

CC=i386-linux-gcc ./configure

With GNU-style configure scripts, you may also need to specify the host:

$./configure --host=i386-linux

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 17 Build a GCC-based cross compiler for Linux

Remember that for libraries, you need to specify the target prefix, just as you
did when building glibc or newlib.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 15 of 17

Section 6. Summary and resources

Summary

Building a cross-compiler is certainly a time-consuming task, and in some ways
a complicated one. But when you get over the basic needs of setting targets
and the sequence, creating the cross-compiler is relatively straightforward.

The benefits, especially when developing for an embedded platform, are
immeasurable. With some systems, it's simply not possible to generate the build
locally, and running gcc on a system with just 64 KB is well nigh impossible.
With a cross-compiler, you can develop on your preferred platform with your
preferred tools and environment and still end up with the application and
software you need.

Resources

° You can get copies of all the source code for the GNU tools from GNU
(http://www.gnu.org) . Please use a local mirror to help reduce the load on
the GNU servers.

° You can obtain newlib, the embedded alternative C library, from Redhat
Sources (http://sources.redhat.com/newlib/) . There's also a Mailing list
(http://sources.redhat.com/newlib/mailing.html) .

° The CrossGCC Mailing List Archives
(http://sources.redhat.com/ml/crossgcc/) can be useful if you have an issue
with a specific target or build environment.

° The Crossgcc Wiki contains all sorts of useful information about building
cross-compilers.

° The ccache and distcc can help to improve the build times of applications,
including the early stages of a cross-compiler.

° For a very brief overview of the sequence, try the Mini How-To
(http://linux.bytesex.org/cross-compiler.html)

° The developerWorks Migration station Linux section offers a wealth of links
to information for those interested in porting and migrating applications to
Linux.

° Find more resources for Linux developers in the developerWorks Linux zone
(http://www.ibm.com/developerworks/linux/) .

° Get involved in the developerWorks community by participating in
developerWorks blogs (http://www.ibm.com/developerworks/blogs/) .

° Purchase Linux books at discounted prices in the Linux section of the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 17 Build a GCC-based cross compiler for Linux

http://www.gnu.org
http://sources.redhat.com/newlib/
http://sources.redhat.com/newlib/
http://sources.redhat.com/newlib/mailing.html
http://sources.redhat.com/ml/crossgcc/
http://billgatliff.com/~bgat/twiki/bin/view/Crossgcc/WebHome
http://ccache.samba.org
http://distcc.samba.org
http://linux.bytesex.org/cross-compiler.html
http://www-106.ibm.com/developerworks/ondemand/migrate/linux.html
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/blogs/
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=300&parent=Linux

Developer Bookstore.

Feedback

Please let us know whether this tutorial was helpful to you and how we could
make it better. We'd also like to hear about other tutorial topics you'd like
developerWorks to cover.

For questions about the content of this tutorial, contact the author, Martin C.
Brown, at questions@mcslp.com or through his Web site
(http://www.mcslp.com/contact) .

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Build a GCC-based cross compiler for Linux Page 17 of 17

mailto:questions@mcslp.com
http://www.mcslp.com/contact
http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	Before you start
	About this tutorial
	Prerequisites
	About the author

	Cross-compiling
	The need for a cross-compiler
	How cross-compilation works
	The cross-compiler build process

	Preparation
	Destinations and coexistence
	Identify your target platform
	Set up your build environment

	Configuration and building
	Set up the environment variables
	Obtain the operating system headers
	Build binutils
	Build a first-stage GCC
	Building newlib
	Build glibc
	Build the final GCC

	Install and use your cross-compiler
	Use your cross-compiler
	Compiling other tools and libraries

	Summary and resources
	Summary
	Resources
	Feedback

