
2021/1/4 roscpp/Overview/Initialization and Shutdown - ROS Wiki

wiki.ros.org/roscpp/Overview/Initialization and Shutdown 1/4

roscpp overview (/roscpp/Overview): Initialization and Shutdown | Basics
(/roscpp/Overview/Messages) | Advanced: Traits [ROS C Turtle] (/roscpp/Overview/MessagesTraits) |
Advanced: Custom Allocators [ROS C Turtle] (/roscpp/Overview/MessagesCustomAllocators) |
Advanced: Serialization and Adapting Types [ROS C Turtle]
(/roscpp/Overview/MessagesSerializationAndAdaptingTypes) | Publishers and Subscribers
(/roscpp/Overview/Publishers%20and%20Subscribers) | Services (/roscpp/Overview/Services) |
Parameter Server (/roscpp/Overview/Parameter%20Server) | Timers (Periodic Callbacks)
(/roscpp/Overview/Timers) | NodeHandles (/roscpp/Overview/NodeHandles) | Callbacks and Spinning
(/roscpp/Overview/Callbacks%20and%20Spinning) | Logging (/roscpp/Overview/Logging) | Names and
Node Information (/roscpp/Overview/Names%20and%20Node%20Information) | Time
(/roscpp/Overview/Time) | Exceptions (/roscpp/Overview/Exceptions) | Compilation Options
(/roscpp/Overview/Compilation%20Options) | Advanced: Internals (/roscpp/Overview/Internals) |
tf/Overview (/tf/Overview) | tf/Tutorials (/tf/Tutorials) | C++ Style Guide (/CppStyleGuide)

目录

1. Initialization
1. Initializing the roscpp Node

1. Initialization Options
2. Accessing Your Command Line Arguments

2. Starting the roscpp Node
2. Shutting Down

1. Shutting Down the Node
2. Testing for Shutdown

1. Custom SIGINT Handler

1. Initialization
There are two levels of initialization for a roscpp Node (/Nodes):

1. Initializing the node through a call to one of the ros::init() functions. This provides command
line arguments to ROS, and allows you to name your node and specify other options.

2. Starting the node is most often done through creation of a ros::NodeHandle, but in advanced
cases can be done in different ways.

Each of these is described below

1.1 Initializing the roscpp Node
See also: ros::init() code API (http://docs.ros.org/api/roscpp/html/init_8h.html)

Before calling any other roscpp functions in a node you must call one of the ros::init() functions. The
two most common init() invokations are:

切换行号显示

 1 ros::init(argc, argv, "my_node_name");

and

http://wiki.ros.org/roscpp/Overview
http://wiki.ros.org/roscpp/Overview/Messages
http://wiki.ros.org/roscpp/Overview/MessagesTraits
http://wiki.ros.org/roscpp/Overview/MessagesCustomAllocators
http://wiki.ros.org/roscpp/Overview/MessagesSerializationAndAdaptingTypes
http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers
http://wiki.ros.org/roscpp/Overview/Services
http://wiki.ros.org/roscpp/Overview/Parameter%20Server
http://wiki.ros.org/roscpp/Overview/Timers
http://wiki.ros.org/roscpp/Overview/NodeHandles
http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning
http://wiki.ros.org/roscpp/Overview/Logging
http://wiki.ros.org/roscpp/Overview/Names%20and%20Node%20Information
http://wiki.ros.org/roscpp/Overview/Time
http://wiki.ros.org/roscpp/Overview/Exceptions
http://wiki.ros.org/roscpp/Overview/Compilation%20Options
http://wiki.ros.org/roscpp/Overview/Internals
http://wiki.ros.org/tf/Overview
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/Nodes
http://docs.ros.org/api/roscpp/html/init_8h.html

2021/1/4 roscpp/Overview/Initialization and Shutdown - ROS Wiki

wiki.ros.org/roscpp/Overview/Initialization and Shutdown 2/4

切换行号显示

 1 ros::init(argc, argv, "my_node_name", ros::init_options::AnonymousName
);

In general, the form of ros::init() conforms to:

切换行号显示

 1 void ros::init(<command line or remapping arguments>, std::string node_
name, uint32_t options);

Let's go over the arguments in order:

argc and argv
ROS uses these to parse remapping arguments (/Remapping%20Arguments) from the
command line. It also modifies them so that they no longer contain any remapping
arguments, so that if you call ros::init() before processing your command line you will
not need to skip those arguments yourself.

node_name

This is the name that will be assigned to your node unless it's overridden by one of the
remapping arguments (/Remapping%20Arguments). Node names must be unique across
the ROS system. If a second node is started with the same name as the first, the first will
be shutdown automatically. In cases where you want multiple of the same node running
without worrying about naming them uniquely, you may use the
init_options::AnonymousName option described below.

options

This is an optional argument that lets you specify certain options that change roscpp's
behavior. The field is a bitfield, so multiple options can be specified. The options are
described in the Initialization Options
(/roscpp/Overview/Initialization%20and%20Shutdown#InitOptions) section.

There are other forms of ros::init() that do not take argc/argv, instead taking explicit remapping
options. Specifically, there are versions that take a std::map<std::string, std::string> and a
std::vector<std::pair<std::string, std::string> >.

Initializing the node simply reads the command line arguments and environment to figure out things like
the node name, namespace and remappings. It does not contact the master. This lets you use
ros::master::check() and other ROS functions after calling ros::init() to check on the status of the
master. The node only full spins up once it has been started, which is described in the Starting the
roscpp Node (/roscpp/Overview/Initialization%20and%20Shutdown#Starting) section.

1.1.1 Initialization Options
See also: ros::init_options code API
(http://www.ros.org/doc/api/roscpp/html/namespaceros_1_1init__options.html)

ros::init_options::NoSigintHandler

Don't install a SIGINT handler. You should install your own SIGINT handler in this case, to
ensure that the node gets shutdown correctly when it exits. Note that the default action for

http://wiki.ros.org/Remapping%20Arguments
http://wiki.ros.org/Remapping%20Arguments
http://www.ros.org/doc/api/roscpp/html/namespaceros_1_1init__options.html

2021/1/4 roscpp/Overview/Initialization and Shutdown - ROS Wiki

wiki.ros.org/roscpp/Overview/Initialization and Shutdown 3/4

SIGINT tends to be to terminate the process, so if you want to do your own SIGTERM
handling you will also have to use this option.

ros::init_options::AnonymousName

Anonymize the node name. Adds a random number to the end of your node's name, to
make it unique.

ros::init_options::NoRosout

Don't broadcast rosconsole (/rosconsole) output to the /rosout topic.

1.1.2 Accessing Your Command Line Arguments
As mentioned above, calling ros::init() with argc and argv will remove ROS arguments from the
command line. If you need to parse the command line before calling ros::init(), you can call the (new
in ROS 0.10) ros::removeROSArgs() (http://docs.ros.org/api/roscpp/html/init_8h.html) function.

1.2 Starting the roscpp Node
The most common way of starting a roscpp node is by creating a ros::NodeHandle:

切换行号显示

 1 ros::NodeHandle nh;

When the first ros::NodeHandle is created it will call ros::start(), and when the last ros::NodeHandle
is destroyed, it will call ros::shutdown(). If you want to manually manage the lifetime of the node you
may call ros::start() yourself, in which case you should call ros::shutdown() before your program
exits.

2. Shutting Down
2.1 Shutting Down the Node
At any time you may call the ros::shutdown() function to shutdown your node. This will kill all open
subscriptions, publications, service calls, and service servers.

By default roscpp also installs a SIGINT handler which will detect Ctrl-C and automatically shutdown
for you.

2.2 Testing for Shutdown
There are two methods to check for various states of shutdown. The most common is ros::ok(). Once
ros::ok() returns false, the node has finished shutting down. A common use of ros::ok():

切换行号显示

 1 while (ros::ok())
 2 {
 3 ...
 4 }

http://wiki.ros.org/rosconsole
http://docs.ros.org/api/roscpp/html/init_8h.html

2021/1/4 roscpp/Overview/Initialization and Shutdown - ROS Wiki

wiki.ros.org/roscpp/Overview/Initialization and Shutdown 4/4

Wiki: roscpp/Overview/Initialization and Shutdown (2015-11-03 18:30:26由WilliamWoodall (/WilliamWoodall)编辑)

The other method to check for shutdown is the ros::isShuttingDown() method. This method will turn
true as soon as ros::shutdown() is called, not when it is done. Use of ros::isShuttingDown() is
generally discouraged, but can be useful in advanced cases. For example, to test inside of a prolonged
service callback whether the node is requested to shut down and the callback should therefore quit now,
ros::isShuttingDown() is needed. ros::ok() would not work here because the node can't finish its
shutdown as long as the callback is running.

2.2.1 Custom SIGINT Handler
You can install a custom SIGINT handler that plays nice with ROS like so:

切换行号显示

 1 #include <ros/ros.h>
 2 #include <signal.h>
 3
 4 void mySigintHandler(int sig)
 5 {
 6 // Do some custom action.
 7 // For example, publish a stop message to some other nodes.
 8
 9 // All the default sigint handler does is call shutdown()
 10 ros::shutdown();
 11 }
 12
 13 int main(int argc, char** argv)
 14 {
 15 ros::init(argc, argv, "my_node_name", ros::init_options::NoSigintHand
ler);
 16 ros::NodeHandle nh;
 17
 18 // Override the default ros sigint handler.
 19 // This must be set after the first NodeHandle is created.
 20 signal(SIGINT, mySigintHandler);
 21
 22 //...
 23 ros::spin();
 24 return 0;
 25 }

Except where otherwise noted, the ROS wiki is licensed under the
Creative Commons Attribution 3.0 (http://creativecommons.org/licenses/by/3.0/)

(http://www.osrfoundation.org)

http://wiki.ros.org/WilliamWoodall
http://creativecommons.org/licenses/by/3.0/
http://www.osrfoundation.org/

