
2020/12/26 msg - ROS Wiki

wiki.ros.org/msg 1/4

ROS Filesystem Concepts (/ROS/Concepts): Packages (/Packages) | Metapackages (/Metapackages) | Manifest (/Manifest) | msg | srv (/srv)

For rosbuild, see: rosbuild/msg (/rosbuild/msg)

目录

1. Command-line Tools
2. Message Description Specification

1. Fields
2. Constants

3. Building .msg Files
4. Client Library Support

ROS uses a simplified messages description language for describing the data values (aka messages (/Messages)) that ROS nodes (/Nodes) publish.
This description makes it easy for ROS tools to automatically generate source code for the message type in several target languages. Message
descriptions are stored in .msg files in the msg/ subdirectory of a ROS package (/Packages).

There are two parts to a .msg file: fields and constants. Fields are the data that is sent inside of the message. Constants define useful values that can
be used to interpret those fields (e.g. enum-like constants for an integer value).

Message types are referred to using package resource names (/Names). For example, the file geometry_msgs/msg/Twist.msg is commonly referred to
as geometry_msgs/Twist.

1. Command-line Tools
rosmsg (/rosmsg) prints out message definition information and can find source files that use a message type.

2. Message Description Specification
The format of this language is simple: a message description is a list of data field descriptions and constant definitions on separate lines.

2.1 Fields
Each field consists of a type and a name, separated by a space, i.e.:

fieldtype1 fieldname1
fieldtype2 fieldname2
fieldtype3 fieldname3

For example:

int32 x
int32 y

2.1.1 Field Types
Field types can be:

1. a built-in type, such as "float32 pan" or "string name"
2. names of Message descriptions defined on their own, such as "geometry_msgs/PoseStamped"
3. fixed- or variable-length arrays (lists) of the above, such as "float32[] ranges" or "Point32[10] points"
4. the special Header (/msg#headerSect) type, which maps to std_msgs/Header

When embedding other Message descriptions, the type name may be relative (e.g. "Point32") if it is in the same package; otherwise it must be the full
Message type (e.g. "std_msgs/String"). The only exception to this rule is Header (/msg#headerSect).

NOTE: you must not use the names of built-in types or Header when constructing your own message types.

Built-in types:

Primitive
Type Serialization C++ Python2 Python3

bool (1)
unsigned 8-
bit int

uint8_t (2) bool

int8
signed 8-bit
int

int8_t int

uint8
unsigned 8-
bit int

uint8_t int (3)

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Packages
http://wiki.ros.org/Metapackages
http://wiki.ros.org/Manifest
http://wiki.ros.org/srv
http://wiki.ros.org/rosbuild/msg
http://wiki.ros.org/Messages
http://wiki.ros.org/Nodes
http://wiki.ros.org/Packages
http://wiki.ros.org/Names
http://wiki.ros.org/rosmsg

2020/12/26 msg - ROS Wiki

wiki.ros.org/msg 2/4

int16
signed 16-bit
int

int16_t int

uint16
unsigned 16-
bit int

uint16_t int

int32
signed 32-bit
int

int32_t int

uint32
unsigned 32-
bit int

uint32_t int

int64
signed 64-bit
int

int64_t long int

uint64
unsigned 64-
bit int

uint64_t long int

float32
32-bit IEEE
float

float float

float64
64-bit IEEE
float

double float

string
ascii string
(4)

std::string str bytes

time
secs/nsecs
unsigned 32-
bit ints

ros::Time
(http://docs.ros.org/api/rostime/html/classros_1_1Time.html)

rospy.Time
(http://www.ros.org/doc/api/rospy/html/rospy.rostime.Time-

class.html)

duration
secs/nsecs
signed 32-bit
ints

ros::Duration
(http://docs.ros.org/api/rostime/html/classros_1_1Duration.html)

rospy.Duration
(http://www.ros.org/doc/api/rospy/html/rospy.rostime.Duration-

class.html)
1. bool was introduced in ROS 0.9

2. bool in C++ is aliased to uint8_t because of array types: std::vector<bool> is in fact a specialized form of vector that is not a container. See
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2160.html (http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2007/n2160.html) for more information.
3. uint8 has special meaning in Python. uint8[] is treated as a Python bytes so that it is compatible with other byte-oriented APIs in Python.

4. unicode strings are currently not supported as a ROS data type. utf-8 should be used to be compatible with ROS string serialization. In python
2, this encoding is automatic for unicode objects, but decoding must be done manually. In python 3, when using str, both encoding and
decoding using 'utf-8' in the generated message code.

Deprecated:

char: deprecated alias for uint8
byte: deprecated alias for int8

Array handling

Array Type Serialization C++ Python2 Python3

fixed-length no extra serialization 0.11+: boost::array<T, length>, otherwise: std::vector<T> tuple (1)

variable-length uint32 length prefix std::vector<T> tuple (1)

uint8[] see above as above str bytes (2)

bool[] see above std::vector<uint8_t> list of bool

1. In rospy (/rospy), arrays are deserialized as tuples for performance reasons, but you can set fields to tuples and lists interchangeably.

2. rospy (/rospy) treats uint8[] data as a bytes, which is the Python representation for byte data. In Python 2, this is the same as str.

rospy (/rospy) can also deserialize arrays into numpy data structures. Please consult the rospy (/rospy) documentation for more information.

2.1.2 Field Names
The field name determines how a data value is referenced in the target language. For example, a field called 'pan' would be referenced as 'obj.pan' in
Python, assuming that 'obj' is the variable storing the message.

Field names must be translated by message generators to several target languages, so we restrict field names to be an alphabetical character
followed by any mixture of alphanumeric and underscores, i.e. [a-zA-Z][a-zA-Z1-9_]*. It is recommended that you avoid using field names that
correspond to keywords in common languages -- although those names are legal, they create confusion as to how a field name is translated.

2.1.3 Header
ROS provides the special Header type to provide a general mechanism for setting frame IDs for libraries like tf (/tf). While Header is not a built-in type
(it's defined in std_msgs/msg/Header.msg), it is commonly used and has special semantics. If the first field of your .msg is:

Header header

http://docs.ros.org/api/rostime/html/classros_1_1Time.html
http://www.ros.org/doc/api/rospy/html/rospy.rostime.Time-class.html
http://docs.ros.org/api/rostime/html/classros_1_1Duration.html
http://www.ros.org/doc/api/rospy/html/rospy.rostime.Duration-class.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2160.html
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://wiki.ros.org/tf

2020/12/26 msg - ROS Wiki

wiki.ros.org/msg 3/4

It will be resolved as std_msgs/Header.

Header.msg:

#Standard metadata for higher-level flow data types
#sequence ID: consecutively increasing ID
uint32 seq
#Two-integer timestamp that is expressed as:
* stamp.secs: seconds (stamp_secs) since epoch
* stamp.nsecs: nanoseconds since stamp_secs
time-handling sugar is provided by the client library
time stamp
#Frame this data is associated with
string frame_id

The special nature of Header is mainly for historical reasons, such as preserving recorded data.

2.2 Constants
Each constant definition is like a field description, except that it also assigns a value. This value assignment is indicated by use of an equal '=' sign,
e.g.

constanttype1 CONSTANTNAME1=constantvalue1
constanttype2 CONSTANTNAME2=constantvalue2

For example:

int32 X=123
int32 Y=-123
string FOO=foo
string EXAMPLE="#comments" are ignored, and leading and trailing whitespace removed

Notes:

With the exception of time and duration, you may declare any built-in type as a constant.
string constants are assigned the value of everything to the right of the equals sign, with leading and trailing whitespace removed. As such,
you cannot leave a comment on a string constant definition.

Integer constants must be specified in decimal (base 10).

3. Building .msg Files
The ROS Client Libraries (/Client%20Libraries) implement message generators that translate .msg files into source code. These message generators
must be invoked from your build script, though most of the gory details are taken care of by including some common build rules. By convention, all
.msg files are stored in a directory within your package called "msg," and you can build all of them by editing the CMakeLists.txt (/CMakeLists) file and
the catkin/package.xml (/catkin/package.xml) file.

Open package.xml, and make sure these two lines are in it:

 <build_depend>message_generation</build_depend>
 <run_depend>message_runtime</run_depend>

Note that at build time, we need "message_generation", while at runtime, we only need "message_runtime".

Open CMakeLists.txt in your favorite text editor (rosed (/ROS/Tutorials/UsingRosEd) from the previous tutorial is a good option).

Add the message_generation dependency to the find package call which already exists in your CMakeLists.txt so that you can generate messages.
You can do this by simply adding message_generation to the list of COMPONENTS such that it looks like this:

Do not just add this line to your CMakeLists.txt, modify the existing line
find_package(catkin REQUIRED COMPONENTS roscpp rospy std_msgs message_generation)

You may notice sometimes your project builds fine even if you did not call find_package with all dependencies. This is because catkin combines all
your projects into one, so if an earlier project calls find_package, yours is configured with the same values. But forgetting the call means your project
can easily break when build in isolation.

Also make sure you export the message runtime dependency.

catkin_package(
 ...
 CATKIN_DEPENDS message_runtime ...
 ...)

http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/CMakeLists
http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/ROS/Tutorials/UsingRosEd

2020/12/26 msg - ROS Wiki

wiki.ros.org/msg 4/4

Wiki: msg (2019-01-13 18:15:57由AustinHendrix (/AustinHendrix)编辑)

Find the following block of code:

add_message_files(
FILES
Message1.msg
Message2.msg
)

Uncomment it by removing the # symbols and then replace the stand in Message*.msg files with your .msg file, such that it looks like this:

add_message_files(
 FILES
 Num.msg
)

Find the following block of code:

generate_messages(
DEPENDENCIES
std_msgs # Or other packages containing msgs
)

Uncomment it by removing the # symbols and then replace std_msgs with the messages your messages depend on, such that it looks like this:

 generate_messages(
 DEPENDENCIES
 std_msgs
)

By adding the .msg files manually, we make sure that CMake knows when it has to reconfigure the project after you add other .msg files.

Also see: catkin/CMakeLists.txt#msgs_srvs_actions (/catkin/CMakeLists.txt#msgs_srvs_actions)

4. Client Library Support
In Python, the generated Python message file (e.g. std_msgs.msg.String) provides nearly all the information you might want about a .msg file. You
can examine the __slots__ and _slot_types and other fields to introspect information about messages.

Except where otherwise noted, the ROS wiki is licensed under the
Creative Commons Attribution 3.0 (http://creativecommons.org/licenses/by/3.0/)

(http://www.osrfoundation.org)

http://wiki.ros.org/AustinHendrix
http://wiki.ros.org/catkin/CMakeLists.txt#msgs_srvs_actions
http://creativecommons.org/licenses/by/3.0/
http://www.osrfoundation.org/

