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To our families, friends, and the matrix community 



Issai Schur (1875-1941) 

This portrait of Issai Schur was apparently made by the "Atelieir Hanni 
Schwarz, N. W. Dorotheenstrafie 73" in Berlin, c. 1917, and appears in 

Ausgewdhlte Arbeiten zu den Ursprilngen der Schur-Analysis: Gewidmet dem 
grofien Mathematiker Issai Schur (1875-1941) edited by Bernd Fritzsche & 

Bernd Kirstein, pub. B. G. Teubner Verlagsgesellschaft, Stuttgart, 1991. 
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Emilie Virginia Haynsworth (1916-1985) 

This por t ra i t of Emihe Virginia Haynswor th is on the A u b u r n University Web 

site www.aubum.edu/~fitzpjd/ben/images/Emilie.gif and in the book The Education 

of a Mathematician by P h i h p J. Davis, pub . A K Peters , Natick, Mass. , 2000. 

http://www.aubum.edu/~fitzpjd/ben/images/Emilie.gif
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Preface 

What's in a name? To paraphrase Shakespeare's Juliet, that which Em-
ilie Haynsworth called the Schur complement, by any other name would be 
just as beautiful. Nevertheless, her 1968 naming decision in honor of Issai 
Schur (1875-1941) has gained lasting acceptance by the mathematical com­
munity. The Schur complement plays an important role in matrix analysis, 
statistics, numerical analysis, and many other areas of mathematics and its 
applications. 

Our goal is to expose the Schur complement as a rich and basic tool in 
mathematical research and applications and to discuss many significant re­
sults that illustrate its power and fertility. Although our book was originally 
conceived as a research reference, it will also be useful for graduate and up­
per division undergraduate courses in mathematics, applied mathematics, 
and statistics. The contributing authors have developed an exposition that 
makes the material accessible to readers with a sound foundation in linear 
algebra. 

The eight chapters of the book (Chapters 0-7) cover themes and varia­
tions on the Schur complement, including its historical development, basic 
properties, eigenvalue and singular value inequalities, matrix inequalities in 
both finite and infinite dimensional settings, closure properties, and appli­
cations in statistics, probability, and numerical analysis. The chapters need 
not be read in the order presented, and the reader should feel at leisure to 
browse freely through topics of interest. 

It was a great pleasure for me, as editor, to work with a wonderful 
group of distinguished mathematicians who agreed to become chapter con­
tributors: T. Ando (Hokkaido University, Japan), C. Brezinski (Universite 
des Sciences et Technologies de Lille, France), R. A. Horn (University of 
Utah, Salt Lake City, USA), C. R. Johnson (College of William and Mary, 
Williamsburg, USA), J.-Z. Liu (Xiangtang University, China), S. Puntanen 
(University of Tampere, Finland), R. L. Smith (University of Tennessee, 
Chattanooga, USA), and G. P. H. Styan (McGill University, Canada). 

I am particularly thankful to George Styan for his great enthusiasm in 
compiling the master bibliography for the book. We would also like to 
acknowledge the help we received from Giilhan Alpargu, Masoud Asghar-
ian, M. I. Beg, Adi Ben-Israel, Abraham Berman, Torsten Bernhardt, Eva 
Brune, John S. Chipman, Ka Lok Chu, R. William Farebrother, Bernd 
Fritsche, Daniel Hershkowitz, Jarkko Isotalo, Bernd Kirstein, Andre Klein, 
Jarmo Niemela, Geva Maimon Reid, Timo Makelainen, Lindsey E. Mc-
Quade, Aliza K. Miller, Ingram Olkin, Emily E. Rochette, Vera Rosta, 
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Eugenie Roudaia, Burkhard Schaffrin, Hans Schneider, Shayle R. Searle, 
Daniel N. Selan, Samara F. Strauber, Evelyn M. Styan, J. C. Szamosi, 
Garry J. Tee, Gotz Trenkler, Frank Uhlig, and Jiirgen WeiB. We are also 
very grateful to the librarians in the McGill University Interlibrary Loan 
and Document Delivery Department for their help in obtaining the source 
materials for many of our references. The research of George P. H. Styan 
was supported in part by the Natural Sciences and Engineering Research 
Council of Canada. 

Finally, I thank my wife Cheng, my children Sunny, Andrew, and Alan, 
and my mother-in-law Yun-Jiao for their understanding, support, and love. 

Fuzhen Zhang 
September 1, 2004 

Fort Lauderdale, Florida 



Chapter 0 

Historical Introduction; Issai Schur 
and the Early Development of the 
Schur Complement 

0.0 Introduct ion and mise-en-scene 

In this introductory chapter we comment on the history of the Schur com­
plement from 1812 through 1968 when it was so named and given a notation. 
As Chandler & Magnus [113, p. 192] point out, "The coining of new techni­
cal terms is an absolute necessity for the evolution of mathematics." And 
so we begin in 1968 when the mathematician Emilie Virginia Haynsworth 
(1916-1985) introduced a name and a notation for the Schur complement 
of a square nonsingular (or invertible) submatrix in a partitioned (two-way 
block) matrix [210, 211]. 

We then go back fifty-one years and examine the seminal lemma by 
the famous mathematician Issai Schur (1875-1941) published in 1917 [404, 
pp. 215-216], in which the Schur determinant formula (0.3.2) was intro­
duced. We also comment on earlier implicit manifestations of the Schur 
complement due to Pierre Simon Laplace, later Marquis de Laplace (1749-
1827), first published in 1812, and to James Joseph Sylvester (1814-1897), 
first published in 1851. 

Following some biographical remarks about Issai Schur, we present the 
Banachiewicz inversion formula for the inverse of a nonsingular partitioned 
matrix which was introduced in 1937 [29] by the astronomer Tadeusz Ba­
nachiewicz (1882-1954). We note, however, that closely related results were 
obtained earlier in 1933 by Ralf Lohan [290], following results in the book 
[66] published in 1923 by the geodesist Hans Boltz (1883-1947). 

We continue with comments on material in the book Elementary Matri­
ces and Some Applications to Dynamics and Differential Equations [171], a 
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classic by the three aeronautical engineers Robert Alexander Frazer (1891-
1959), William Jolly Duncan (1894-1960), and Arthur Roderick Collar 
(1908-1986), first published in 1938, and in the book Determinants and 
Matrices [4] by the mathematician and statistician Alexander Craig Aitken 
(1895-1967), another classic, and first published in 1939. 

We introduce the Duncan inversion formula (0.8.3) for the sum of two 
matrices, and the very useful Aitken block-diagonalization formula (0.9.1), 
from which easily follow the Guttman rank additivity formula (0.9.2) due to 
the social scientist Louis Guttman (1916-1987) and the Haynsworth inertia 
additivity formula (0.10.1) due to Emilie Haynsworth. 

We conclude this chapter with some biographical remarks on Emilie 
Haynsworth and note that her thesis adviser was Alfred Theodor Brauer 
(1894-1985), who completed his Ph.D. degree under Schur in 1928. 

This chapter builds on the extensive surveys of the Schur complement 
published (in English) by Brezinski [73], Carlson [105], Cottle [128, 129], 
Ouellette [345], and Styan [432], and (in Turkish) by Alpargu [8]. In addi­
tion, the role of the Schur complement in matrix inversion has been surveyed 
by Zielke [472] and by Henderson & Searle [219], with special emphasis on 
inverting the sum of two matrices, and by Hager [200], with emphasis on 
the inverse of a matrix after a small-rank perturbation. 

0.1 The Schur complement: the name and the notation 

The term Schur complement for the matrix 

S-RP-^Q, (0.1.1) 

where the nonsingular matrix P is the leading submatrix of the complex 

partitioned matrix 

was introduced in 1968 in two papers [210, 211] by Emilie Haynsworth 
published, respectively, in the Basel Mathematical Notes and in Linear 
Algebra and its Applications. 

The notation 

{M/P) = S-RP-^Q (0.1.3) 

for the Schur complement of P in M = \ RS) ^^^ apparently first used 
in 1968 by Haynsworth, in the Basel Mathematical Notes [210] but not in 
Linear Algebra and its Applications [211], where its first appearance seems 
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to be in the 1970 paper by Haynsworth [212]. This notation does appear, 
however, in the 1969 paper [131] by Haynsworth with Douglas E. Crabtree 
in the Proceedings of the American Mathematical Society and is still in use 
today, see e.g., the papers by Brezinski & Redivo Zaglia [88] and N'Guessan 
[334] both published in 2003; the notation (0.1.3) is also used in the six 
surveys [8, 73, 128, 129, 345, 432]. 

The notation (M|P) , with a vertical line separator rather than a slash, 
was introduced in 1971 by Markham [295] and is used in the book by 
Prasolov [354, p. 17]; see also [296, 332, 343] published in 1972-1980. The 
notation M\P without the parentheses was used in 1976 by Markham [297]. 

In this book we will use the original notation (0.1.3) but without the 
parentheses, 

M/P^S-RP-^Q, (0.1.4) 

for the Schur complement of the nonsingular matrix P in the partitioned 

matrix M = ( ^ ^ j - This notation (0.1.4) without the parentheses was 

introduced in 1974 by Carlson, Haynsworth & Markham [106] and seems 
to be very popular today, see, e.g., the recent books by Ben-Israel & Greville 
[45, p. 30], Berman & Shaked-Monderer [48, p. 24], and by C. R. Rao k 
M. B. Rao [378, p. 139], and the recent papers [160, 287, 471]. 

0.2 Some implicit manifestations in the 1800s 

According to David Carlson in his 1986 survey article [105] entitled "What 
are Schur complements, anyway?" : 

The idea of the Schur complement matrix goes back to the 1851 
paper [436] by James Joseph Sylvester. It is well known that the 
entry aij of [the Schur complement matrix] yl, i = 1 , . . . ,m — 
k, j = 1 , . . . ,n — /c, is the minor of [the partitioned matrix] 
M determined by rows 1 , . . . , /c, /c 4- 2 and columns 1 , . . . , A:, A: 4-
j , a property which was used by Sylvester as his definition. 
For a discussion of this and other appearances of the Schur 
complement matrix in the 1800s, see the paper by Brualdi & 
Schneider [99]. 

Farebrother [162, pp. 116-117] discusses work by Pierre Simon Laplace, 
later Marquis de Laplace, and observes that Laplace [273, livre II, §21 
(1812); (Euvres, vol. 7, p. 334 (1886)] obtained a ratio that we now recog­
nize as the ratio of two successive leading principal minors of a symmetric 
positive definite matrix. Then the ratio det(M)/det(Mi) is the determi­
nant of what we now know as the Schur complement of Mi in M, see the 
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Schur determinant formula (0.3.2) below. Laplace [273, §3 (1816); (Euvres, 
vol. 7, pp. 512-513 (1886)] evaluates the ratio det(M)/ det(Mi) with n == 3. 

0.3 The lemma and the Schur determinant formula 

The adjectival noun "Schur" in "Schur complement" was chosen by 
Haynsworth because of the lemma (Hilfssatz) in the paper [404] by Issai 
Schur published in 1917 in the Journal fur die reine und angewandte Math-
ematik, founded in Berlin by August Leopold Crelle (1780-1855) in 1826 
and edited by him until his death. Often called Crelle's Journal this is 
apparently the oldest mathematics periodical still in existence today [103]; 
Frei [174] summarizes the long history of the Journal in volume 500 (1998). 

The picture of Issai Schur facing the opening page of this chapter ap­
peared in the 1991 book Ausgewdhlte Arbeiten zu den Ursprungen der 
Schur-Analysis: Gewidmet dem grofien Mathematiker Issai Schur (1875-
1941) [177, p. 20]; on the facing page [177, p. 21] is a copy of the title 
page of volume 147 (1917) of the Journal fur die reine und angewandte 
Mathematik in which the Schur determinant lemma [404] was published. 

This paper [404] is concerned with conditions for power series to be 
bounded inside the unit circle; indeed a polynomial with roots within the 
unit disk in the complex plane is now known as a Schur polynomial^ see 
e.g., Lakshmikantham & Trigiante [271, p. 49]. 

The lemma appears in [404, pp. 215-216], see also [71, pp. 148-149], 
[177, pp. 33-34]. Our English translation, see also [183, pp. 33-34], follows. 
The Schur complement S — RP~^Q is used in the proof but the lemma 
holds even if the square matrix P is singular. We refer to this lemma as 
the Schur determinant lemma. 

LEMMA. Let P,Q,R,S denote four nxn matrices and suppose 
that P and R commute. Then the determinant det(M) of the 
2n X 2n matrix 

is equal to the determinant of the matrix PS — RQ. 

Proof. We assume that the determinant of P is not zero. 
Then, with / denoting the nxn identity matrix, 

P - I 0\ (P Q\ _ (I P-^Q 
-RP-^ l)\R S) V̂  S-RP-^Qj 

Taking determinants yields det(P~^) • det(M) = det{S-RP-^Q) 
and so 
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det(M) ^ det{P) • det{S - RP-^Q) (0.3.1) 

= det(P5' - PRP-^Q) = det(PS' - RQ). 

If, however, det(P) = 0, we replace matrix M with the matrix 

^P+xI Q^ 
^ ^ ^ - ' i? S 

The matrices R and P-\rxI commute. For the absolute value \x\ 
sufficiently small (but not zero), the determinant of P + x / is 
not equal to 0 and so det(Mi) = det({P-]-xI)S - RQ). Letting 
X converge to 0 yields the desired result. I 

We may write (0.3.1) as the Schur determinant formula 

det(M) = det(P) • det(M/P) = det(P) • det(5 - RP'^Q) (0.3.2) 

and so determinant is multiplicative on the Schur complement, which sug­
gests the notation M/P for the Schur complement of P in M. 

Schur [404, pp. 215-216] used this lemma to show that the complex 
2k X 2k determinant 

where 

Pk^ 

5k = det f^'l ^l") = det(P^P;! - QlQk)^ A; = 1 , . . . , n, (0.3.3) 

f ao 0 . . . 0 ^ I'an an-i . • • a^-jt+i^ 
0 an . . . an-k+2 ai ao . . . 0 

Qk — 

\0 0 ... an J 

and so PkQk — Qk-^k, k = 1 , . . . , n. What are now known as Schur condi­
tions, 

4 > 0, /c = 1, . . . ,n , 

are necessary and sufficient for the roots of the polynomial 

f{x) = aox'^ + aix"""^ H h an-ix + a^ = 0 (0.3.4) 

to lie within the unit circle of the complex plane, see e.g., Chipman [116, 
p. 371 (1950)]. 

Schur's paper [404] and its sequel [405] were selected by Fritzsche & 
Kirstein in the Ausgewdhlte Arbeiten [177] as two of the six influential pa­
pers considered as "fundamental for Schur analysis"; the book [177] is ded­
icated to the "great mathematician Issai Schur". The four other papers in 
[177] are by Gustav Herglotz (1881-1953), Rolf Nevanlinna (1895-1980), 
Georg Pick (1859-1942), and Hermann Weyl (1885-1955). 
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0.4 Issai Schur (1875-1941) 

Issai Schur was born on 10 January 1875, the son of Golde Schur (nee 
Landau) and the Kaufmann Moses Schur, according to Schur's Biographis-
che Mitteilungen [406]. In a recent biography of Issai Schur, Vogt [449] 
notes that Schur used the first name "Schaia" rather than "Issai" until his 
mid-20s and that his father was a Grofikaufmann. 

Writing in German in [406], Schur gives his place of birth as Mohilew am 
Dnjepr (Russland)—in English: Mogilev on the Dnieper, Russia. Founded 
in the 13th century, Mogilev changed hands frequently among Lithuania, 
Poland, Sweden, and Russia, and was finally annexed to Russia in 1772 in 
the first partition of Poland [31, p. 155]. By the late 19th century, almost 
half of the population of Mogilev was Jewish [262]. About 200 km east of 
Minsk, Mogilev is in the eastern part of the country now known as Belarus 
(Belorussia, White Russia) and called Mahilyow in Belarusian [306]. 

In 1888 when he was 13, Schaia Schur, as he was then known [449], went 
to live with his older sister and brother-in-law in Libau (Kurland), about 
640 km northwest of Mogilev. Also founded in the 13th century, Libau 
(Liepaja in Latvian or Lettish) is on the Baltic coast of what is now Latvia 
in the region of Courland (Kurland in German, Kurzeme in Latvian), which 
from 1562-1795 was a semi-independent duchy linked to Poland but with a 
prevailing German influence [60, 423]. Indeed the German way of life was 
dominant in Courland in 1888, with mostly German (not Yiddish) being 
the spoken language of the Jewish community until 1939 [39]. In the late 
19th century there were many synagogues in Libau, the Great Synagogue 
in Babylonian style with three cupolas being a landmark [60]. 

Schur attended the German-language Nicolai Gymnasium in Libau from 
1888-1894 and received the highest mark on his final examination and 
a gold medal [449]. It was here that he became fluent in German (we 
believe that his first language was probably Yiddish). In Germany the 
Gymnasium is a "state-maintained secondary school that prepares pupils 
for higher academic education" [158]. We do not know why the adjectival 
noun Nicolai is used here but in Leipzig the Nikolaischule was so named 
because of the adjacent Nikolaikirche^ which was founded c. 1165 and named 
after Saint Nicholas of Bari [207, 224], the saint who is widely associated 
with Christmas and after whom Santa Glaus in named [248, ch. 7]. 

In October 1894, Schur enrolled in the University of Berlin, studying 
mathematics and physics; on 27 November 1901 he passed his doctoral 
examination summa cum laude with the thesis entitled "Uber eine Klasse 
von Matrizen, die sich einer gegebenen Matrix zuordnen lassen" [402]: his 
thesis adviser was Ferdinand Georg Frobenius (1849-1917). According to 
Vogt [449], in this thesis Schur used his first name "Issai" for the first time. 
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Feeling that he "had no chance whatsoever of sustaining himself as a 
mathematician in czarist Russia" [113, p. 197] and since he now wrote and 
spoke German so perfectly that one would guess that German was his na­
tive language, Schur stayed on in Germany. According to [406], he was 
Privatdozent at the University in Berlin from 1903 till 1913 and aufieror-
dentlicher Professor (associate professor) at the University of Bonn from 
21 April 1913 till 1 April 1916 [425, p. 8], as successor to Felix Hausdorff 
(1868-1942); see also [276, 425]. In 1916 Schur returned to Berlin where in 
1919 he was appointed full professor; in 1922 he was elected a member of 
the Prussian Academy of Sciences to fill the vacancy caused by the death of 
Frobenius in 1917. We believe that our portrait of Issai Schur in the front 
of this book was made in Berlin, c. 1917; for other photographs see [362]. 

Schur lived in Berlin as a highly respected member of the academic 
community and was a quiet unassuming scholar who took no part in the 
fierce struggles that preceded the downfall of the Weimar Republic. "A 
leading mathematician and an outstanding and highly successful teacher, 
[Schur] occupied for 16 years the very prestigious chair at the University of 
Berlin" [113, p. 197]. Until 1933 Schur's algebraic school at the University 
of Berlin was, without any doubt, the single most coherent and influential 
group of mathematicians in Berlin and among the most important in all of 
Germany. With Schur as its charismatic leader, the school centered around 
his research on group representations, which was extended by his students 
in various directions (soluble groups, combinatorics, matrix theory) [100, 
p. 25]. "Schur made fundamental contributions to algebra and group theory 
which, according to Hermann Weyl, were comparable in scope and depth 
to those of Emmy Amalie Noether (1882-1935)" [353, p. 178]. 

When Schur's lectures were canceled (in 1933) there was an outcry 
among the students and professors, for he was respected and very well 
liked [100, p. 27]. Thanks to his colleague Erhard Schmidt (1876-1959), 
Schur was able to continue his lectures till the end of September 1935 [353, 
p. 178], Schur being the last Jewish professor to lose his job at the Univer-
sitat Berlin at that time [425, p. 8]. Schur's "lectures on number theory, 
algebra, group theory and the theory of invariants attracted large audiences. 
On 10 January 1935 some of the senior postgraduates congratulated [Schur] 
in the lecture theatre on his sixtieth birthday. Replying in mathematical 
language, Schur hoped that the good relationship between himself and his 
student audience would remain invariant under all the transformations to 
come" [353, p. 179]. 

Indeed Schur was a superb lecturer. His lectures were meticulously pre­
pared and were exceedingly popular. Walter Ledermann (b. 1911) remem­
bers attending Schur's algebra course which was held in a lecture theatre 
filled with about 400 students [276]: "Sometimes, when I had to be content 
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with a seat at the back of the lecture theatre, I used a pair of opera glasses 
to get a glimpse of the speaker." In 1938 Schur was pressed to resign from 
the Prussian Academy of Sciences and on 7 April 1938 he resigned "volun­
tarily" from the Commissions of the Academy. Half a year later, he had to 
resign from the Academy altogether [100, p. 27]. 

The names of the 22 persons who completed their dissertations from 
1917-1936 under Schur, together with the date in which the Ph.D. degree 
was awarded and the dissertation title, are listed in the Issai Schur Gesam-
melte Abhandlungen [71, Band III, pp. 479-480]; see also [100, p. 23], [249, 
p. xviii]. One of these 22 persons is Alfred Theodor Brauer (1894-1985), 
who completed his Ph.D. dissertation under Schur on 19 December 1928 
and with Hans Rohrbach edited the Issai Schur Gesammelte Abhandlungen 
[71]. Alfred Brauer was a faculty member in the Dept. of Mathematics at 
The University of North Carolina at Chapel Hill for 24 years and directed 
21 Ph.D. dissertations, including that of Emilie Haynsworth, who in 1968 
introduced the term "Schur complement" (see §0.1 above). 

A remark by Alfred Brauer [70, p. xiii], see also [100, p. 28], sheds light 
on Schur's situation after he finally left Germany in 1939: "When Schur 
could not sleep at night, he read the Jahrbuch iiber die Fortschritte der 
Mathematik (now Zentralblatt MATH). When he came to Tel Aviv (then 
British Mandate of Palestine, now Israel) and for financial reasons offered 
his library for sale to the Institute for Advanced Study in Princeton, he 
finally excluded the Jahrbuch in a telegram only weeks before his death." 

Issai Schur died of a heart attack in Tel Aviv on his 66th birthday, 
10 January 1941. Schur is buried in Tel Aviv in the Old Cemetery on 
Trumpeldor Street, which was "reserved for the Founders' families and 
persons of special note. Sadly this was the only tribute the struggling 
Jewish Home could bestow upon Schur" [249, p. clxxxvi]; see also [331, 362]. 

Schur was survived by his wife, medical doctor Regina (nee Frumkin, 
1881-1965), their son Georg (born 1907 and named after Frobenius), and 
daughter Hilde (born 1911, later Hilda Abelin-Schur), who in "A story 
about father" [1] in Studies in Memory of Issai Schur [249] writes 

One day when our family was having tea with some friends, 
[my father] was enthusiastically talking about his work. He 
said: "I feel like I am somehow moving through outer space. 
A particular idea leads me to a nearby star on which I decide 
to land. Upon my arrival I realize that somebody already lives 
there. Am I disappointed? Of course not. The inhabitant and 
I are cordially welcoming each other, and we are happy about 
our common discovery." This was typical of my father; he was 
never envious. 
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0.5 Schur's contributions in mathematics 

Many of Issai Schur's contributions to linear algebra and matrix theory 
are reviewed in [152] by Dym & Katsnelson in Studies in Memory of Issai 
Schur [249]. Among the topics covered in [249] are estimates for matrix and 
integral operators and bilinear forms, the Schur (or Hadamard) product of 
matrices, Schur multipliers, Schur convexity, inequalities between eigenval­
ues and singular values of a linear operator, and triangular representations 
of matrices. Schur is considered as a "pioneer in representation theory" 
[136], and Haubrich [208] surveys Schur's contributions in linear substitu­
tions, locations of roots of algebraic equations, pure group theory, integral 
equations, and number theory. 

Soifer [425] discusses the origins of certain combinatorial problems nowa­
days seen as part of Ramsey theory, with special reference to a lemma, 
now known as Schur's theorem, embedded in a paper on number theory. 
Included in Studies in Memory of Issai Schur [249] are over 60 pages of bio­
graphical and related material (including letters and documents in German, 
with translations in English) on Issai Schur, as well as reminiscences by his 
former students Bernhard Hermann Neumann (1909-2002) and Walter Led-
ermann, and by his daughter Hilda Abelin-Schur [1] and his granddaughter 
Susan Abelin. 

In the edited book [183] entitled /. Schur Methods in Operator Theory 
and Signal Processing, Thomas Kailath [252] briefly reviews some of the 
"many significant and technologically highly relevant applications in linear 
algebra and operator theory" arising from Schur's seminal papers [404, 405]. 
For some comments by Paul Erdos (1913-1996) on the occasion of the 120th 
anniversary of Schur's birthday in 1995, see [159]. 

0.6 Pubhcation under J. Schur 

Issai Schur published under "I. Schur" and under "J. Schur". As is pointed 
out by Ledermann in his biographical article [276] on Schur, this has caused 
some confusion: "For example I have a scholarly work on analysis which 
lists amongst the authors cited both J. Schur and I. Schur, and an author 
on number theory attributes one of the key results to I. J. Schur." 

We have identified 81 publications by Issai Schur which were published 
before he died in 1941; several further publications by Schur were, however, 
published posthumously including the book [408] published in 1968. On 
the title page of the (original versions of the) articles [404, 405], the author 
is given as "J. Schur"; indeed for all but one of the other 11 papers by Issai 
Schur that we found published in the Journal fiir die reine und angewandte 
Mathematik the author is given as "J. Schur". For the lecture notes [407] 
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pubhshed in Ziirich in 1936, the author is given as J. Schur on the title page 
and so cited in the preface. For all other publications by Issai Schur that we 
have found, however, the author is given as "I. Schur", and posthumously 
as "Issai Schur"; moreover Schur edited the Mathematische Zeitschrift from 
1917-1938 and he is listed there on the journal title pages as I. Schur. 

The confusion here between "I" and "J" probably stems from there be­
ing two major styles of writing German: Fraktur script^ also known as black 
letter script or Gothic script, in use since the ninth century and prevailing 
until 1941 [130, p. 26], and Roman or Latin, which is common today [237]. 
According to Mashey [302, p. 28], "it is a defect of most styles of German 
type that the same character 3 is used for the capitals I (i) and J (j)"; 
when followed by a vowel it is the consonant "J" and when followed by a 
consonant, it is " F , see also [46, pp. 4-5], [220, pp. 166-167], [444, p. 397]. 

The way Schur wrote and signed his name, as in his Biographische Mit-
teilungen [406], his first name could easily be interpreted as "Jssai" rather 
than " Issai"; see also the signature at the bottom of the photograph in 
the front of this book and at the bottom of the photograph in the Issai 
Schur Gesammelte Abhandlungen [71, Band /, facing page v (1973)]. The 
official letter, reprinted in Soifer [425, p. 9], dated 28 September 1935 and 
signed by Kunisch [270], relieving Issai Schur of his duties at the University 
of Berlin, is addressed to "Jssai Schur"; the second paragraph starts with 
"Jch iibersende Jhnen . . . " which would now be written as "Ich iibersende 
Ihnen ... "; see also [249, p. Ixxiv (2003)]. Included in the article by Leder-
mann & Neumann [277, (2003)] are copies of many documents associated 
with Issai Schur. These are presented in chronological order, with a tran­
scription first, followed by a translation. It is noted there [277, p. Ix] that 
"Schur used Roman script" but "sometimes, particularly in typed official 
letters after 1933, initial letters I are rendered as J." 

0.7 Boltz 1923, Lohan 1933, Aitken 1937, and 
the Banachiewicz inversion formula 1937 

In 1937 the astronomer and mathematician Tadeusz Banachiewicz (1882-
1954) established in [29, p. 50] the Schur determinant formula (0.3.2) with 
P nonsingular, 

det(M) - det ( ^ ^ j = det(P) • det(5 - RP'^Q). (0.7.1) 

Also in 1937, the mathematician and statistician Alexander Craig Aitken 
(1895-1967) gave [3, p. 172] "a uniform working process for computing" the 
triple matrix product RP~^Q, and noted explicitly that when the matrix 
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i? is a row vector — r', say, and Q is a column vector q, say, then 

det(_^, 2)/det(F) = r 'p-V 

From (0.7.1), it follows at once that the square matrix M is nonsingular 
if and only if the Schur complement M/P = S — RP~^Q is nonsingular. 
We then obtain the Banachiewicz inversion formula for the inverse of a 
partitioned matrix 

A/r-i _ ^^ Q V - f^~^ + P-^Q{M/P)-'RP-' -P~^Q{M/P)-
^^^ ~ \R S) ~ \ -{M/P)-^RP-^ (M/P)-^ 

= ( V o) + (~V^) W^)~'(-^^"' )̂- (^•^•2) 
Banachiewicz [29, p. 54] appears to have been the first to obtain (0.7.2); his 
proof used Cracovians, a special kind of matrix algebra in which columns 
multiply columns, and which is used, for example, in spherical astronomy 
(polygonometry), geodesy, celestial mechanics, and in the calculation of 
orbits; see e.g., Bujakiewicz-Korohska & Korohski [101], Ouellette [345, 
pp. 290-291], 

Fourteen years earlier in 1923, the geodesist Hans Boltz (1883-1947) 
implicitly used partitioning to invert a matrix (in scalar notation), see 
[66, 181, 225, 240]. According to the review by Forsythe [170] of the book 
Die Inversion geoddtischer Matrizenby Ewald Konrad Bodewig [63], Boltz's 
interest concerned the "inverse of a geodetic matrix G in which a large sub-
matrix A is mostly zeros and depends only on the topology of the geodetic 
network of stations and observed directions. When the directions are given 
equal weights, A has 6 on the main diagonal and ±2 in a few positions off 
the diagonal. Boltz proposed first obtaining A~^ (which can be done before 
the survey), and then using it to obtain G~^ by partitioning G; see also 
Wolf [460]. Bodewig [62] refers to the "method of Boltz and Banachiewicz". 
Nistor [335] used the "method of Boltz" applied to partitioning in the so­
lution of normal equations in statistics; see also Householder [234]. 

The Banachiewicz inversion formula (0.7.2) appears in the original ver­
sion of the book Matrix Calculus by Bodewig published in 1956 [64, Part 
niA, §2, pp. 188-192] entitled "Frobenius' Relation" and in the second 
edition, published in 1959 [64, Part IIIA, ch. 2, pp. 217-222] entitled 
"Frobenius-Schur's Relation". In [65, p. 20], Bodewig notes that it was 
Aitken who referred him to Frobenius. No specific reference to Frobenius is 
given in [64, 65]. Lokki [291, p. 22] refers to the "Frobenius-Schur-Boltz-
Banachiewicz method for partitioned matrix inversion". 
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In 1933 Ralf Lohan, in a short note [290] "extending the results of Boltz 
[66]", solves the system of equations 

n f) (:) - (:) <«") 
for the vectors x and y and explicitly gives the solution as 

X = {P-^ -^ p-^Q{M/P)-^RP-^)v - P-^Q{M/P)-^W, 

y = -{MlP)-^RP~\^{MlP)-^w. (0.7.4) 

While Lohan [290] does not explicitly present the inversion formula (0.7.2), 
he does use it to compute the inverse (presented explicitly, correct to 4 
decimal places) of a specific real symmetric indefinite 5 x 5 matrix A with 
positive and negative integer elements in the range [—17, +36]. Letting Aj 
denote the top left j x j principal leading submatrix of A with j = 3,4, 
Lohan [290] first computes A^^, and then using A^^ and the scalar Schur 
complement A4/AS he obtains A^^. His inversion of A is then completed 
using A^ and the scalar Schur complement A/A4. A similar method was 
given in 1940 by Jossa [250]; see also Forsythe [170]. 

Following up on the results of Banachiewicz (1937), the well-known 
mathematician and statistician Bartel Leendert van der Waerden (1903-
1996) gives the formula 

P Q\ ^ ̂  (I -P-^Q{M/P)-^\ ( P-I 0 
R S) 10 [M/P)-^ ) \-RP-^ I -1 I I __pp-i T I (0.7.5) 

in a short note [446] in the "Notizen" section of the Jahresbericht der 
Deutschen Mathematiker Vereinigung in 1938. The formula (0.7.5) follows 
at once from (0.7.2) and from the Schur determinant formula (0.3.2). 

0.8 Frazer, Duncan & Collar 1938, 
Aitken 1939, and Duncan 1944 

The three aeronautical engineers Robert Alexander Frazer (1891-1959), 
William Jolly Duncan (1894-1960) and Arthur Roderick Collar (1908-1986) 
established the Banachiewicz inversion formula (0.7.2) in their classic book 
entitled Elementary Matrices and Some Applications to Dynamics and Dif­
ferential Equations [171, p. 113] first published in 1938, just one year after 
Banachiewicz (1937). The appearance in [171] of the Banachiewicz inver­
sion formula is almost surely its first appearance in a book; the Schur 
determinant formula also appears here for the special case when the Schur 
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complement is a scalar. We find no mention in [171], however, of Ba-
nachiewicz, Boltz or Schur. 

Let us consider again the nonsingular partitioned matrix M = ( ^ ^ ) 
as above, but now with 5' nonsingular and where the Schur complement 
M/S — P — QS~^R. Then, in parallel to the Banachiewicz inversion for­
mula (0.7.2) above, we have 

1 _ f {M/S)-' ~{M/S)-'QS-' \ 
^^^ ~\-S-'R{M/S)-' S-' + S-'R{M/S)-'QS-'J ^^'^'^^ 

with P not necessarily nonsingular (but square so that M is square). When, 
however, both S and P are nonsingular, then (0.7.2) also holds, i.e., 

1 _ / P - I + P-'Q{M/P)-'RP-' -P-'Q{M/P)-' 
\ -{M/P)-'RP-' (M/P)-' 

(0.8.2) 

Equating the top left-hand corners in (0.8.1) and (0.8.2) yields 

{M/S)-' = P-' -h P-'Q{M/P)-'RP-\ 

or explicitly 

(P - QS-'R)-' = P-' -h P~'Q{S - RP-'Q)-'RP-\ (0.8.3) 

which we refer to as the Duncan inversion formula. We believe that (0.8.3) 
was first explicitly established by William Jolly Duncan in 1944, see [151, 
equation (4.10), p. 666]. See also the 1946 paper by Guttman [197]. 
Piegorsch & Casella [351] call (0.8.3) the Duncan-Guttman inverse while 
Grewal & Andrews [189, p. 366] call (0.8.3) the Hemes inversion formula 
with reference to Bodewig [64, p. 218 (1959)], who notes that (0.8.3) "has, 
with another proof, been communicated to the author by H. Hemes." 

The survey paper by Hager [200] focuses on the special case of (0.8.3) 
when S = I 

{P - QR)-' = P-' + P-'Q{I - RP-'Q)-'RP-\ (0.8.4) 

which he calls the inverse matrix modification formula and observes that 
the matrix I — RP-'Q is often called the capacitance matrix, see also [356]. 
Hager [200] notes that (0.8.4) is frequently called the Woodbury formula 
and the special case of (0.8.4) when Q and R are vectors the Sherman-
Morrison formula, following results by Sherman & Morrison [416, 417, 418] 
and Woodbury [325, 461] in 1949-1950; see also Bartlett [36] and our Chap­
ter 6 on Schur complements in statistics and probability. 
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When P, Q, R and S are all n x n as in the Schur determinant lemma 
in §0.3 above, and if P,Q,R and S are all nonsingular, then Aitken [4, 
Example #27, p. 148] also obtained the additional formula involving four 
Schur complements: 

where M/Q = R- SQ-^P and M/R =Q- PR-^S. The formula (0.8.5) 
was obtained by Aitken in his classic book Determinants and Matrices [4] 
first published in 1939, just one year after Frazer, Duncan & Collar [171] 
was first published; the formula (0.8.5) appears in Example #27 in the 
section entitled "Additional Examples" in [4, p. 148]. 

Duncan [151, equation (3.3), p. 664] also gives the Banachiewicz in­
version formula explicitly and notes there that it "has been given by A. C. 
Aitken in lectures to his students, together with some alternative equivalent 
forms which are now included in this paper", see also [65, p. 20]. 

0.9 The Aitken block-diagonalization formula 1939 
and the Guttman rank additivity formula 1946 

With P nonsingular, the useful Aitken block-diagonalization formula 

was apparently first established explicitly by Aitken and first published in 
1939, see [4, ch. Ill, §29]. In (0.9.1), neither M nor S need be square. 

While the Aitken formula (0.9.1) holds even if neither M nor S is square, 
when both M and S are square, (0.9.1) immediately yields the Schur de­
terminant formula (0.3.2), and when M is square and nonsingular, (0.9.1) 
immediately yields the Banachiewicz inversion formula (0.7.2). 

From the Aitken formula (0.9.1) we obtain at once the Guttman rank 
additivity formula 

rank(M) = rank(P) + rank(M/P), 

or equivalently 

r a n k ( ^ ^ j = rank(P) + rank(5 - QP'^ i^) , (0.9.2) 

which we believe was first established in 1946 by the social scientist and 
statistician Louis Guttman (1916-1987) in [197, p. 339]. 
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0.10 Emilie Virginia Haynsworth (1916-1985) and 
the Haynsworth inertia additivity formula 

Emilie Haynsworth, in addition to introducing the term Schur complement 
in [210, 211], also showed there that inertia is "additive on the Schur com­
plement" . The inertia or inertia triple of the partitioned Hermitian matrix 

TT _ fHll Hl2 
I II* TJ 

\ni2 n.22 

is defined to be the ordered integer triple 

ln{H) = { ,̂ ^, 5}, 

where the nonnegative integers TT = 7r(iJ), u — y{li\ and (5 = ^(ii/) give 
the numbers, respectively, of positive, negative and zero eigenvalues of H. 
Here Hw is nonsingular and H^^ is the conjugate transpose of Hx^- This 
leads to the Haynsworth inertia additivity formula 

ln{H) = ln{Hii) + ln{H/Hn), 

or equivalently 

In f^l*^ ^22) = "̂"̂ -̂ ^̂ ^ ^ ^""^^'^ ~ Hl^H^^^Hi2), (0-10.1) 

proved in 1968, apparently for the first time, by Haynsworth [210, 211]. 
From (0.10.1), it follows at once that rank is additive on the Schur com­
plement in a Hermitian matrix. As Guttman showed, see (0.9.2) above, 
this rank additivity holds more generally: H need not even be square—we 
need only that Hn be square and nonsingular. As we will see in Chap­
ter 6, however, such rank additivity also holds in a Hermitian matrix when 
Hii is rectangular or square and singular but with the generalized Schur 
complement 7̂ 22 — H^2^ii-^^2, where H^^ is a generalized inverse of i Jn ; 
moreover inertia additivity then also holds provided Hu is square. 

To prove the Haynsworth inertia additivity formula (0.10.1) we apply 
the Aitken factorization formula (0.9.1) to the Hermitian matrix H with 
Hii square and nonsingular, then we have 

/ 0\ I Hii i?i2 \ 11 ~-^ii ^12 \ _ I Hii 0 
-Hi*2^r/ Ij 1̂ 1*2 H22J \0 'l J \ 0 H/Hn 

which immediately leads to (0.10.1) by Sylvester's Law of Inertia: The 
inertia In(iJ) = ln{THT*) for any nonsingular matrix T, see also §1.3 of 
Chapter 1. 
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Emilie Virginia Haynsworth was born on 1 June 1916 and died on 4 May 
1985, both at home in Sumter, South Carolina. As observed in the obituary 
article [108] by Carlson, Markham & Uhlig, "In her family there have been 
Virginia Emilies or Emilie Virginias for over 200 years. From childhood on, 
Emilie had a strong and independent mind, so that her intellectual pursuits 
soon gained her the respect and awe of all her relatives and friends". 

Throughout her life Emilie Haynsworth was eager to discuss any issue 
whatsoever. From Carlson, Markham & Uhlig [108] we quote Philip J. 
Davis (b. 1923): "She was a strong mixture of the traditional and the 
unconventional and for years I could not tell beforehand on what side of the 
line she would locate a given action". In The Education of a Mathematician 
[144, p. 146], Davis observes that Emilie Haynsworth "had a fine sense of 
mathematical elegance—a quality not easily defined. Her research can be 
found in a number of books on advanced matrix theory under the topic: 
'Schur complement'. Emilie taught me many things about matrix theory." 

The portrait of Emilie Haynsworth reproduced on page ix in the frontal 
matter of this book is on the Auburn University Web site [214] and in 
the book The Education of a Mathematician by Philip J. Davis [144] We 
conjecture that the portrait was made c. 1968, the year in which the term 
Schur complement was introduced by Haynsworth [210, 211]. 

In 1952 Emilie Haynsworth received her Ph.D. degree in mathematics at 
The University of North Carolina at Chapel Hill with Alfred Brauer as her 
dissertation adviser. We note that Issai Schur was Alfred Brauer's Ph.D. 
dissertation adviser and that the topic of Haynsworth's dissertation was 
determinantal bounds for diagonally dominant matrices. From 1960 until 
retirement in 1983, Haynsworth taught at Auburn University (Auburn, 
Alabama) "with a dedication which honors the teaching profession" [108] 
and supervised 18 Ph.D. students. 

The mathematician Alexander Markowich Ostrowski (1893-1986), with 
whom Haynsworth co-authored the paper [216] on the inertia formula for 
the apparently not-then-yet-publicly-named Schur complement, wrote the 
following upon her death: 

I lost a very good, life-long friend and mathematics [lost] an 
excellent scientist. I remember how on many occasions I had 
to admire the way in which she found a formulation of absolute 
originality. 



Chapter 1 

Basic Properties of the Schur 
Complement 

1.0 Notation 

Most of our notation is standard, and our matrices are complex or real 
(though greater algebraic generality is often possible). We designate the 
set of all m X n matrices over C (or R) by C^^^ (respectively R"^^^), and 
denote the conjugate transpose of a matrix A by A* = {A)^. A matrix A is 
Hermitian if A* = A^ and a Hermitian matrix is positive semidefinite {pos­
itive definite) if all its eigenvalues are nonnegative (positive). The Lowner 
partial order A > B (A > B) on Hermitian matrices means that A — Bis 
positive semidefinite (positive definite). For A G C"^^'^, we denote the ma­
trix absolute value by \A\ = (A^A) ' . A nonsingular square matrix has po­
lar decompositions A = U \A\ = |A*| U in which the positive definite factors 
\A\ and |A*|, and the unitary factor U = A|i4|~ = |^*|~ A are uniquely 
determined; if A is singular then the respective positive semidefinite factors 
1̂ 1 and \A*\ are uniquely determined and the left and right unitary factor 
U may be chosen to be the same, but U is not uniquely determined. Two 
matrices A and B of the same size are said to be *-congruent if there is a 
nonsingular matrix S of the same size such that A = SAS*; *-congruence 
is an equivalence relation. We denote the (multi-) set of eigenvalues of A 
(its spectrum) by 5(^4) = {Xi{A)} (including multiplicities). 

1.1 Gaussian elimination and the Schur complement 

One way to solve an n x n system of linear equations is by row reduction-
Gaussian elimination that transforms the coefficient matrix into upper tri­
angular form. For example, consider a homogeneous system of linear equa-
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tions Mz = 0, where M is an n x n coefficient matrix with a nonzero (1,1) 

entry. Write M = f ^ ^ j , where h and c are column vectors of size n — 1, 

i^ is a square matrix of size n — 1, and a 7̂  0. The equations 

are equivalent, so the original problem reduces to solving a linear equation 
system of size n — 1: {D — ca~^b)y = 0. 

This idea extends to a linear system Mz = 0 with a nonsingular leading 
principal submatrix. Partition M as 

M = ( ^ f ) , (1.1.1) 

suppose A is nonsingular, and partition z = (^ ) conformally with M. The 

linear system Mz = 0 is equivalent to the pair of linear systems 

Ax + By = 0 (1.1.2) 

Cx + Dy=:0 (1.1.3) 

If we multiply (1.1.2) by —CA~^ and add it to (1.1.3), the vector vari­
able X is eliminated and we obtain the linear system of smaller size 

{D - CA-^B)y - 0. 

We denote the matrix D — CA~^B by M/A and call it the Schur com­
plement of A in M, or the Schur complement of M relative to A. In the 
same spirit, if D is nonsingular, the Schur complement oi D m M is 

M/D^A-BD-^C. 

For a non-homogeneous system of linear equations 

A B \ ( x \ _ ( u 
C D ) \ y ) - \ v 

we may use Schur complements to write the solution as (see Section 0.7) 

X = {M/D)-\u - BD-^v), y = {M/A)-^{v - CA-^u). 

The Schur complement is a basic tool in many areas of matrix analysis, 
and is a rich source of matrix inequalities. The idea of using the Schur 
complement technique to deal with linear systems and matrix problems is 
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classical. It was certainly known to J. Sylvester in 1851 [436], and probably 
also to Gauss. A famous determinantal identity presented by I. Schur 1917 
[404] was referred to as the formula of Schur by Gantmacher [180, p. 46]. 
The term Schur complement, which appeared in the sixties in a paper by 
Haynsworth [211] is therefore an apt appellation; see Chapter 0. 

Theorem 1.1 (Schur's Formula) Let M he a square matrix partitioned 
as in (1.1.1). If A is nonsingular, then 

det(M/yl) =: d e t M / d e t A. (1.1.4) 

Proof. Block Gaussian elimination gives the factorization 

A B \ _ ( I ^\ ( ^ B 
C D J ~ \ CA-^ ^ / V 0 ^- CA-^B 

The identity (1.1.4) follows by taking the determinant of both sides. I 

It is an immediate consequence of the Schur formula (1.1.4) that if A is 
nonsingular, then M is nonsingular if and only if M/A is nonsingular. 

Schur's formula may be used to compute characteristic polynomials of 
block matrices. Suppose A and C commute in (1.1.1). Then 

det(A/ - M) - det(A/ - A) det [(A/ - M)/{\I - A)] 

= det [(A/ - ^)(A/ -D)- CB]. 

The following useful formula, due to Babachiewicz (see Section 0.7), 
presents the inverse of a matrix in terms of Schur complements. 

Theorem 1.2 Let M he partitioned as in (l-l-l) and suppose hoth M and 
A are nonsingular. Then M/A is nonsingular and 

^ - [ -{M/A)-'CA-' {M/A)-' ) • ^^•^•^' 

Thus, the (2,2) block of M-^ is {M/A)-': 

(M-i)22 = {M/A)-' . (1.1.6) 

Proof. Under the given hypotheses, one checks that 

A B \ f I 0 \ f A 0 \ f I A-'B 
C D ) ' \ CA-^ ^ y V 0 M/A M o / 
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Inverting both sides yields 

M-^ = 
0 / ; V 0 M/A ) \ CA-^ I 

1 -A~^B \ ( A'^ 0 \ ( I 0 
0 I ) \ 0 [M/A)-^ ) \ -CA-^ I 

Multiplying out the block matrices on the right hand side gives the asserted 
presentation of M"-*̂ , from which the identity (1.1.6) follows. I 

In a similar fashion, one can verify each of the following alternative 
presentations of M~^ (see Sections 0.7 and 0.8): 

1 __ / {MID)-' -A-'B{M/A)-' \ . 
^^ ~ V -D-'C{MID)-' [M/A)-' ) ' 

^-' = { \ ' 0 ) + f ^ y ) WA)-^ {CA-' -1); ^ 0 0 J ' \ -I ^ 

and, if A, B^ C, and D are all square and have the same size 

! _ / {M/D)-' {C-DB-'A)-' 

^^^ ~ \ {B-AC-^D)-^ (M/A)-i 

Comparing the (1,1) blocks of M~^ in these gives the identities 

{A-BD-^C)-^ - A-^ -^ A-^B{D -CA-^B^CA-^ 

= -C-^D{B-AC-^D)-^ 

= -{C-DB-^A)-^DB-^ 

= C-^D{D-CA-^B)-^CA-^ 

= A-^B{D - CA-^B)-^DB-^ 
provided that each of the indicated inverses exists. 

Of course, the Schur complement can be formed with respect to any 
nonsingular submatrix, not just a leading principal submatrix. Let a and 
(3 be given index sets, i.e., subsets of {1, 2 , . . . , n}. We denote the cardinal­
ity of an index set by |a| and its complement by a^ = {1, 2 , . . . , n} \ a. Let 
A [a, /?] denote the submatrix of A with rows indexed by a and columns in­
dexed by /?, both of which are thought of as increasingly ordered sequences, 
so the rows and columns of the submatrix appear in their natural order. 

We often write A[a] ioi A[a, a], li \a\ = \P\ and if A[a,/3] is nonsin­
gular, we denote by A/A [a, /3] the Schur complement of A [a, P] in A: 

AM[a, /3]^^[a^/? '=]-A[a^/3]{^[a , /3] ) - l^[a , /3 '=] . (1.1.7) 
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It is often convenient to write Afa for Af A [a]. 
Although it can be useful to have the Schur complement in the general 

form (1.1.7), it is equivalent to the simpler presentation (1.1.1): there are 
permutations of the rows and columns of A that put A [a, /?] into the upper 
left corner of A^ leaving the rows and columns of ^ [a, /?̂ ] and A [a^,/?] in 
the same increasing order in A. If a = /3, the two permutations are the 
same, so there exists a permutation matrix F such that 

1̂  A\oi^,a\ A\a^\ 

Thus, 
{P''AP)IA\a\ = Ala. 

Schur's formula (1.1.4) may be extended to an arbitrary submatrix [18]. 
For an index set a — {ai , 0:2,. •., ock) C {1, 2 , . . . , n}, we define 

sgn(a) = ( - 1 ) ^ ? - "-Mfc+i)/2. 

The general form of Schur's formula is 

det A = sgn(a) sgn(/?) det A [a, /?] det [AjA [a, /?]) (1.1.8) 

whenever A [a,/3] is nonsingular. The proof is similar to that for a leading 
principal submatrix. Similarly, the analog of (1.1.6) for an {OL,(S) block is 

A-iK/?] = (AMr,a=] ) - \ (1.1.9) 

Although the Schur complement is a non-linear operation on matrices, 
we have {kA)loL — /c(A/a) for any scalar k, and (^ /a )* = A^/a. 

1.2 The quotient formula 

In 1969, Crabtree and Haynsworth [131] gave a quotient formula for the 
Schur complement. Their formula was reproved by Ostrowski [342, 343]. 
Other approaches to this formula were found in [99, 106, 422] and [165, 
p. 22]. Applications of the quotient formula were given in [107, 279, 88]. 

We present a matrix identity [471] from which the quotient formula 
follows. Let M be partitioned as in (1.1.1) and suppose A is nonsingular. 
If 5 == 0 or C == 0, then M/A = D and M/D = A] this is the case, for 
example, if M is upper or lower triangular. 

Theorem 1.3 Let 



22 BASIC PROPERTIES OF THE SCHUR COMPLEMENT CHAP. 1 

be conformally partitioned square matrices of the same size, suppose A, X, 
and U are nonsingular and k x k, and let a = {1, • • • ̂ k}. Then 

(LMR) /a = (L/a) (M/a) (R/a) = L [a"] (M/a) R [a^], 

that is, 

{LMR) I {XAU) = {L/X) {M/A) {R/U) = Z {M/A) W. 

Proof. First compute 

XAU XAV + XBW 
LMR = ^ y^^ ^ ^ ^ ^ y^y ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Then 

{LMR)/{XAU) - YAV-\-ZCV + YBW + ZDW 

-{YAU + ZCU){XAU)-^{XAV + XBW) 

= YAV + ZCF 4- YBW + ZL>W 

- ( y ^ + zc)A-^{Av + 5T^) 

= Zi:>14̂  - ZCA-^BW 

=: Z(D - CA-^B)W 

- Z(M/^)W. I 

The following special case of the theorem {R— I) is often useful: 

Corollary 1.1 Let M and Q be square matrices of the same size, let a 
denote the index set of a nonsingular leading principal submatrix of Q, 
suppose Q [a, a^] — 0, and suppose that M [a] is nonsingular. Then 

{QM)/a = Q[a']{M/a); 

if also Q [a*^] = I, then 
{QM)/a = M/a. 

In particular, if Q = A is diagonal, then 

(AM)/a = (A [a^]) ( M / a ) . 

Here are some other special cases and applications of the theorem: 

Case 1. Suppose X = U = L Then 

{LMR)/A = Z{M/A)W. (1.1.10) 
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Now let J denote a square matrix whose entries are all 1. li Z = W = J, 
(1.1.10) shows that the Schur complement of A in the product 

/ 0 \ f A B \ ( I V 
Y J ) \ C D )\{) J 

is 5J, where s denotes the sum of all entries of M/A. Of course, sJ is 
independent of Y and V and has rank 1. 

If W is nonsingular and Z = W'^, (1.1.10) shows that {LMR)/A is 
similar to M/A. Thus the eigenvalues of {LMR)/A can be obtained by 
computing those of M/A, and they do not depend on the choices of F , V, 
and the nonsingular matrix W. 

Finally, (1.1.10) shows that if a matrix N can be written as a product 
of a lower triangular matrix, a diagonal matrix, and an upper triangular 
matrix, say, Â  = CKU, then 

N/a^{C/a){K/a){U/a) 

is a factorization of N/a of the same form. 

Case 2. Suppose X = Z = U ^W -^L Then 

{LMR)/A = M/A. (1.1.11) 

A closely related fact is the familiar identity 

( 

y = 

' I 0\ ( A B \ f I -A-^B \ 
, - C ^ - i I )\C D ) \ 0 I ) ' ' 

= 0 (that is, i? = /) , then 

{LM)/A = M/A. 

(A 0 
" l̂  0 M/A 

(1.1.12) 

The identities (1.1.11) and (1.1.12) show that block Gaussian elimina­
tion for rows (columns) applied to the complementary columns (rows) of 
A does not change the Schur complement of A] i.e., type three elementary 
row (column) operations on the columns (rows) complementary to A have 
no effect on the Schur complement of A. We will use this important fact to 
prove the quotient formula. 

Case 3. Suppose M — I. Then LMR = LR is the product of a block 
lower triangular matrix and a block upper triangular matrix, and 

{LR)/a = {L/a){R/a) - L [a^] R [a^]. (1.1.13) 

A computation shows that for block lower triangular matrices Li and L2 

{L,L2)/a = {L,/a){L2/a), 



24 BASIC PROPERTIES OF THE SCHUR COMPLEMENT CHAP. 1 

and for block upper triangular matrices jRi and R2 

{R,R2)/a = {Ri/a){R2/a). 

As a special case of (1.1.13), for any k and lower triangular matrix R 

{LL*)la = {L/a){Lya) = (L ^ j ) (L [a^])*. (1.1.14) 

Any positive definite matrix Â  can be written as A' = LL* for some 
lower triangular matrix L. This is the Cholesky factorization of A", which 
is unique if we insist that L have positive diagonal entries. The identity 
(1.1.14) therefore provides the Cholesky factorization of the Schur comple­
ment N/a if we have the Cholesky factorization of A'. 

Although there does not seem to be a nice way to express {RL)/a in 
terms of R/a and L/a , one checks that 

{L''L)/a < {V/a){Lla). (1.1.15) 

Suppose T is a square matrix that has an L t/ factorization (this would 
be the case, for example, if every leading principal submatrix of T were 
nonsingular), and consider any nonsingular leading principal submatrix in­
dexed by a. Then (1.1.15) implies that 

{T''T)la < {Tya){T/a) (1.1.16) 

as follows: 

{T''T)/a = {U'^L*LU)/a 

= {Uya)[{L^L)/a]{U/a) 

< {Uya){Lya){L/a)iU/a) by (1.1.15) 

= (T* /a ) ( r / a ) by (1.1.13). 

Case 4. Suppose that 

U* 0 T D * ^ 
^ - ^ - I y * ^r>^ 

Theorem 1.3 tells us that 

{R*MR)la = {Rya){M/a){R/a). (1.1.17) 

Although there does not seem to be any general analog of (1.1.17) for 
{L*ML)/a, if M is positive definite, then 

{rML)/a < (L*ML) [a"] = {Lya)M K ] (L/a). (1.1.18) 



SEC. 1.2 THE QUOTIENT FORMULA 25 

More generally, let Â  be positive semidefinite and let T be the same 
size as N. If N [a] and T [a] are nonsingular, then 

{T*NT)/a < {Tya)N [a^] {T/a). (1.1.19) 

This can be proved using (1.1.18), with T written in the form 

I 0 \ f T{a) ^ \ 
^ I J \ 0 T/a J ' 

in which blocks of entries irrelevant to the proof are indicated by -k. 

Case 5. The fundamental identity 

{A/a)-^ = A-^[a'] (1.1.20) 

in Theorem 1.2 is useful in many matrix problems. For example, it is the 
key to showing that the class of inverse M-matrices is closed under Schur 
complementation [244]. If A has diU LU factorization, there is a nice proof 
using (1.1.13): Let A ^ LU so that A'^ = U-^L'^. Then 

{A/ay = {L[a^]U[a^]r' 

= {u[ar'L[a^]y' 

= U-^[a']L-^[a'] 

^ A-'[a^]. 

We now derive the Crabtree-Haynsworth quotient formula for the Schur 
complement. 

Theorem 1.4 (Quotient Formula) Let M, A, and E he given square 
nonsingular matrices such that 

Then A/E is a nonsingular principal submatrix of M/E and 

M/A = [M/E) / {A/E). 

Proof. Write 

. ( E F B, 
M=[ ^ ^^]^\ G H B, 

^ \Ci C2 D 
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and compute 

H - GE-^F ^ \ _ f A/E ^ 

Since A is nonsingular, so is A/E. Thus {M/E)/{A/E) is well defined. 
Now define 

L-l ^ ^ 
^ - ' -CA-' I 

M. 

The identity (1.1.12) ensures that M/E =^ M/E. On the other hand, 

and compute 

LM= \ (A 
\0 D-- CA-^B ) ~ -it 

F 
H 
0 

Bi 
B2 

M/A 

H B2 \ ( G \ ^_i 

A/E B2-GE-^Bi 
0 M/A 

so {M/E)/{A/E) = M/A and we have the desired formula. I 

The quotient formula may also be derived from Theorem 1.3 directly by 
taking 

and 

Theorem 1.3 ensures that {LMR)/E = M/E. A computation shows that 

^ ^ ^ ^ - V 0 {LMR)/E ; ~ V 0 M/E ) ^ ^^^ ~[ 0 A/E 

It follows that 

iLMRmXAU)^^^^ M % ) / ( ? ^ / ^ ) - W £ ; ) / ( A / E ) . 

On the other hand, Z{M/A)W = M/A^ so we again have the formula. 
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1.3 Inertia of Hermitian matrices 

The inertia of an n x n Hermitian matrix A is the ordered triple 

ln{A) = {p{A), qiA), z{A)) 

in which p(A), q{A), and z{A) (or TT, U, 5 in Section 0.10) are the numbers 
of the positive, negative, and zero eigenvalues of A, respectively (including 
multiplicities). Of course, rank (A) — p{A) + q{A). 

By In(^) > (a, 6, c) we mean that p{A) > a, q{A) > 6, and z{A) > c. 
The inertia of a nonsingular Hermitian matrix and its inverse are the 

same since their (necessarily nonzero) eigenvalues are reciprocals of each 
other. The inertias of similar Hermitian matrices are the same because 
their eigenvalues are identical. The inertias of *-congruent matrices are 
also the same; this is Sylvester ^s Law of Inertia. 

Theorem 1.5 (Sylvester's Law of Inertia) Let A and B benxn Her­
mitian matrices. Then there is a nonsingular n x n matrix G such that 
B = G*AG if and only if In {A) = In {B). 

Proof. The spectral theorem ensures that there are positive diagonal ma­
trices E and F with respective sizes p{A) and q (A) such that A is unitarily 
similar (*-congruent) to Ee( -F)eO^(A) . With G = E'^^'^^F-^^'^^I^^A)^ 

compute G* {E © {-F) 0 Z) G = Ip^A) © {-Iq{A)) © 0^(A).The same argu­
ment shows that B is *-congruent to Ip{B) ® {—Iq(B)) © ^Z(B)' If ^^ (^) = 
In (B)^ transitivity of *-congruence implies that A and B are *-congruent. 

Conversely, suppose that A and B are *-congruent; for the moment, 
assume that A (and hence B) is nonsingular. Since A and B are *-congruent 
to y = Lp(A)^{-Iq{A)) and W = Ip{B) ®{—Iq{B))^ respectively, the unitary 
matrices V and W are also *-congruent. Let G be nonsingular and such 
that V — G*WG. Let G — PU be a (right) polar factorization, in which 
P is positive definite and U is unitary. Then V = G'^WG = If'PWPU, so 
P~^ {UVV) — WP. This identity gives right and left polar factorizations 
of the same nonsingular matrix, whose (unique) right and left unitary polar 
factors UVU'' and W must therefore be the same [228, pp. 416-417]. Thus, 
W — UVU*, so W and V are similar and hence have the same sets of 
eigenvalues. We conclude that p{A) — p{B) and q{A) — q{B), and hence 
that In(A) = In(^). 

If A and B are *-congruent and singular, they have the same rank, so 
z{A) = z{B). Thus, if we set Ai = Ip{A) © {—Iq{A)) and Bi = Ip{B) ® 
{—Iq{B))-> the nonsingular matrices Ai and Bi are the same size and Ai 0 
O (̂̂ ) and Bi 0 ^Z{A) are *-congruent: Ai 0 OZ{A) = G* (Bi 0 OZ{A)) G for 
some nonsingular G. Partition G — [Gij]^ -̂ ^ conformally with Ai ^OZ(A)-
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The (1,1) block of the congruence is Ai = GliBiGn. This means that Gn 
is nonsingular and Ai is *-congruent to Bi. The singular case therefore 
follows from the nonsingular case. I 

The key point of the preceding argument is that two unitary matrices 
are *-congruent if and only if they are similar. This fact can be used to 
generalize Sylvester's Law of Inertia to normal matrices; see [236] or [246]. 

We can now state the addition theorem for Schur complements of Her-
mitian matrices, which, along with other results of this section, appeared 
in a sequel of E. Haynsworth's publications [211, 212, 213]. 

Theorem 1.6 Let A be Hermitian and let An be a nonsingular principal 
submatrix of A. Then 

ln{A)=ln{An) + ln{A/An)-

Proof. After a permutation similarity, if necessary, we may assume that 

A={ ^ " ^}' ] and we define G^( l " ^ i s ^ u 
A21 A22 I 0 / 

Then 

G*AG=[ ^ - ^;^^^ ) , (1.1.21) 

SO cr(G*AG) = a [All) {Ja{A/Aii) (with multiplicities). Since ln{A) = 
In(G*^G), the conclusion follows from Sylvester's Law of Inertia. I 

For any Hermitian matrix A and any index sets a and (3 it is clear that 

In(^) >ln{A[a]) 

and 
In(^) > (maxp(^[a]), max g(A [/?]), 0). (1.1.22) 

Q: /3 

Suppose A has a positive definite principal submatrix A [a] of order 
p. If it also has a negative definite principal submatrix of order g, then 
(1.1.22) ensures that In(.A) > (p, g, 0). In particular, if A[a] > 0 and 
A [a^] < 0, then In(^) = {p, n — p, 0). In order to prove a generalization 
of this observation, we introduce a lemma that is of interest in its own 
right. For a normal matrix A with spectral decomposition A = UAU*, 
where U is unitary and A = diag (Ai, • • • , A^) is diagonal, \A\ — U |A| [/* = 
L^diag (|Ai| , • • • , |An|) L̂ *, which is always positive semidefinite. Of course, 
A is positive semidefinite if and only if \A\ = A. 
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Lemma 1.1 Let P be m x m and normal, let Q he nxm, and let 

M--

Then 

Q 
P 

rank (M) = rank (|P| + Q*0). 

As a consequence, \P\ + Q*Q is positive definite i / rank(M) = m. 

Proof. Let A = UKV be a spectral decomposition of A and suppose 
A = Ai 0 0, in which Ai is nonsingular; partition QU — {{QU)i, {QU)2) 
conformally with A. Then 

rank (M) = rank 

Theorem 1.7 Let A = [Aij]^ .^-^ be a partitioned nx n Hermitian matrix. 
Suppose that its leading principal submatrix An is k x k and positive defi­
nite, and that A22 is negative semidefinite. If the last n — k columns of A 
are linearly independent, then A is nonsingular and 

ln{A) = {k, n~ k, 0) . 

Proof. Let S be nonsingular and such that S^AnS = Ik] let 

P 
S 0 
0 / 
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The last n — k columns of 

Ik 5*Ai2 

are also linearly independent, and, by Sylvester's Law of Inertia, In(A) = 
I n ( P M P ) == In(4) + In {{P*AP) /h)- Lemma 1.1 ensures that the Schur 
complement - {P^'AP) /h = -^22 + (5'*.4i2)* {S*Ai2) is positive definite, 
so ln{A) = {k, 0, 0) + (0, n - /c, 0) = {k, n- k, 0). I 

The next theorem gives information about the inertia of bordered Her­
mit ian matrices. 

Theorem 1.8 Let A be an n x n Hermitian matrix partitioned as 

in which c is a row vector with n — 1 complex entries and a is a real scalar. 
Suppose thatln{B) = (p, g, z). Then 

ln{A) > (p, q, z-1). 

If, in addition, z{A) = z — 1, then 

In(A) = ( p + l , g + 1 , z-1). 

Proof. Let the eigenvalues of P be /3i > P2 ^ • • * ̂  /?n-i and let the 
eigenvalues of A be a 1 > 0̂ 2 > - - • > ctn- The Cauchy eigenvalue interlacing 
theorem ([230, Theorem 4.3.8] or [468, p. 222]) ensures that 

C^^>/3^><^^+l, i = 1, 2, . . . , n - 1. 

Since p{B) = p, we have 

ai> Pi> 0, z = 1,2,.. . ,p and ap+i > pp+i = 0 

and since q{B) = q^ we have 

0 > f3i> a^+i, z = ]9 + z + l , . . . , n - l and 0 = Pp^z > o^p+z+i-

Thus p{A) > p and q{A) > q. In addition, 

0 = Pi>a^^l> (3i^i=0, i=p+l,...,p+ z-1 

so A has at least z — 1 zero eigenvalues. If A has exactly z — 1 zero eigen­
values, then we must have a^+i > pp-^i = 0 and 0 = Pp-^z > c^p+z+i, so 
p{A) = p -f 1 and q{A) = g -h 1. I 

Repeatedly applying Theorem 1.8 yields the following 
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Theorem 1.9 Let A be an n x n Hermitian matrix and let B be a k x k 
principal submatrix of A. Then 

p{A) > p{B) and q{A) > q{B). 

If z{A) - z{B) =d>0, then 

d<n-k, p{A) > p{B) + d and q{A) > q{B) + d. 

If d = n — k, then 

ln{A) = {p{B) +n-k, q{B) +n-k, z{B) -n + k). 

If A is nonsingular, then z{B) = n — k and 

In(A) = {p{B) -{-n-k, q{B) ^n-k, 0). 

Let A and B be square matrices of orders n and ra, respectively, with 
n > m. If there is a solution X of rank m of the homogeneous linear 
matrix equation AX — XB = 0, it is known that the m eigenvalues of B 
are also eigenvalues of A. The following theorem exhibits a matrix (a Schur 
complement) whose eigenvalues are the remaining n — m eigenvalues of A. 

Theorem 1.10 Suppose that n > m and let A e C^""^ and B G C ^ ^ ^ . 
Let X G C^^"^ be such that AX — XB, partition X and A conformally as 

and assume that Xi is m x m and nonsingular. Let 

Then 

C . ( - ; - ) . (1.1.24) 

a{A)^a{B)\Ja{ClXi). 

Proof. Let 

1̂ 0 \ . .u„. c-i _ ( xr' 0 s ^ i xl 7 j «°t̂ t̂ ^~' = y-x,xr' I 
The equation AX = XB ensures that AS = A{X, ^) = {AX, ^) = {XB, ^), so 

AS = 
XiB Ai2 
XoB A 22 
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and 

^''^^=[ 0 A22-xlx^'A^2)• 

Since A22 — X2X]^^A12 = C/Xi, we have 

a{A) - a (S-^AS) = a{B) U a{C/Xi). I 

If AX — XB and rank(X) = m but the first m rows of X are not 
independent, let P be a permutation matrix such that the first m rows of 
PX are independent. Then {PAP^){PX) = {PX)B and we can apply 
the preceding theorem to PAP'^, B, and PX. 

As an application of Theorem 1.10, suppose that A has m linearly in­
dependent (column) eigenvectors x i , . . . , Xm corresponding, respectively, to 
the not-necessarily distinct eigenvalues A i , . . . , A^. Let X — ( x i , . . . , x^^). 
Then 

AX-=Xdiag(Ai , . . . ,A^) , 

so diag(Ai,. . . , A^) plays the role of B in the preceding theorem. Partition 
X as in the theorem and suppose that X\ is nonsingular. If C is defined 
by (1.1.24), then G[A) = {AI, . . . , A ^ } U CJ (C/Xi) . 

We now turn our attention to skew block upper triangular matrices. 

Theorem 1.11 Let A e C^x"^ be Hermitian, B e C'^'''' have rank r. Let 

A B 
. B* 0 

Then In(M) > (r, r, 0). IfB is nonsingular, then In(M) = (m, m, 0). 

Proof. Let C and D be nonsingular matrices such that 

CBD = 

Partition 

and compute 

CAC* 

C 0 \ f A B \ [ C" 
0 D"" ) \ B"" 0 

Ir 
0 

El 

E*2 

0 
D 

M 
oj-
E2 \ 
E3 J 

f El 

V r E*2 
Ir 

\ 0 

E2 
E3 
0 
0 

Ir 
0 
0 
0 

M 
0 
0 

oy 
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which is block permutationally ^-congruent to 

N = 

f El Ir E2 0 \ 
Jr 0 0 0 
E^ 0 ^ 3 0 

V 0 0 0 0 y 

Let 

K 
E\ Ir 
Ir 0 

denote the upper left 2 x 2 block of N and conapute 

K-^ = 
I -El 

a n d N/K •• 
E3 0 
0 0 

Thus, 

In (M) = In(Ar) = In(Ji:) + In(JV/K) -= In ( ^^ ^^ ) + In 
E3 0 
0 0 

Let El = UAU* be a spectral decomposition, with A = diag(Ai, • • • , Ar) 
and all Xi real. Then 

U* 0 
0 Ir 

El Ir 
Ir 0 

U 0 
0 /,. 

A Ir 
Ir 0 

is permutat ion similar to 

Ai 1 
1 0 

A^ 1 
1 0 

(1.1.25) 

The eigenvalues of the zth direct summand in (1.1.25) are f Â  ± A/A? + 4 j / 2 , 

of which one is positive and one is negative. Thus, 

In 
El Ir 
Ir 0 

- (r, r, 0) 

and hence In (M) > (r, r, 0). 

If B is nonsingular, then m = n = r and In (M) = (m, m, 0). 

We note that the inertia of a general matr ix is studied in [109, 344]. 
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1.4 Positive semidefinite matrices 

In this section we present some elementary matrix inequalities involving 
positive semidefinite matrices; more advanced results are in the later chap­
ters. A fundamental and very useful fact is an immediate consequence of 
Theorem 1.6. 

Theorem 1.12 Let A he a Hermitian matrix partitioned as 

in which An is square and nonsingular. Then 

(a) A> 0 if and only if both An > 0 and A/An > 0. 

(b) A > 0 if and only if An > 0 and A/An > 0. 

Thus, if A > 0 and An > 0, then A/An = A22 - Al2A^^Ai2 > 0, so 
A22 ^ A/An- Consequently, 

det A22 > det{A/An) = (det A) / (det An) > 0, 

which (after a continuity argument) proves 

Theorem 1.13 (Fischer's Inequahty) Let A be a positive semidefinite 
matrix partitioned as in (LI.26). Then 

det A < (de ta i l ) (det A22) • 

Since det A = det An det A/An and det An > (det A) / (det A22), there 
is a reversed Fischer inequality if A22 is nonsingular (for example, if A is 
positive definite): 

det {A/An) det{A/A22) < det A. 

As an application of the Fischer inequality, we give a determinantal 
inequality. Let A, 5 , C, D be square matrices of the same size, so that 

A B \ f A* C ' * \ / AA* + 5 5 * AC* + BD'' \ 
C D J \ B* D"" J ~ \ CA"" H- L>5* CC* -f DD* ) -

Then 

det( ^ ^ " j l <de t (AA*+55*)de t (CC* + L>J9*). 
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If A and C commute, then 

I det(^i:> - CB)\^ < det(AA* + ^ 5 * ) det(CC* + DD""). 

The Fischer inequahty and an induction gives the celebrated Hadamard 
inequality. 

Corollary 1.2 (Hadamard's Inequality) Let A — (a^j) he an n x n 
positive semidefinite matrix. Then 

detA < ail' • 'Cinn 

with equality if and only if either A is diagonal or has a zero main diagonal 
entry (and hence a zero row and column). 

We next study the Schur complements of some elementary functions 
applied to positive semidefinite matrices. It is known that 

A^ [a] > {A [a])^ A ' / ^ [a] < {A [a])'^^ A'' [a] > {A [a])'^ (1.1.27) 

if A is positive semidefinite; see [17] or [468, p. 177]. If we replace subma-
trices by Schur complements, the inequalities in (1.1.27) are reversed. 

Theorem 1.14 Let A he positive definite and a he a given index set. Then 

A^/a<{A/af, (A/a) ' /^ < A^/Vc^, A " V a < ( A / a ) " ' . 

Proof. The assertion for the inverse follows from the inverse part of (1.1.27) 
and two applications of (1.1.9): 

( A / a ) - ' = A-^ [a^] > {A [a^])"' = {A/a^Y^ 

= ((A-Va^)-y = A-V̂ . 
For the square, we follow the same steps and use the fact that the inverse 

function reverses the Lowner partial order: 

A > = ({AY'[a^])'" = {{A-')'[a'^])'" (1.1.28) 

< {A-'[a^])-'={{A-'[a^]y'y = {A/af. 

Replacing A with A^/^ in (1.1.28) gives A/a < (A^/^/a)^; using the fact 
that the square root preserves the Lowner partial order then gives the 
asserted inequality for the square root: (A/a)^/^ < A^/^/a. I 
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ŷ * 

'\X + Y) 

Y 
Y*B-'^Y 

36 BASIC PROPERTIES OF THE SCHUR COMPLEMENT CHAP. 1 

Theorem 1.15 Let A and B be n x n positive definite matrices, and let 
X and Y be n x m. Then 

X^'A-^X 4- y^B-^Y > (X + y)* {A 

Proof. Let 

^={x* X*A-^x) ^̂^ ^ = 
Theorem 1.12 (b) ensures that M and A/", and hence M -\- N^ are positive 
semidefinite. The Schur complement of A + 5 in M + Â  is 

(M + N)/{A + B) = X M - ^ X + Y'^B'^Y - (X -f YY{A + B)'^ {X + Y), 

which Theorem 1.12 tells us is positive semidefinite. I 

Theorem 1.15 can be found in [213]. It extends a result of M. Marcus 
[294] from vectors to matrices. The equality case was studied by Fiedler and 
Markham in [167] and the analogous inequality for the Hadamard product 
was proved in [297, 299, 453, 226]. The next theorem [468, p. 189] illustrates 
again how identities involving the inverse and Schur complement can be 
used to obtain matrix and determinantal inequalities. 

Theorem 1.16 Let A, B, and X be n x n matrices. Then 

AA* -f J55* = {B-h AX) {I + X*X)"^ {B + AXy (1.1.29) 

-\-{A- BX*) {I + XX*)~^ {A - BXy . 

Proof. Let 

/ X * \ / / 5* A / / + X*X 5* + X M * 
B A J \ X A"" J ~ \ B + AX AA*-{- BB"" 

First assume that A — BX* is nonsingular, so P is nonsingular and 

/ 5* V V / X* 
X A* y \ B A 

I + 5*(A* - X 5 * ) - i X -5*(A* - X^*) -^ 
- ( A * - X 5 * ) - i X ( A * - X 5 * ) - ^ 

/ + X*(A - BX'^y^B -X*(A - 5 X * ) - i 
- ( A - BX'^y^B {A - ^ X * ) - i 

Compute the (2,2) block of this product and use (1.1.6) to get the identity 

( P / ( / + X*X))~^ = (A* - X5*)-^XX*(A - 5X*)-^ 

+(A* - X5*)-H^ ~ ^x*)-i 
- (A* - XB*)-\I + XX*)(A - 5 X * ) - \ 
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Taking the inverse of both sides gives 

P/{I + X*X) = {A- BX''){I + XX*)-^(A* - X5*) . 

On the other hand, we can compute directly the Schur complement of 
/ + X*X in P : 

PI {I -f x*x) = A^* + 5B* - (B + AX){i + x*x)-^ (B + Axy. 
The asserted identity results from equating these two representations for 
P / ( / + X*X). 

li A — BX* is singular, the desired equality follows from a continuity 
argument, that is, replace A with A-{- si and let £ -^ 0. I 

Since both summands on the right hand side of (1.1.29) are positive 
semidefinite, we obtain an inequality by omitting either of them, e.g., 

^ ^ * + 5 5 * > (P + .4X)(/ + X*X)-^(P + ^X)* , 

which implies the determinant inequality 

det(AA* + BP*) det(/ + X*X) > \ det{B + AX)\^. 

1.5 Hadamard products and the Schur complement 

The Hadamard product (Schur product) of matrices A = {aij) and B — (bij) 
of the same size is the entrywise product 

Ao B = (aijbij). 

Unlike the ordinary matrix product, Ao B = B o A always. The identity 
for the Schur product is the matrix J , all of whose entries are 1. 

The Hadamard product of two Hermitian matrices is evidently Hermi-
tian; it is positive semidefinite if both factors are positive semidefinite, and 
it is positive definite if one factor is positive definite and the other is pos­
itive semidefinite and has positive main diagonal entries (in particular, if 
both factors are positive definite). Proofs of these basic facts can be ap­
proached by writing each factor as a positive linear combination of rank 
one matrices and using bilinearity [228, Section 7.5], or by recognizing that 
the Hadamard product is a principal submatrix of the Kronecker product 
(tensor product) A^B [230, Section 5.1]. We shall focus on the Schur 
complement and the Hadamard product. For the Schur complement of the 
Kronecker product of matrices, see [286]. 

Schur complements can be useful in discovering and proving matrix 
inequalities involving Hadamard inequalities; after a preliminary lemma, 
we illustrate this principle with several examples. 
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Lemma 1.2 If A and B are n x n positive semidefinite matrices, then 

det{A + B) > d e t ^ + de t^ . (1.1.30) 

If A is positive definite, then equality holds if and only if B — 0. 

Proof. To establish the inequality, suppose A is positive definite and let 
C = A-i/2i?A-V2, Then C > 0, det C = (det B) /de t A, and 

det{A + B) = d e t ( ^ i / 2 ( / + A-i /25A-i /2)ylV2^ 

= (de t^ ) (de t ( / + C)) 
n 

= (det A) J]A, (/ + C) 
i=l 

n 

= (detA)[J(l + Ai(C)) 

> (detA)(l + t r C + detC) 

> (det A) (1 + det C) = det A + det B. 

The last inequality is an equality if and only if t r C = 0, that is, C = 0, 
since C is positive semidefinite, while C = 0 if and only if B = 0. The 
inequality (1.1.30) for a general A>0 follows by a continuity argument. I 

We now present an analog of (1.1.30) for Hadamard product [298, 341]. 

Theorem 1.17 (Oppenheim's Inequality) Let A = {aij) and B be nx 
n positive definite matrices. Then 

det {Ao B) > (ail • • • cinn) det B 

with equality if and only if B is diagonal. 

Proof. We use induction on the order of A and B. The case n — 1 is 
obvious. Assume that n > 1 and that the assertion is true for all positive 
definite matrices of order less than n. 

Partition A and B conformally as 

A={ ""'} ? \ and B=( ^'' ^ 
ot" A22 V P" B: 522 

in which A22 and B22 are of order n —1. Let A = a^la^a and B = b^iP^p. 
Then A/an = A22 — ^ > 0 and B/hn = B22 — B > 0. A computation 
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reveals that 

A22 o {B/bii) + {A/ail) oB - A220 {B22 - ^ ) + (A22 -A}JOB 

= A220B22- A220B-VA220B - AoB 

= A22 o B22 - Ao B 

= {AoB)/{aiibii). 

Using Lemma 1.2 and the induction hypothesis, it follows that 

det(A oB) = aiibii det [{A o B)/{aiibii)] 

= aiibn det[yl22 o {B/bn) + (A/an) o B] 

> aiibn det[yl22 o {B/bn)] + anbn det[(^/aii) o B] 

> aiibiidet[A22o{B/bii)] 

> anbn {a22 • • • ann) dei{B/bii) 

= {an •' -ann) d e t 5 . 

If det{AoB) = (ail • • • a^n) det B, then each of the preceding three inequal­
ities is an equality. In particular, 

det[^22o(5/6ii) + (A/ai i)o^] - det[A22o(5/6ii)]+aii6ii det[(A/aii)o^], 

so the case of equality in Lemma 1.2 ensures that {A/an) o B = 0. But 
A/an is positive definite, so all its main diagonal entries are positive. We 
conclude that B = 0 and the induction is complete. I 

Combining the Oppenheim inequality and the Hadamard determinantal 
inequality (and a continuity argument) shows that for any n x n positive 
semidefinite matrices A and B, 

det(AoB) > detyldet^ . 

Theorem 1.18 Let A and B be n x n positive definite matrices, and let 
e G C^"-^ denote the column vector all of whose entries are 1. Then 

A-^oB-^ > {AoB)~\ 

AoA-^ >I, 

and 
AoB > {e'^A-h)~^B. (1.1.31) 

Proof. Define the Hermitian matrices 

A=(j / _ i ) and S = ( f /_! 
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Then AjA = A"^ - lA'^I = 0 and B/B = B'^ - IB'^I = 0, so Theorem 
1.12 ensures that both A and B are positive semidefinite. Thus, 

AoB 
I A-^oB-- 4 ° ^ - . . . - i . R - i 

is positive semidefinite and 4̂ o ^ is positive definite. Theorem 1.12 now 
ensures that (AoB)/ {AoB) = A'^ o B'^ -{Ao B)~^ > 0, that is, 

A-^oB-^ > {AoB)~\ 

Now define 

\ I A 

Then C is positive semidefinite, as is 

Let A o A~^ = UAU* be a spectral decomposition of A so that A = 
diag(Ai, • • • , An) is positive diagonal. Then 

U oVfAoA-^ I \fU 0 \ ^ f A I 

0 u ) \ I AoA-^)\0 U ) ~ \ I A 

is positive semidefinite and permutation similar to 

Ai 1 \ / An 1 

1 A J ® - - - ® ( r A„ 
Since each direct summand is positive semidefinite if and only if each Â  > 1, 
(1.1.32) implies that A > / and hence that AoA-^ = [/AC/* > C//C/* = / . 

For the last assertion, consider 

\ ee^ [e^A~^e) ee^ 

Then V/A — (e^A~^e) ee^ — ee^A~^ee^ = 0, so Theorem 1.12 ensures that 
P > 0 and hence that 

AoB I 
I {e'^A-^e) B - i 
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is positive semidefinite. A final application of Theorem 1.12 tells us that 

{VoB)/ {{e^A-^e) R-^) ^AoB- {e^A'^e) ~^B>0, 

which is the desired inequality. I 

The inverse inequalities on the Hadamard product in Theorem 1.18 are 
well known; see [243] and [30]. 

1.6 The generalized Schur complement 

In the definition (1.1.7) of the Schur complement, we assumed that the 
submatrix A [a] is square and nonsingular. We now introduce generalized 
inverses and allow A [a] to be an arbitrary submatrix. A generalized inverse 
for a given mxn matrix M is an n x m matrix M~ (not necessarily unique) 
such that MM~M — M. Of course, if M is square and nonsingular, its 
only generalized inverse is the ordinary inverse. 

Two basic properties of a generalized inverse are: 

M = M{M*M)-{M*M) (1.1.33) 

and 
M* = {W M){M''M)-M\ (1.1.34) 

If an m X n matrix M has rank r, there are always nonsingular matrices 
P and Q such that 

A 0 

and A is r X r and nonsingular; in fact, we may even take A = Ir- The set 
of all generalized inverses of M is then 

| Q - ' ( \ ' ^ ] P-^ :X,Y, Z arbitrary! . 

The generalized inverses are closely related to column space inclusions. 
The matrix MM~ acts on a matrix N like an identity matrix, that is, 

MM'N = TV, 

if and only if the column space of N is contained in that of Af, which we 
denote by C{N) C C(M). It is known that two matrices M and TV have the 
same sets of generalized inverses if and only if M = A .̂ Also, it is known 
that for nonzero X and Y", XM~Y is the same matrix for every choice of 
generalized inverse M~ if and only if 

C{Y) C C{M) and C(X*) C C{lVr). 
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The preceding criterion can be formulated as a pair of set inclusions for null 
spaces (denoted by A/'(-)) since C{B) C C{A) if and only if J\f {A*) C A/'(5*). 

Because of its intimate connection with regression and least squares, 
perhaps the best known generalized inverse is the Moore-Penrose general­
ized inverse A^, which is the unique matrix X such that 

AX A = A, XAX = X, {AXy = AX, {XAy - XA. (1.1.35) 

If 

is a singular value decomposition of A, in which S is positive diagonal and 
U and V are unitary, then 

We now use the Moore-Penrose inverse to define the Schur complement. 
Let Ahe SiU m X n matrix, and let a and /? be subsets of {1, 2 , . . . , m} 

and {1, 2 , . . . , n}, respectively. The Schur complement oi A[a, f3] in A is 

A/A[a , /? ] -A[a^ /3^] -A[a^ /? ]A[a ,^ ]^A[a , /3^] . (1.1.36) 

It is usually convenient to think of A [a, f3] as being in the upper left cor­
ner of A (not necessarily square), a placement that can always be achieved 
with suitable row and column permutations, that is, with permutation ma­
trices P and Q such that 

li a — p and m = n, A [a, /3] is a principal submatrix of A and P = Q^. 
In order to consider replacing the Moore-Penrose generalized inverse in 

(1.1.36) with an unspecified generalized inverse, we would have to impose 
conditions sufficient to ensure that the generalized Schur complement ob­
tained in this way did not depend on the choice of the generalized inverse. 
This would be the case if the row space of A [a^,P] is contained in that of 
yl[a,/3] and the column space of A[a,/3^] is contained in that of A[a,/3]. 
For the standard presentation 
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if we assume that C{B) C C{A) and C(C*) C C(A*), then M/A = D -
CA'B is well-defined since the second term is independent of our choice of 
the generalized inverse. Therefore, 

/ {)\( A B \ ( I -A-B \ _ ( A 0 
-CA- I ) \ C D )\{) I y v O M/A 

and hence 
rankM = rank A + rank(M/A). 

If we impose no inclusion conditions on the row and column spaces, 
however, it is possible that rankM > rank A + rank(M/A). 

Row and column space inclusions of the type relevant to the generalized 
Schur complement arise naturally in the context of positive definite block 
matrices. 

Theo rem 1.19 Suppose M is positive semidefinite and partitioned as 

A B 
M — , 

. ^* C 

in which A and C are square. Then i) there is a matrix R such that B = 
AR; ii) C{B) C C{A), and Hi) B — AA~B. Also, iv) there is a matrix L 
such that B = LC; v) n{B) C 7^(C); and vi) B == BC-C. 

Proof. The first three stated conditions are equivalent; we consider just i). 
Since M > 0, it has a unique positive semidefinite square root, whose 

columns we partition conformally to those of M. Let M^^^ = (5, T). Then 

M = ( M V 2 ) ' ^ ( M 1 / 2 ) * ( M 1 / 2 ^ 
5*5 S^'T 

Let 5 — XP be a polar decomposition, in which X has orthonormal 
columns and P is positive semidefinite. Then A — S'^S = P'^, so P = A}^!^ 
and B = S^'T = PX'^T = P^P^X^'T = A ( p t x * r ) . Thus, we may take 
i^ = p t x * T i n i ) . 

The second set of three conditions can be dealt with in a similar fashion 
by considering the second block row of M. I 

For any positive semidefinite block matrix M partitioned as in the pre­
ceding theorem, the Schur complements M/A = C — B"" A~B and M/C = 
A — BC'B'^ are well defined, so they may be computed using any general­
ized inverse. 

We now rephrase Theorem 1.12 in terms of a singular principal subma-
trix as follows [6]. 
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Theorem 1.20 Suppose M is Hermitian and partitioned as 

A B 

in which A and C are square (not necessarily of the same order). Then 
M >0 if and only ifA>0, C{B) C C{A), and M/A > 0. 

Proof. The previous theorem ensures the necessity of the three stated con­
ditions. To show that they are sufficient, observe that M/A — C — B*A~B 
is well defined since the condition C{B) C C{A) ensures the uniqueness of 
B*A~B. The matrix identity 

/ ^ \ f ^ ^\( ^ ~^~^ \ = ( ^ ^ 
-B'^A- I J \ B"" C J \ 0 I J ~ \ 0 C- B*A-B 

now ensures that M is positive semidefinite. I 

We now consider a generalized inverse analog of the representation 
(1.1.5) for the block form of the inverse, but only for positive semidefi­
nite matrices that satisfy a special rank condition. When we do not have 
positive definiteness, the situation is more complicated; see Chapter 6. 

Theorem 1.21 Suppose M is positive semidefinite and partitioned as 

in which A and C are square. Let 

^_( A^ + A'^B (MM)t B*A^ -A^B {M/A)^ \ .^ ^ „_. 

Then X = M^ if and only if rank M = rank A + rank C 

Proof. Denote the generalized Schur complement of A in M by M/A = 
5 = C - B*A^B. Use (1.1.33), (1.1.34), and (1.1.37) to compute 

vA^v _ ( A^AA^ +A^B(S^SS^)B*A^ -A^BiS^SS^ 
^ ^ ^ - ' - ( 5 t 5 5 t ) B * A t (5 t55t ) 

A^ +A^BS^B*A'i -A^BS^ 
-S^B*A^ S^ ' ^ ' 

MXM == M, 
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and 

MX^ 

XM = 

AA^ 0 
{I-SS^)B*A^ SS^ 

A^A A^B{I-S^S) 
0 S^S 

Thus, two of the four identities (1.1.35) tha t characterize the Moore-
Penrose inverse of M are satisfied. The remaining two identities in (1.1.35) 
are satisfied if and only if MX and XM are Hermitian, tha t is, if and only 
if A^B{I — S^S) = 0. Use the spectral decomposition theorem to write 

A = U 
0 0 
0 Ai 

U* and C = V 
A2 0 
0 0 v\ 

in which U and V are unitary, and Ai and A2 are positive diagonal. Then 

M 
A 

B* 
B 
C 

U 
0 

0 
V 

( 

\ 

0 
Ai 

V*BV 

V*B*U 
A2 
0 

\ 

/ 

u* 
0 

0 
V* 

Since a main diagonal entry in a positive semidefinite matr ix is zero only 
if the entire row and column in which it lies is zero, U*BV is a 2 x 2 block 
matrix in which three of the blocks must be zero, so we may write 

/ 

M = 

Let 

U 
0 

0 
V 

0 
Ai 
Bl 
0 

Ar = 

0 
5 i 

A2 
0 

Ai 
Bl 

0 
0 
0 
0 

Bl 

A2 

\ 
U* 
0 

0 
V* (1.1.38) 

denote the central 2 x 2 block matr ix in (1.1.38). Then A'' is positive 
semidefinite, r a n k M = rank A'', and the order of A'' is rank Ai + rankA2 = 
rank A + rank C. These two identities show tha t rank M = rank A + rank C 
if and only if N is nonsingular, tha t is, if and only if N is positive definite. 
Since Aj is positive definite, we see tha t N is positive definite if and only 
if r s N/Ki — K2- BlK'{^Bi is positive definite. 

Now compute 

S = C-B*A'^B 

= 7 
A2 
0 

0 Bl \ ( 0 0 
0 Q ) ^ ^ \ ^ ^ - 1 

^ 1̂  A2 - Bi*Ar^Bi 
V* = V 

0 Ai 

r 0 
0 0 

u*u 
0 0 

Bl 0 
V* 

V* 
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and 

Thus, 

and 

I-S^S=^I-V( ^^^ M F * = F / ' ^ ^^^ J )y* 

0 0 
A^^Bi (7 - r t r ) 0 = c/( , - 1 ^ / . ^.^x : W*. 

To conclude the proof, we must show that Bi (J — F^F) = 0 if and only 
if F > 0. Of course, F^F = / i f F > 0 , so one implication is clear. Now 
suppose that Bi (J — F^F) = 0. Then the range of / — F^F is contained in 
the null space of ^ i . But the range of /—F^F is the null space of F, so Fx = 0 
implies that Bix = 0, which implies that 0 = Fx = A2X—BlA^^Bix = A2X 
and X =- 0. We conclude that Bi (/ - F^F) = 0 only if F > 0. I 

It is possible to obtain an explicit expression for M^ without assuming 
the rank condition that rankM = rank A + rankC, but it is much more 
complicated than (1.1.37); see [192]. For more results on the generalized 
Schur complements and the discussions of generalized inverses of block ma­
trices, see [385, 300, 56,106,102,104,192] and [204]. Comprehensive survey 
articles on the Schur complement include [73], [128], and [345] . 



Chapter 2 

Eigenvalue and Singular Value 
Inequalities of Schur Complements 

2.0 Introduction 

The purpose of this chapter is to study inequahties involving eigenvalues 
and singular values of products and sums of matrices. 

In addition to denoting the m x n matrices with complex (real) entries 
by C^^'^ (R'^^'^), we denote by H^ the set of n x n Hermitian matrices, 
and for an A G H^, we arrange the eigenvalues of A in a decreasing order: 

Xi{A)>X2{A)>-'->Xn{A). 

The singular values of a matrix A G C^^"^ are defined to be the square 
roots of the eigenvalues of the matrix A* A, denoted and arranged as 

(Ji{A)>a2{A)>'-->an{A). 

For a set of subscript indices i i , Z2,..., i/c? we always assume that ii < 
2̂ < • • • < i/e- Furthermore, if A G M^, then Xit{A) indicates 1 < it < n. 

One of the most important results in matrix analysis is the Cauchy 
(eigenvalue) interlacing theorem (see, e.g., [272, p. 294]). It asserts that 
the eigenvalues of any principal submatrix of a Hermitian matrix interlace 
those of the Hermitian matrix. To be precise, if i7 G H^ is partitioned as 

\ B* D 

in which A is an r x r principal submatrix, then for each i = l , 2 , . . . , r , 

X,iH)>XiiA)>Xi+r,-r{H). 
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Eigenvalue and singular value problems are a central topic of matrix 
analysis and have reached out to many other fields. A great number of 
inequalities on eigenvalues and singular values of matrices are seen in the 
literature (see, e.g., [228, 230, 272, 301, 438, 452]). Here, we single some of 
these out for later use. 

Let A and B he n x n complex matrices. Let / be an integer such that 
1 < / < n. Then for any index sequence I <ii < • • • <ii < n^ 

-it+i{^)^ (2.0.1) 
t=i t=i 

I I I 

l[a,M)<^t{B) > llcJiMB) > n^i.(^)^n-m(^), (2.0.2) 
t = i t=i t=i 

and 

min {(Ti{A)aAB)}>(Jt{AB)> max {(Ji{A)(7AB)}. (2.0.3) 
*+j=t+ l i-\-j=t+n 

The inequalities on the product (J^) yield the corresponding inequalities 
on the sum (X^). This is done by majorization in the following sense. 

Let Xi, X2, . . . , Xn and 2/1, 2/2, • • •, 2/n be two sequences of nonnegative 
numbers in the order xi > X2 > • • • > x^ and yi > y2 > ''' ^ yn- Then 

U^i<Uyi^ k<^ => J2^i<J2yu k<n (2.0.4) 
i=i t=i i=i t=i 

and 
k k k k 

H^ii) <J2y(i)^ k<n=^ Yl^ii) ^ YlVii)^ k<n, (2.0.5) 
i=l t=l i=l t=l 

where X(i) < X(2) < • • • < X(n) and ?/(i) < ^(2) < • • • < y{n) are rearrange­
ments of xi, X2, . . . , Xn and ?yi, 2/2, • • •, /̂n, respectively. 

Translations from product to sum or vice versa are often done through 
(2.0.4) and (2.0.5). For example, by (2.0.2) and (2.0.4), we can get 

I I I 

Y,^iM)^t{B) > Y^aiMB) > Y^aiMW-w{B). (2.0.6) 
t=i t=i t=i 

We point out that all the above singular value inequalities remain valid 
when AB is changed to BA; even though cri{AB) 7̂  ai(BA) in general. 
Moreover they all hold with the replacement of the eigenvalues (A) by the 
singular values (a) when A and B are positive semidefinite. For instance, 

/ / 
J2Ki^B) > J2KXA)Xn-MiB). (2.0.7) 
t= i t= i 
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For the sum of Hermitian matrices, two existing parallel results are 

E K(A) + E Xt{B) > E Xu{A + 5) > E KXA) + E K-tMB) (2.0.8) 
t=l t=l t=l t = l t=l 

and 

min {Xi{A) + Xj{B)}>Xt(A + B)> max {Xi{A) + Xj{B)}. (2.0.9) 

All the above inequalities appear explicitly in Chapter 2 of [451]. We 
note that the second inequality in (2.0.8) does not hold in general for sin­
gular values (a) [451, p. 113]. 

2.1 The interlacing property 

The Cauchy interlacing theorem states that the eigenvalues of any principal 
submatrix of a Hermitian matrix interlace those of the grand matrix. Does 
a Schur complement possess a similar property? That is, do the eigenvalues 
of a Schur complement in a Hermitian matrix interlace the eigenvalues of 
the original Hermitian matrix? The answer is negative in general: Take 

Then H/a = (—3), while the eigenvalues of H are —1 and 3. 
In what follows, we show that with a slight modification of the Schur 

complement (augmented by Os) the analogous interlacing property holds. 

Theorem 2.1 Let H G H^ and let a be an index set with k elements^ 
1 < k < n. If the principal submatrix H[a] is positive definite, then 

Xi{H) > Xi{H/a^O) > Xi^k{H), i = 1,2,.. . ,n - ^, (2.1.10) 

and if H[a] is negative definite, i.e., —H[a] is positive definite, then 

Xi{H) > Xi^k{H/a © 0) > A,+fc(iY), i = 1, 2 , . . . , n - A:. (2.1.11) 

Proof. Since permutation similarity preserves the eigenvalues, we may 
assume that a = {n — A: H- 1 , . . . , n} . With a^ — {1, 2 , . . . ,n — A:}, we have 

^^(H/a 0 \ ^ / H[a-,a]{H[a])-'H[a,a-] ^ K ^ ] ^ ^ ^ ^ _ ^ . 
\ 0 0 J \ H[a,a^] H[a] J 

Let 

0 4 
p^ , In-k -H[a^,a](H[a])-' 
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Then P F P * = O0iJ[a], so F is positive semidefinite \i H[a] > 0. Moreover 

rank(F) = rank(iJ[a]) = k < n. 

Now using (2.1.10) and by (2.0.9), we have 

Xi^kiH) = Xi^k{E + F) < \i{E) + \k+i{F) = A, 

and 

\i{H) = \i{E + F)> Xi{E) + Xn{F) = X 

H/a 0 
0 0 

H/a 0 
0 0 

The inequalities (2.1.11) are proven in a similar manner. Note that if 
A is a Hermitian matrix, then Xi{—A) — — An-i+i(A), i = 1,2,..., n. I 

The theorem immediately yields the following results for positive semidef­
inite matrices; see [160, 288, 421]. 

Corollary 2.3 Let H (or —H) he an n x n positive semidefinite matrix 
and let H[a] he a k x k nonsingular principal suhmatrix, 1 < k < n. Then 

Xi{H) > Xi{H/a) > Xi+k{H), i = 1,2,.. . ,n - ^. (2.1.12) 

Proof. When H is positive semidefinite, H/a is positive semidefinite. It is 
sufficient to notice that Xi{H/a 0 0) = Xi{H/a) for i = 1, 2 , . . . , n — A:. I 

Corollary 2.4 Let H he annxn positive semidefinite matrix and let H[a] 
be a k X k nonsingular principal suhmatrix of H, 1 < k < n. Then 

Xi{H) > Xi{H[a']) > Xi{H/a) > A,+^(iJ), i = 1, 2 , . . . , n - A;. (2.1.13) 

Proof. Since H, H[a], and H[a^] are all positive semidefinite, we obtain 

Hla""] > iJ[a^] - H[a'',a]{H[a])-^H[a,a''] = H/a. 

The second inequality in (2.1.13) follows at once, while the first inequality 
is the Cauchy interlacing theorem and the last one is (2.1.12). I 

Corollary 2.5 Let H he an n x n positive semidefinite matrix and let a 
and a' he nonempty index sets such that a' d a d {1, 2 , . . . , n } . If H\oi\ is 
nonsingular, then for every i = l ,2 , . . . ,n— |a|; 

Ai(if/a') > A,(iJ[a 'Ua^]/a ') > A,(i//a) > A,+|,|_|„,|(iJ/a')- (2.1.14) 
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Proof. Note that H[a^] > 0 since it is a principal submatrix oi H[a] > 0. 
By the quotient formula on the Schur complement (see Theorem 1.4), 

H/a = {Hla')/{H[a]/a'). 

With H/a' and H[a]/a' in place of H and H[a], respectively, in Corol­
lary 2.4 and since (i//aO[c^1 = H[a' U a^]/a^ (2.1.14) follows. I 

For the case where H is negative definite, we have the analogs: 

\i{H) > \i{H/a) > \i {H[a']) > Xi^k{H) 

and 

Xi{H/a') > Xi{H/a) > Xi{H[a'U a']/a') > A,+,,|_,«.j(F/aO. 

As we saw, the Cauchy eigenvalue interlacing theorem does not hold for 
the Schur complement of a Hermitian matrix. We show, however, and inter­
estingly, that it holds for the reciprocals of nonsingular Hermitian matrices. 
This is not surprising in view of the representation of a Schur complement 
in terms of a principal submatrix (see Theorem 1.2). 

Lemma 2.3 Let H be an n x n nonsingular Hermitian matrix and let A 
be a k X k nonsingular principal submatrix of H, where 1 < k < n. Then 

Xi{H-^)>Xi[{H/A)-^]>Xi^k{H-'), i ^ 1,2,...,n-k. 

Proof. It is sufficient to notice, by Theorem 1.2, that [H/A)'^ is a principal 
submatrix of the Hermitian matrix H~^. I 

We now extend this to a singular H. That is, we show that if H is any 
Hermitian matrix and A is a nonsingular principal submatrix of H, then 
the eigenvalues of {H/A)^ interlace the eigenvalues of H^^. 

Let In(i7) = (p, q, z). The eigenvalues i7^ are, in decreasing order, 

f A;^I_,(F), ^-l , . . . ,p, 
Xi{H^)^ I 0, z = p + l , . . . , p + 2 , 

I Klp+z-^i-iW^ x - p + z + l , . . . , n . 

Since the eigenvalues of a matrix are continuous functions of the entries 
of the matrix, the eigenvalues of the Moore-Penrose inverse of a matrix are 
also continuous functions of the entries of the original matrix. 

To establish the interlacing property for any Hermitian H, we need to 
use the usual trick - continuity argument. Let H G Hn and H^ — H -\- eln^ 
where 5 is a positive number. Let Ahe dikxk nonzero principal submatrix 
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of H and denote A^ = A -\- elk- Choose e such that it is less than the 
absolute value of any nonzero eigenvalue of H and A. Thus iJ^, As, and 
He/Ae are all invertible. It follows that ifXs{H^) ^ 0 and Â  [{H/A)^ ^ 0, 

and 

limXs{H~') = Xs{H^) 

limA,[(iJ,M,)-i]=A,[(i7M)t]. 

Now we are ready to present the following interlacing theorem [421]. 

Theorem 2.2 Let H be an n x n Hermitian matrix and let A be a k x k 
nonsingular principal submatrix of H. Then for i == 1, 2 , . . . , n — /ĉ  

Ai(F^) > XiliH/A)^ > Xi+kiH^). (2.1.15) 

Proof. Let In(i7) = (p, q, z) and In(^) = (pi, qi, 0). Consequently, 
In(iJ/^) = {jp — pi, q — qi, z) by Theorem 1.6. Without loss of generality, 

we write H = (B-C)- ^®* 

fj -n^.T - ( ^ + '^'' ^ \ = f ^- ^ n,-u+ein-y ^ , C + sIn-k J ~\B* C, 

in which e is such a small positive number that both Hs and A^ are non-
singular. Note that h\{He) = (p 4- 2:, g, 0), ln{A£) = In(A), and also 
In(i^) = ln{K^) for any Hermitian matrix K. Moreover, upon computa­
tion, we have He/As = Cs - B^'A-^B, and thus lim£_o Hs/A^ = H/A. 

To show that Xi{H^) > Xi[{H/Ay] for z = 1, 2 , . . . , n — /c, we consider a 
set of exhaustive cases on the index i: 

Case (1) If i < p - pi, then Xi[{H/AY] > 0. By Lemma 2.3, 

Xi{H-')>Xi[{Hs/Ae)-']>0. 

The desired inequalities follow by taking the limits as e -^ 0. 

Case (2) If p - pi < i < p + 2, then Xi{H^)>0> Xi [{H/AY] . 

Case (3) If p + z < i < n — /c, then, by Lemma 2.3, 

0>K{H-')>Xi[{He/Ae)-']. 

By continuity, we arrive at 0 > Xi{H^) > Xi [{H/A)^. 
To establish the second inequality in (2.1.15), we proceed by exhausting 

the cases of the index i + A:: 
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Case (i) If i -\- k < p, i.e., i<p — k<n — k^ then, by Lemma 2.3, 
Xi[(Hs/As)~~^] > Xi^k{H~^) > 0. Letting e -^ 0 yields the inequalities. 

Case (ii) I f ^ + 1 <i-{-k<p-^z, then i<p — k-\-z<p — pi+z, so 
Xi[{H/Ay] > 0 and Xi+k{H^) = 0. The inequality then follow. 

Case (iii) I f p + z < i-f/c <p-\-k~pi-^z — p -\- qi ^ z < n, then 
i <p — pi^- z,so Xil^H/A)"^] > 0 and A^4_/c(i/̂ ) < 0 since i-^ k> p + z. 

Case (iv) lip-\-z < p-\-k—pi-\-z < i-\-k < n, ihenp—pi^z < i < n — k. 
By Lemma 2.3, 0 > Xi[{He/As)~^] > Xi^k{H~^). Letting s -^ 0 shows that 
0>Xi[{H/A)^>Xi+k{H^). I 

At the end of this section we note that the converse of the previous 
theorem is discussed by Hu and Smith in [235]. 

2.2 Extremal characterizations 

The Courant-Fischer min-max principles, or the extremal characteriza­
tions, of eigenvalues for Hermitian matrices play an important role in deduc­
ing eigenvalue inequalities. For instance, the representation of the minimum 
eigenvalue Amin (H) of a Hermitian matrix H eM^ 

Amm(^) = min{x*iJa; : x*x = 1} 

leads immediately to the eigenvalue inequalities: For A, B E H^ 

Amin (A -\-B)> An,in(A) + A m i n ( ^ ) . 

We now show extremal characterizations [280] for Schur complements. 

Theorem 2.3 Let H be annxn positive semidefinite matrix partitioned as 

Hii if 12 
H21 -^22 

where Hu is a k x k leading principal submatrix of H, 1 <k <n. Then 

HlHii = max {X : H - (0/e 0 X) > 0, X = X*} 

and 
H/Hn=^ min {Y : {YJr^-k)H{YJr^-kr}• (2.2.16) 

Proof. Let X be an (n — A:) x (n — k) Hermitian matrix and set 
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Since Hu is positive semidefinite, we have {H^( y = (iJJj)^/^. Since H is 
positive semidefinite, by Theorem 1.19, we have HIIH\^H\2 = ili2- Thus, 

\̂  0 7̂ 22 — X — H2iH^^Hi2 J 

So H > X ii and only if the matrix on the right-hand side is positive 
semidefinite, and this occurs if and only if H/Hn — X > 0. 

The maximum is attained when X — H/Hn due to the fact that 

(Q 0 \_(Hn H,2 V 
1̂  0 H/Hn J \ H21 H2iHl,H,2 ) ' 

To show the minimum representation (2.2.16), observe that 

(y, In-k)H{Y, In-kY = H/Hu + {Y + H2iHl,)Hn{HlHn + Y*). 

It follows that 
{YJn-k)H{YJn-kr>H/Hn. 

and equality holds if and only if 

(y + H2iHl)Hn{HlHi2 + Y^ = 0, 

equivalently, {Y + H2IHI^)HII = 0. One may take Y = -H2IH\^. I 

The following corollary will be used repeatedly in later sections. 

Corollary 2.6 Let H be n x n Hermitian. / / a = {l ,2, . . . ,A:}, then 

H/a^{Z,I)H{Z,iy 

and i / a = {A: + 1, /c + 2 , . . . , n} ; then 

H/a^{I,Z)H{I,Z)\ 

where, for both cases, 

As consequences of the theorem, we have, for positive semidefinite A^ B, 

{AicB)/a > Aja^BjOL, 

where a is an index set and ^ denotes sum + or the Hadamard product o. 
We now show a minimum representation for the product of the eigen­

values of a Schur complement [289]. Let integers / and k be such that 
^ ^^ '^ k < n. We consider the product of the eigenvalues of the Schur 
complement indexed by an increasing sequence \ <i\ <i2 "^ • - - '^H ^k. 
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Theorem 2.4 Let A be annxn positive semidefinite matrix partitioned as 

^ ^ / All Ai2 
V ^21 A22 

in which A22 is an (n — k) x [n — k) principal suhmatrix. Then 

I I 

Y\\iM/M2) = min TT A,J(4,Z)A(4,Z)*]. (2.2.17) 
t=l ^^^ t = l 

Proof. For any Z G C^x(^-^), by (2.2.16), we have 

{h^Z)A{h^ZY>AIA22 

which yields 

K[{h^z)A{h^zY]>x,MIM2) 
for each it, t= 1,2,. . . , / , and equality holds by setting Z = —^12^22- "" 

Putting / = 1 results in, for any t = 1, 2 , . . . , A:, 

Xt{A/A22) = min At[(4, Z ) ^ ( 4 , Z)*]. (2.2.18) 

In a similar fashion, one proves that for positive ^1, ^2, • • •, ̂ z ^ ^ 

E Ai,(A/A22)^t = min E XiA{h,Z)A{Ik,Zr]Ot 
t=i zec^^i-^-^) t=i 

= E min K[{h^Z)A{h^Zy]et. (2.2.19) 

2.3 Eigenvalues of the Schur complement of a product 

This section, based on [289], is focused on the eigenvalue inequalities of 
Schur complements concerning the product of positive semidefinite matrices 
that resemble those of Section 2.0. 

Theorem 2.5 Let A be n x n positive semidefinite. Let a C {1, 2 , . . . ,n} 
denote an index set and 1 < ii < - - - < ii < k = n — \a\, where I and k are 
positive integers such that 1 < I < k < n. Then for any B G C^^^^ 

\{K[{BAB^)la] > l[Xi,[{BBn/a]Xn-t^i{A), (2.3.20) 
t=i t=i 

I I 

l[Xt[{BABn/a] >l[Xi,\{BBn/a]Xr,-u+i{A), (2.3.21) 
t=i t=i 
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and 
I I 

l[XiA{BAB'')/a] <l[XiM)MiBBn/a]. (2.3.22) 

Proof. There exists an n x n permutation matrix U such that 

UAU* = ( f'^ • ^["Ifj ) , UBU* = ( ^f-\ ^[- : ' - ] \̂  yi[a,Q;̂ J A[a\ J \ B[a,a^\ B[a\ 

Let /3 - {A: + 1,... ,n}. Notice that for any P e C^^^, Q G C^^^, PQ and 
QP have the same nonzero eigenvalues. Using (2.2.17) and (2.0.2), we have 

t=i 

l[XiA{BAB*)/a] 
1 

/ 
= YlKiiUBAB'^Un/P] 

t=l 

I 

= YlXiA(UBU*UAU''UB'^U'')/f3] 
t=i 

I 

min n Xi^ [{Ik, Z)UBU^UAU'UB*U%Ik, Zy] 

min r r A,,[([/A/7*)[/^*C/*(4, ^)*(4, Z^BU""] 
"̂ fcX (n — k) -*- -*-

t = l 
I 

min TT Xn-M{UAU'')Xu [UB^U'^^h, ZY{h, Z)UBU^] 
^fcX(n, —fc) -*- -»-

t=l 
I 

min n An-m(A)A,,[(7fc, Z)UBU''UB''U\h, Zf] 

I 

= Y[Xn-t^i{A) min Xi,[{Ik,Z)UBB'U%h,Zr] 

I 

= l[Xn-t^i{A)Xi,[{UBB'Un/0] 
t=i 

I 
= l[Xi,\{BB*)/a]Xr,_t+,{A). 

This proves (2.3.20). (2.3.21) and (2.3.22) can be proved similarly. I 

^ec' t=i 

^ec • t=i 
I 
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An analogous result for (2.3.22) is 

l[K[{BAB*)/a] <l[xaBB*)/a]Xt{A). 
t=l t=l 

Setting B^Im (2.3.20), (2.3.22), and (2.3.21), respectively, we obtain 

/ / I 

t= i t=i t=i 

and 
I I 

l[Xt{A/a)>l[Xr^-u+iiA). 
t=l t=l 

Putting / = A: in Theorem 2.5 reveals the inequalities 

k k 

\{\n-t+i{A)det{{BB*)/a) < deti{BAB^)/a) < [ ] At(A)det((55*)/a). 
t=i t=i 

We point out that every matrix can be regarded as a Schur complement 
of some matrix. For instance, we may embed an n x n matrix A in 

A-( ^ ^ 

If we take a = {!}, then A/a — A. With this observation, many of our 
inequalities on the Schur complements reduce to certain existing results on 
regular matrices (without involving the Schur complements). 

Theorem 2.6 Let A be n x n positive semidefinite. Let a C {1, 2 , . . . ,n} 
denote an index set and 1 < ii < • - - < ii < k = n — \a\, where I and k are 
positive integers such that 1 <l < k < n. Then for any B G C^^"-

and 

J2K[iBAB*)/a] >Y,K[{BB*)/a]Xn-t+iiA), (2.3.23) 
t=l t=l 

I I 

J^MiBAB^/a] >J2Ki{BBn/a]Xr^-^,,^l{A), (2.3.24) 
t=i t= i 

/ / 

J2K,[iBABn/a] < J2KXA)Xt[iBB'')/a]. (2.3.25) 
t=i t= i 
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Proof. This follows from (2.0.4) immediately. Following is a proof based 
upon (2.2.19) and (2.0.7). We may take a = {A: + l , . . . , n } . Then 

t=i 

I 

I 

= min T^i,[AB*{h,ZY{h,Z)B] 

Z^Ckx(n-k) ^—^ 

I 

> min V An-t+i(A)A,J5*(4, Z)*(4, Z)B] 

I 

= r ? , ,E^-*+i(^)^^*[(4 ,^)55*(4 ,^)*] 
I 

^Y^Xn-t+i{A)K{iBB*)/a].M t = l 

The following is a parallel result to the inequality (2.3.25): 

/ I 

Y^KKBABn/a] < J2K[{BB*)/a]X,{A)-
t=l t=l 

Setting ^ = / in (2.3.23), (2.3.25), and (2.3.24), respectively, we obtain 

I I I 

J2>^n-t+i{A) <Y,K{Ala) < Y,K{A) 
t = l t=l t = l 

and 

^At (^ /a )>5^A„_i ,+ i (A) . 
t = l t=l 

Putting / = A; in Theorem 2.6, since (BAB*)/a is k x k, we have 

k k 

E At[(55*)/a]A,_t+i(A) < tr[(BA5*)/a)] < ^ A,[(55*)/a]At(A). 
t=i t=i 

Theorem 2.7 Let A he an n x n positive semidefinite matrix and let a he 
an index set of k elements. Then for any B G C'^^^ and t = 1, 2 , . . . , n — A:, 

min Xi{A)Xj[{BB'^)/a]> Xt[{BAB'')/a]> max A,(A)AJ(55*)/a]. 
-i+j—t+l i-{-j=t-\-n 
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Proof, Taking a =- {n - A: 4- 1 , . . . , n} , by (2.2.18) and (2.0.3), we have 

Xt[{BABn/a] 

min A,[(/n-fc, Z)BAB*iIr,^k. Zf] 

> min max Xi{A)Xj[{In-k. Z)BB''{In-k. Zy] 
Z^C('^-k)xk i-^j=t+n ^ ' -^'^ 

= max Xi{A) min Xj[{In-k, Z)BB''{In-k, Zy] 

^ max Xi{A)Xj[{BB*)/a]. 

By (2.2.19), along with the first inequality in (2.0.3), 

Xt[iBAB*)/a] 

< min min Ai(A)A,[(/„_fc, Z)SB*(I„_fe, Z)*] 
Z^C{n-k)xk i-^j=t^l 

= ,+fjJVa ^^(^) ,,ct^.,.. ^^•[(^»-^' Z)BB*{Ir.^k, Zy] 

= mm \{A)\[{BB*)la]. 

As we are interested in relating the eigenvalues of the matrix product 
AB to those of individual matrices A and B^ our next result shows lower 
bounds for the eigenvalues of the Schur complement of the matrix product 
BAB"" in terms of the eigenvalues of the Schur complements of BB"" and 
A. The proof of the theorem is quite technical. 

Theorem 2.8 Let A be n x n positive semidefinite of rank r, B E C'^^'^, 
and a C {1,2, . . . ,m} . //rank[(J5yl^*)/a] = 5; then for each I — 1,2,.. . ,5; 

Ai[(BAB*)/a] > max [Az+t+r-s-i(A)A.^-^+i(^)]*A.-t+u+n-r[(BB*)/a]. 
l< t<s -Z+ l 

l < u < t 

Proof. Let k — m — \a\. We may assume a — {/c + 1, . . . , m } . Then 
a^ = {1, 2 , . . . , /c}. Since rank(yl) = r, there exists unitary U G C'^^'^ such 
that 

UAU"" = D e O = diag(L>,0), where D = diag(Ai(^), . . . , A^(A)) > 0. 

Let 
X = -[{BAB"") [a^ a]] [[BAB'^ya]]^ . 

Then 

Xi[{BAB^)/a] = Xi[{Ik^X)BAB%Ik^Xy] = Xi[AB\Ik.Xy{Ik^X)B]. 
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Thus 

Let 

Then 

iank[AB*{Ik,X)*{Ik,X)B] = vank[{BAB*)/a\ = s. 

B^B*{h,Xr{h,X)B, t ^ = ( [̂ 2 ) ' ^ 1 ^ ' ^ ' ' " " 

rank(^B) ^ xa,nk{UAU*UBU*) 

= rank[diag(D,0)(C/Bl/*)l 

= rank[diag(£'i,0)(C/BC/*)diag(D5,0)] 

= rank(Dit/iBC/i*£)5) 

= rank(C/iBC/i*). 

Since U\BU^ is r x r positive semidefinite and x&Qk[{BAB*)/a\ = s, 
there exists an r x r unitary matrix Vi such that 

Fit / iWi*Fi*=diag(G,0), 

where 

G = dmg{Xi{UiBU^),..., A,(t/i5C/i*)). 

Set D = ViDVi and partition it as ( ^i ^3) with £>! of order s >i s. Let 

J 0 ' 

Then 

LViDV*L* = diag(Di,£)3 - D^DJDa). 

Let Bi = D^UiBU^Di. Then 

( L * - i y i D - 5 ) 5 i ( i * - V i i : > - i ) - ^ 

= L*-'^ViD-^DiUiBU^DiDiVi*L* 

= L*-^ViUiBUlDV^L* 

= L*-'^ViUiBU^V{L-\LViDV^*L*) 

= {L-'r diag(G, 0)L-i diag(Di, D3 - i?2*^I^2) 

= diag(GDi,0). 
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So Bi and GDi have the same nonzero eigenvalues. On the other hand, 

Xi[{BAB*)/a] = Xi[AB*{Ik,xyiIk,X)B] 

= Xi{AB) 

= Xi[{UAU*){UBU*)] 

= Ai[diag(D,0)(C/St7*)] 

= A,[diag(Di,0)diag(£'i0)(t/BC/*)] 

= Xi[diag{Di,0)iUBU*)di&g{Di,0)] 

= XI{D^UIBU^D'^) 

= A;(Si). 

Noticing that 

1 1 1 1 
2 

and 

Dl{GDi)D^ ^ =DIGDI 

G-5(GDi)G5 = G i D i G i , 

we see that Bi, D^ GDI, and G'^DiG^ have the same nonzero eigenvalues, 
including multiplicities. It follows that, for / = 1,2,. . . , s, 

Xi[{BAB*)/a] = Xi{Bi) = XI{DIGD\) = A K G ^ A G * ) . 

For / = s + 1 , . . . , A;, since rank[((i?Ai?*)/a] = s, we have 

Xi[{BAB*)/a]^0. 

By the Cauchy interlacing theorem, we have, for i = 1,2,.. . , s, 

Xi{Di) > Xi+r-s{ViDV{) = Xi+r-s{A) (2.3.26) 

and for i — 1, 2 , . . . ,r , 

Xi{UiBUl) = XiiUiBU^) > Xi+n-riB). (2.3.27) 
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By (2.0.3) and (2.2.17), we have, for i = 1,.. .,s - I + 1, u= 1,.. .,t, 

Xi[{BAB*)/a] 

= AK^fGDf) 

> A,+t_i(i^f)cT,_t+i(GDf) [by (2.0.3)] 

-t-\-l+u-l 

(G)A,_,+i(Z)f) [by (2.0.3)] 
> [Xi^t-l+r-s {A)Xr-u-^l {A}] i 

•Xs-t+u+n-r{B) [by (2.3.26) and (2.3.27)] 

= [Xl^t+r-s-l{A)Xr-u+l (A)] 2 

•Xs-t+u+n-r[B*{Ik XY{Ik X)B] 

= [ A / + t + r - 5 - l ( ^ ) A ^ _ ^ + i (A)] ^ 

•^s-t-{-u+n-r[{h X)BB''{Ik Xy] 

> [Xi^t-^r-s-1 {A)Xr-u^l (A)] ^ 

• min Xs-t-^u+n-r[{Ik Z)BB%h Zy] 

= [Xl^t+r-s-1 {A)Xr-u+l {A)] i 

'Xs-t+u+n-r[{BB'')/a] [by (2.2.17)]. I 

In a similar manner, one can obtain the following additional inequalities 

Xi[{BAB*)/a] > 

— u-l-l-f-n —r 
[ ( 5 S * ) / a ] } 2 A . _ t + . ( A ) , 

[Xr-t+u {A)Xl+t+r-s-l{A)] 2 Xs~u+l+n-r [{BE*)/a], 

[Xr-u+l {A)Xr-t+l {A)] 2 Xl^t+u-2+n-r [{BB*)/a], 

[XlJ^t+u-2+r-s {A)Xr-t+l {A)] 2 A s - u + 1 + n - r [{BB*)/a], 

{ A / + t - l + n - r [ ( B B * ) / a ] A 3 — t-fit+n —r [ ( B B * ) / a ] } 2 A . _ „ + i ( A ) , 

— u-\-l-\-n — r r + t + u - 2 ( ^ ) , 

{ A , _ t + i + n - r [ ( 5 B * ) H A s + t + ^ . - 2 + n - r [ ( 5 ^ * ) / a ] } i A , ^ - ^ 4 - l ( A ) . 

Setting r = n in the first inequality above, we arrive at 

Xi\{BAB*)/a] > 

max {Xi+t-iKBB*)/a]X,.^+i[{BB*)/a]}hn-t+u{A). 
t = l s~l + l 

U=l , . . . , t 

In particular, letting t = u = 1 reveals that 

Xil{BAB*)/a] > lXi[{BB*)/a]Xs[{BB*)/a]]'^Xn{A). 

max 
t = l s-l + l 
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If we take a = {1} and set X = ( o x ) ^̂ ^ ^^^ matrix X, then for any 
n X n matrices A and B^ we obtain 

Xi{BAB*) > [A/(5B*)A,(^B*)]^ An+i(i). 

The result below presents a lower bound for the product of eigenvalues. 

Theo rem 2.9 Let all assumptions of Theorem 2.8 he satisfied, let u he a 
positive integer with 1 < u < k, and let 1 < ii < • • • < iu ^ k. Then 

u u 

l[Xt[{BAB*)/a] > l[[Xr-i,+,{A)Xr-t+iiApX 
n—r-i-it 

t=l t=l 

Proof. Following the line of the proof of the previous theorem, we have 

u 

l[Xt[{BAB*)/a] 

U 

= l[Xt{DlGDl) 
t = l 

U 

> ^Xs-u+i{DhK{GDh [by (2.0.1)] 

U 

> l[Xs-i,,+i{Di)Xs-t+i{Di)Xu{G) [by (2.0.2)] 
t=l 

U 

> l[[Xr-i,+l{A)Xr-t+l{A)]i 
f = l 

•Xn-r+i,{B) [by (2.3.26) and (2.3.27)] 

t=i 

= l[[Xr^i,.+l{A)Xr-t+l{A)]^ 
t=l 

'Xn-r+it[{h X)BB*{Ik Xy] 
u 

> l[[Xr-u+i{A)Xr-t+l{A)]^ 
t=l 

• min Xn-r+i,[{hZ)BB*{IkZr] 

= l[[Xr-i, + l{A)Xr-t+l{At^ 
t = l 

•Xn-r+iA{BB*)/a] [by (2.2.17)]. 
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Similar results are 

f[M{BAB*)/a]> 

[{BB*)/a], 
t=l 

—-it+l+n—r 
[{BB* )/a] Xn-r+u [iBB*)/a]} i A,_t+i (A), 

t = i 

n{A. —it+l+n—r [{BB*)/a]}iXr-s+iM)-

1=1 

t = \ 

2.4 Eigenvalues of the Schur complement of a sum 

This section is concerned with inequalities involving the eigenvalues of Schur 
complements of sums of positive semidefinite matrices [289]. 

Theorem 2.10 Let A, B benxn positive semidefinite. Let Q :C{ l ,2 , . . . , n} 
and k = n— \a\. If I < ii < - - • < ii < n, where I < I < k^ then 

I I I 

t = l t=l t = l 

Proof. This actually follows immediately from (2.0.8) and the fact that 
{A + B)/a > A/a + B/a. It can also be proven by (2.2.19) as follows. As 
in the proof of Theorem 2.5, we may take a = {k -\-1,... ,n} and have 

/ 

I 

- min TXiA{Ik,Z){A + B)iIk,Zr] 

I 

= "^'V ,,y,K[{h.z)A{h^zy^-{h^z)B{h^zr] 

> min TXi,[{Ik,Z)A{h,Zr] 
t = i 

+ ^ip ^,y2>^k-t+i[{ik,z)B{ik,zy] 
t = l 

Y,K{A/o^) + Y.^k-t^i{Bla). 
t=i t=i 
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Note that ULii^i-^yiY^^ > ( n L i ^i)^/^ + ( n L i Vi^^^ ^^ nonnegative 
X, y's and (a -^ b)P > a^ -\-bP for a, b > 0, p > 1. Setting ẑ  = A: - t + 1, 
x^ = Xt[{A + 5 ) / a ] and yt = Xt{A/a) + \t{B/a) and by (2.0.5), we have 

Corollary 2.7 Le^ A, B benxn positive semidefinite. Let a c { l , 2 , . . . , n } 
anrf A: = n — |a|. Then for any integer I, 1 <l <k, and real number p> I, 

I I 

n Af_',+i[(^ + B)/a] > n K ^ l t + i i A / a ) + JJxtt+,{B/a). 
t=l t=l t=l 

Putting / = k and p = 1 in the corollary reveals the known result: 

/ det(A+^) y / ^ ^ 
Vdet(^ + 5)[a] 

det A 
det A[a] 

i/k 

+ 
d e t ^ 

detB[a] 

i/k 

By mathematical induction, we may extend our results to multiple 
copies of positive semidefinite matrices. 

Corollary 2.8 Let ^ i , . . . , A^ benxn positive semidefinite matrices. Let 
a C {1, 2 , . . . , n} and k = n — \a\. Then for any integer I, I < I < k, and 
real number p > 1̂  

t=i 
•t+i 

I m 

t=i j=i 
•t+i (Aj/a) 

and 

t=i 

p/i 
k-t-\-l 

m I 

>En^t'.H-i(^i/")-
= i t = i 

The next theorem presents a sum-product to product-sum inequality on 
Schur complements. For this purpose, we recall the Holder inequality [22]: 
Let x i , . . . , Xn and i / i , . . . , /̂̂  be nonnegative numbers, let p be a nonzero 
number, p < 1, and let - + -^ = 1. Then, assuming x, ?/ > 0 if p < 0, 

E-^yi>{E-n E^' 
t=i Kt=i Kt=i 
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We note here tha t if we take in the following theorem a — {1} or 
{ 1 , . . . , n} and embed matrices A in 

^-' J A • - ^ 
A 0 
0 t r A 

respectively, we may arrive at many matr ix (trace) and scalar inequalities. 

T h e o r e m 2 .11 Let Apq, p = 1, 2 , . . . , /i, g = 1, 2 , . . . , z/̂  be n x n positive 
semidefinite matrices. Let a C {1,2, . . . , n } ; k — n — \a\, and I he an 
integer, 1 < I < k. Then for any nonzero real r < 1 and u, 0 < cu < I, 
conventionally assuming that all Apq are positive definite ifr<0, we have 

7 .^PQ 
L \q=l J 

r/uj\ V r 

1/ r /i 

^ E E 
q=l [p=l 

Y[Xk-t+i{Apq/a) 
t=l 

r juj " 1/r 

Proof. Let s be the number so tha t 1/r + I / 5 = 1. Then {r — l)s = r. Set 

1 1 / ^ 

a pq J\\k-t+i{Apq/a) 

t=l 

and 

Br. 7 .^pq 
\q^l J 

( r - l ) / a 

Then we need to show 

l / r 

Ê P >-Y.yLc. 
\p^\ / q=l \p=l 

'pq 

Note that l/uo > l/l. By Corollary 2,8, we have 

n ^fc-t+i 
t=i 

E Ap, ] /a 
9 = 1 

1/LO 

n Xk-t+i{Apg/a) 
t=i 

• z2 ^pq^ 
q=l 
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from which, and by the Holder inequality, we have 

fi fj- ( I 

7 ,^pq 
Kq=l J 

r I ijj 

^E rî -̂*+i (E^POA 
p=i u = i L\9=i / 

V A* 

= 2_^2^ CpqBp 
q=l p=l 

l /u; 

Br, 

q=l 

V ( P^ ^ 

E E ;̂, 
9=1 \ p = l y 

1/r 

Ê ^ 
1 / 5 

Vp=l 

lis 
Since 1 — j = ^, dividing by ( X^^^i ̂ ^ ) yields the desired result. 

If we set a; = 1 in the theorem, we then obtain 

E^p")/' 
^ fi ( I 

E n^--i 
\,p=i u = i L \q=l 

y ( 11 

^ E E 
q=l \p=l 

W^k-t-{-i{Apq/a) 

1/r 

T h e o r e m 2.12 Let Apq, p — 1, 2 , . . . , /x, q — 1, 2 , . . . , z/̂  be n x n positive 
semidefinite matrices. Let a C {1, 2 , . . , , n } and denote k = n — \a\. Let 
I be an integer such that 1 < I < k and ci , C2, . . . ,C;̂  be positive numbers 
such that ci + C2 H- • • • + c^ > l/L Then 

EE 
q = l p = l 

Y[\k-t+i{Apq/a) <n n^ -̂+i 
p=i U=i 

[E^PH/" 
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Proof. All we need to show is that 

L = 

V 11 

E n n \k-t+i{Apqla) 
t=l 

n n A.-t+i 
p=i \t=i 

E Ap, /a 

< 1 . 

Let c = E p = i ^pi ^p — Cp/c, 2? = 1, 2 , . . . , /x. Then c > l/l and 

c c 
p = l p=l p=l 

By the weighted arithmetic-geometric mean inequality and Corollary 2.8, 

^=En7 
n Xk-t+i{Apg/a) 

,t=i 

t + i 
t = i .9=1 

/ 

En 
q=l p=l 

n Xk-t-hli^pq/o^) 
.t=l 

. I n Afc-t+i E ^ p j / « 

=^EE<77 
9=1 p ^ l n Afc_t+i 

= E4-
E 

q=l lt=l 

-1 C 

n Afc-t+i(^pg/a) 

p=l 
n A/c-t+i E/pJ/^ 

< ^ c ^ [by Corollary 2., 

= 1 1 

\^^ 
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2.5 The Hermitian case 

In the previous sections, we presented some eigenvalue inequalities for the 
Schur complements of positive semidefinite matrices. In particular, we paid 
attention to the matrices in the form BAB*, where A is positive semidef­
inite. We now study the inequalities for the Hermitian case of matrix A. 
Unless otherwise stated, we arrange the eigenvalues of A G M^ in the order 

Xi{A)>X2{A)>-^->Xn{A). 

Theorem 2.13 Let A e Mn, B e C"^^'^, and ad { l , 2 , . . . , m } . Denote 
k = m—\a\. Then for every t = \,2,...,k, 

Xt[{BAB*)la\> max{An-r+t(A)A,[(B5*)/a]: An-r+t(A) > 0} 
t<r<k 

and 

Xt[{BAB'')/a]< mm {Xr{A)Xk-^r-t[{BB'')/a]: A,(^) < 0}. 
l<r<t 

Proof. Without loss of generality, we assume that a == {/c + 1 , . . . , m}. Let 

X ^ -[{BAB'')[a',a]][{BAB*)[a]]\ C={Ik,X)B. 

On one hand, for any integer r, 1 < r < /c, we have 

CAC* - C[A-Xn-r+t{A)In]C* + Xn-r+t{A)CC', 

where A — Xn-r-\-t(A.)In is n x n Hermitian and An-r+t(^)C'C'* is k x k 
Hermitian. Thus, there exists an n x n unitary matrix U such that 

A-Xn-r+t{A)In = t / d i ag (Ai (^ ) - A^-r+t (A), . . . , Xn{A) — Xn-r+t 

On the other hand, putting P = CU,we have 

C[A-Xn-r+t{A)In]C* 

= Pd iag(Ai(A) - Xn-r+t{A), ..., Xn{A) - Xn-r+tiA))P* 

>p(^ '̂  ]p* = D 

- \ 0 [Xn{A) - Xn-r+tiA)]Ir-t J^ ' ^ ^ 

Since —D is k x k positive semidefinite and rank(—D) < r — t, we see tha t 

-Xk-r-^t{D)=Xr-t+l{-D)=0 

and 
Xk-r-\-t[C{A — Xn-r+t iA)In)C*] > Xk-r+t{D) = 0. 
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Thus 

\t[{BAB*)/a] = Xt[{Ik,X)BAB*{Ik,Xr] 

- Xt{CAC*) 

iA)In)C* + Xn-r+t{A)CC*] 

> max {Xs[C{A-Xn-r+t{A)In)C*] 
r^s=k+t 
+Xr[Xn-r+tiA)CC*]} [by (2.0.9)] 

= mayi {Xk-r+t[CiA- Xn-r+t{A)In)C*] 
t<r<k 

+ Xr\Xn-r+t{A)CC*]} 

> m&-x{Xn-r+t{A)Xr{CC*)}. 
t<r<k 

It follows that, if An-r+t(-4) > 0, by (2.2.17), we have 

\t[{BAB'')la] > max{An_,+,(A)A,(CC*)} 
t<r<k 

= max{Xn-r+t{A)Xr[{Ik,X)BB*{Ik,Xy]} 
t<r<k 

> m&x{Xn-r+t{A) min Xr[{Ik, Z)BB*iIk, Z)*]} 
t<r<k zeC^^^'^-^-^ 

= max{Xn-r+t{A)Xr[{BB*)/a]}. 
t<r<k 

This completes the proof of the first inequality. The second inequality 
on the minimum can be similarly dealt with by substituting —A for A. I 

As an application of the theorem, setting B = In^r = k and B = In,r = 
t, respectively, we see an interlacing-like result for the Hermitian case: 

Xt{A/a) > Xn-k+M). if K-k+M) > 0 

and 

Xt{A/a)<Xt{A), if A, (A)<0. 

In the following two theorems. Theorem 2.14 and Theorem 2.15, for a 
Hermitian A G H^, we arrange and label the eigenvalues of A in the order so 
that |Ai(^)| > |Ai(A)| > ••• > |An(^)|. Our next theorem, like Theorem 
2.8, gives lower bounds for the eigenvalues of the Schur complement of 
matrix product in terms of those of the individual matrices. 
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Theorem 2.14 Let AeUn.Be C^^^, and a C { l , 2 , . . . , m } . Denote 
k = m— \a\. Let the rank of A be r. Then for each / = 1, 2 , . . . , /C; 

\Xi[{BAB*)M\ > 

[{BB*)/a]}-^\Xr+u-M)\ 
{Xl+t-l+n-r[{BB*)/a]Xn-t+u[{BB*)/a}}i\Xr-u+l{A)\ 
{Xn-t+l [{BB*)/a]Xn-u+i[{BB*)/a]}i\Xi+t+u-2iA)\ 

[{BB*)/a]Xi+t+u-2+n-rKBB*)/a]}i\Xr-u+i{A)\. 

max 
t = i 1—i+i 

Proof. We may assume that a — {k -{- 1, . . . ,m} . Since A G Hn and 
rank(^) = r, there exists a unitary matrix U G C"^^^ such that UAU* — 
diag(i^, 0), where D — diag(Ai(A),..., Ar.(A)), and D is nonsingular. Let 

X = - [(5A5*)[a^a]][(^A5*)[a]]^ 

Then 

\\i[{BAB'')/a]\ = |A/[ (4 ,X)5A5*(4 ,X)*] | 

= \\i[AB\h^XY{h^X)B]\ 

= \HAB)l 

where B = B*{Ik,Xy{Ik,X)B. Partition 

where S i is r x r positive semidefinite. Take 

L 0 

Then 

and 

—Bg-Sj In-

LUBU*L* = dmg{Bi,B3-B^BlB2) 

L*-'^UAU*L-^ = diag(£',0). 

Thus 

{L*-^U){AB){L*-^U)-^ = L*-^UAU*L'-^LUBU*L* 

= diag(Z?, 0) diag(Bi, B3 - ^2^1-82) 

= diag(-DBi,0). 

That is, AB and diag(D-Bi, 0) have the same set of eigenvalues. Thus 

\Xi[{BAB*)la]\ = \Xi{AB)\ = |A;(diag(DBi,0))|. 
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It follows that, for / > r, 

\Xi[{BAB*)/a]\ = 0 

and that, for ^ = 1, 2 , . . . , r, 

\Xi[iBAB*)/a]\ = \XiiDBi)\. 

Notice that the eigenvalue interlacing theorem shows that, for i = 1, 2 , . . . , r, 

We have, for t = l , . . . , r — ^-f l and u = 1 , . . . , t, 

\Xi[iBAB*)/a]\ 

= XI{B}DB}) 

> Xi+t-i{Bl)K-t+i(,DB'^) [by (2.0.3)] 

> Xi+t-i{Bh\-t+u{D)Xr^u+i{Bh [by (2.0.3)] 

^ [M+t-l-^n-r{B)\n-u+l {B)]2\\r+u-t{A)\ 

= \M+t-l+n-r[{Ik ^)BB*{Ik X)*] 

•An-ti+1 [{IkX)BB*{IkXy]Y\ 

>{ min Xi+t.i+n^rKlkZ)BB*{IkZr] 

• min Xn-n+i[{IkZ)BB*{IkZr]}i\Xr+u-t{A)\ 

= {A;+t_i+„_,[(BB*)/a]A„_„+i[(BB*)/a]}i 

•|A,+„_t(A)| [by (2.2.17)]. 

The other remaining inequalities can be proved similarly. I 

Setting r = n in Theorem 2.14 yields the following 

\Xi[{BAB*)la]\ > 

( {Xi+t-i[{BB*)la]Xn-u+i[{BB*)la])^X 
n—t-\-u 

1 {Xi+t-.i[{BB*)la\Xn-t+u[{BB*)la]}i\X 
n—u-\-l 

{An-t+1 [{BB*)la]Xn-u+A{BB*)la]}h\Xi+t+u-2(.A)l 
V {An-t-l-1 [{BB*)la]Xi+t+u-2[{BB*)la]Y^\Xr,_u+x{A)\. 

max 
t = l n-l-]-\ 

Our next theorem is a version of Theorem 2.9 for Hermitian matrices. 
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Theorem 2.15 Let A e Mn with rank A --: r and B e C^^'^. Let a C 
{1 ,2 , . . . , m} and denote k = Tn—\a\. Then for any I < ii < • - - < iu ^ k, 

U ' U 

l[\Xt[iBAB*)/a]\>l[{Xn-u+i[{BB')/a\Xn-r+iA{BB')/a]}i\\r-t+i{A)\-
t=l t=l 

Proof. Following the line of the proof of Theorem 2.14, we have 

u 

l[\Xt[{BAB*)/a]\ 
= 1 

U 

u 

> l[Xr-i,+i{Bl)ai,{DB^) [by (2.0.1)] 
t=l 

U 

> \{Xr-u+i{BhXiABhK-t+i{D) [by (2.0.2)] 

U 

t=l 
u 

= l[[\n^u+l{B)Xn-r+n{B)]'^\K-t+l{A)\ 
t=l 
u 

= l[{Xn-u+i[{IkX)BB*{IkXr] 
t=i 

•Xn-r+iAih X)BB*{h X)*]}^Xr-t+M)\ 
u 

^ n ^ ™i? ^Xn-i,,+i[{IkZ)BB*{IkZY] 

• min X^-r+iAihZ)BB*{IkZ)*]}i\Xr-t+i{A)\ 
Z^£kx{rn-k) 

= Y[{Xr..i,+,[{BB*)la]Xn-r+iA{BB*)/a]Y^ 
t=i 

•\Xr-t+i{A)\ [by (2.2.17)]. • 

Setting r = n in Theorem 2.15, we arrive at 

u u 

Y[\XA{BAB*)/a]\ > l[{Xn^i,+AiBB*)/a]Xu[{BB*)/a]}^\Xn-t+i{A)\. 
t = l t=l 
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Theorem 2.16 Let A e Mn, B e C^''"', and a C {1,2, . . . , n } . Denote 
k = n— \a\. Then for any integer I with 1 < I < k, 

I I 

Y,>^k~t-,i[{BAB')/a] < ^A, (A)A,J (BB*) /a ] (2.5.28) 
t= i t=i 

and 
I I 

Y,K[{BBn/a]Xn-t+i{A) < ^ A , [ ( 5 A ^ * ) / a ] . (2.5.29) 
t=i t=i 

Proof. If A > 0, the inequalities follow immediately from Theorem 2.6. 
So we consider the case where A has negative eigenvalues. Let Xn{A) < 0. 
Without loss of generality, we take a = {/c + 1 , . . . , m}. Let 

X = -[(BS*)K,a]][(BB*)[a]]t . 

By (2.2.19), (2.0.6), we have 

Y,K{[B{A-Xn{A)In)B*]/a} 

I 

min TXulih, Z)B{A - Xn{A)In)B*{Ik, Z)*] 
t=i 

I 
"^'Y ^,y,K[{A-\n{A)In)B''{h.ZY{h,Z)B] 

I 

< min V \t[A - K{A)]K[B%h^ ZY{h^ Z)B] 

I 

? i ? ^ V [ A , ( ^ ) - A , ( y l ) ] A , J ( 4 , Z ) 5 5 * ( 4 , Z ) * ] 

I 

< Y,[Xt{A)-Xn{A)]Xi,[{h,X)BB^Ik^xr] 
t=i 

I 

^ Y,[Xt(A)-Xn{A)]XiA{BB*)/a] 
t=l 

I I 

- ^ A , ( A ) A , J ( ^ 5 * ) / a ] - A , ( A ) ^ A , J ( 5 B * ) / a ] . (2.5.30) 
t=i t=i 
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By (2.2.19) and (2.0.8), noticing that -Xn{A) > 0, we have 

^=1 

I 

min V AiJ(4, Z)B{A - A„(^)/„)B*(4, Z)* 
Z G C ^ X - . 

I 

min VA,J(4,Z)5^5*(7^,Z)*-An(A)(7fc,Z)^B*(4,Z)* 

> min {Y,^'c-t+i[(h,Z)BAB*iIk,zr] 
t=l 

J2K[->^n{A){Ik,Z)BB*{Ik,Zr]] [by (2.0.8)] 
= 1 

I 

I 

-An(yl) ^ A,J(4, Z)55*(4, Z)*]} 

> min TXk-t+i[{Ik.Z)BAB'^{Ik,Zr] 
Z^Ckx{n-k) ^-^ 

I 

-Xn{A) min T AiJ(4, Z)BB%h. Zf] 

= ^A^_,+i[(B^B*)/a] - A , (^ )^A, J (55*) / a ] . (2.5.31) 

t = i 

Combining (2.5.30) and (2.5.31) reveals (2.5.28). Likewise, by making 
use of (2.0.8) and (2.2.19) in the proof of (2.5.31), we have 

Y,K{[B{A- Xr^{A)I^)B']la} < 

I I 

Y,M{BAB'')/a]~Xn{A)Y,K\{BBn/a]. (2.5.32) 
t=i t=i 
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Using (2.2.19), (2.0.7) and as in the proof of (2.5.30), we have 

i: \u{[B{A- Xn{A)In)B*]/a} > 
t=i 

i: Xn-t+iiA)K[{BB')/a] - Xn{A) E Xu[{BB*)/a]. (2.5.33) 
t = l t=l 

Combining (2.5.32) and (2.5.33), we obtain the inequality (2.5.29). I 

2.6 Singular values of the Schur complement of product 

Singular values are, in many aspects, as important as the eigenvalues for 
matrices. This section, based upon [285], is devoted to the inequalities on 
singular values of the Schur complements of products of general matrices. 

Theorem 2.17 L e t A e C ^ ^ ^ andB eC'^'^P. Let a C { 1 , 2 , . . . , / } , where 
I = mm{m,n,p}. If B* B is nonsingular, then for s =^ 1^2^.. .J — \a\, 

a^,[{AB)/a] > max Xp-\a\-i+s [{B''B)/a] K-p+i [(•AA*)/a]. 
l<i<Tn—|o;[+p—n 

Proof. We first claim that we may talce a = { l , 2 , . . . , | a | } . To see this, let 
a^ = { 1 , . . . ,m} — a, (3'^ — [1,...,n} — a, and 7̂ ^ = { 1 , . . . ,p} — a. There 
exist permutation matrices U G C"^™, V e C"^", W £ C^'^P such that 

f A[a] A[a,f3^] \ 

T/TRw_ f ^ H B[a,Y] 

and 

Let a = { l , 2 , . . . , | a | } .Then 

{AB)la = {UABW)la, 

{B''B)/a = {W''B*BW)/a, 

(ylyl*)/a-([/ylA*[/*)/a. 

So we may replace A with UAV and B with V^BW in the theorem so that 
the submatrices indexed by a are now located in the upper left corners. 
Thus, without loss of generality, we may assume that a = { l , 2 , . . . , | a | } . 
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The idea of the proof of the inequality is to obtain two quantities, one of 
which bounds Xi{[AB{B*B)~^B*A*]/a} from above, and the other from 
below; combining the two inequalities will yield the desired inequality. 

We shall make heavy use of Corollary 2.6. Let 

C^ABiB^By^B^'A^ 

Y=-[{AB)[a^,a]][{AB)[a]]\ 

and 

Z=-[iAA*)[a'^,amAA*)[a]]l 

Using (2.0.3) and upon computation, we have 

Xi{[AB{B*B)-^B*A*]/a} 

= Xi[Cla']+XC[a, a']] 

= Xi{{Y, Im-\a\)CiY, / ^ _ | „ | ) * - y ( C [ a , a^]) 

- ( C [ a ^ a])Y* - Y{C[a])Y* + XC[a, a']} 

= Xi{{Y, Im-\a\)C{Y, Im-\a\)* 

+ {X -Y){C[a]){C[a])\C[a, a'^]) 

- ( C [ a ^ a]){C[a])\C[a\)Y* -Y{C[a])Y*} 

= Xi{{Y, Im-\a\)CiY, Im-\a\r ' (X - Y){C[a])X* 

+X{C[a])Y* -Y{C[a])Y*} 

= Xi{{Y, Im-\a\)C{Y, Im,-\a\)* 

-{X-Y){C[a]){X-Yy} (2.6.34) 

< Xi[{Y, )CiY 

= Xi{[{Y, Im-\a\)AB]iB*Br'[iY, /„_|„|)AB]*} 

= A,[(0, iAB)/a)iB*B)-\0, (AB)/a)*] 

= X,{UB)/a][{B*Br'[Y]][iABr/a]} 

= h{[{B*Br^j^mAB)/an{AB)/a]} (2.6.35) 

< min Xt\{B*Br'[Y]]Xs{\{AB)/ar[{AB)/a]} 
t+s=i + l 

t = l , . . . , p - !o . l 
s=l,...,p—\a\ 

< min Xt[{B*B)-'[j']y,[{AB)/a]. (2.6.36) 
t + s=i + l 

t=:l.,...J-\a\ 
S = l,...,l-\0i\ 
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On the other hand, by (2.0.6), for every i = 1,2,...,m — \a\ + p — n, 

Xi{[AB{B*B)-^B*A*]/a} 

= Xi [{X, Im-w\)AB{B*B)-^B*A*[X, /„_|„|)*] 

- Xi{[B{B*B)-^B*\[A*{X, Im-\a]nX, Im-\a\)A]) 

> max Xt[B{B*B)~'B*]Xs[A*{X, I„_|«|)*(X, Im-]a\)A] 

> Xp[B{B*Br'B*]Xn-p+i[{X, /„_|„|)A^*(X, 

= Xp[{B*B)~ B''B]Xn-p+i[{X, J^_|c|)AA*(X, Im-la])*] 

= Xn-p+i[{X, /^_|o,|)^A*(X, Im-\a\T] 

-f-(X - Z)[(^A*)[a]](X - Zy} [by (2.6.35)] (2.6.37) 

- Xn-p^iliAA^/a]. (2.6.38) 

By Theorem 1.2, [B^'By^lY] = [(B*J5)/a]-\ so for t = 1,2,.. . , p - |a| , 

XT'{[{B^B)/a]-'} = A^_| . |_,+i[(5*^)/a], 

it follows that, by using (2.6.36) and (2.6.38), for 5 = 1, 2 , . . . , / — |Q;|, 

a^,[{AB)/a] > max A^_|^|_,+i[(5*5)/a]A,_^+4(AA*)/a] 
l<i<rn-\a.\+p-ri 

t=i-s-\-l 
= max Ap_|c |̂_^_^5 

l<i<m—\a\-\-p—n 

Corollary 2.9 Let A G C^^'^, / =: min{m, n}, a C {1, 2 , . . . , ^}. T/ien 

^i(A/a) > Xf[{AAn/a] > a,+,,|(A), i - 1, 2 , . . . , / - |Q|. 

Proof. Set 5 = J, i = 5 in Theorem 2.17 and use Corollary 2.4. I 

Corollary 2.10 / / A G C^"^^, B G C''''^, / = min{m,n,p}; and let a C 
{1 ,2 , . . . , ! } . If B*B is nonsingular, then for 5 = 1, 2 , . . . , / — |a|, 

<jl[{AB)la] > max Xn-p+i[iAA*)/a]al_,+,{B). 
z=l,2,...,m—|Q;|+p—n 

Proo/. This follows from (2.1.12) and Theorem 2.17. I 

Setting m — n — p in Corollary 2.10 shows, for each s — 1,2,... , n—|a|, 

as[{AB)/a]> max x}[{AA'')/a]aj{B). 

In a similar manner, we obtain lower bounds for products of singular 
values of Schur complements of matrix products. 



SEC. 2.6 SINGULAR VALUES OF THE SCHUR COMPLEMENT OF PRODUCT 79 

Theorem 2.18 Let the assumptions of Theorem 2.17 he satisfied. Let u he 
an integer, \ <u <l — \a\, and n — p -{-1 < ii < • • • < iu ^ I — \(^\- Then 

u u 

t=l t=l 

Proof. Following the proof of Theorem 2.17, by (2.6.35) and using (2.0.1), 
we have, for every n>it > n — p + l , t = 1,2,...,!/,, 

Yl Xt{[AB{B^By^B^A']/a} 
t=i 

u 

= l[Xt [(X, /^_,,,)AB(5*B)-1^*A*(X, Im-\a\r] 
t=l 

u 

)A] 
t=\ 

•\n-u+i[B{B*B)-^B*] [by 2.0.1)] 
U 

^ H - ^ i t i C ^ ' ^m-\a\)AA''{Z, Im-\a\T 
t= l 

+(X - Z)[{AA*)[a]]{X - Zy} [see (2.6.35)] 
u 

>\{K [(^, Im-\a\)AA\Z, Im-W\r] 
t=l 
u 

= l[K[{AA*)/a]. (2.6.39) 
t=l 

On the other hand, by (2.6.35) and (2.0.2), we have 

u 

Y[Xt {[AB{B*B)-'^B*A*]/a} 

= l[\t{iY, Im-\a\)C{Y, Im-\a\r 

-{X - Y)[C[a]]iX - Vr} [by (2.6.35)] 
U 

- 'TTT,—|Q;| -'m—|Q;|/ J 
t=l 

<l[Xt[{B*B)-Hj')yA{AB)/a] [by (2.6.35)]. (2.6.40) 
t=l 
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Combining (2.6.39) and (2.6.40) we obtain the desired inequality. I 

The proof of the next theorem is similar to the above, thus omitted. 

Theo rem 2.19 Let A e C^^^ and B be n x n nonsingular. Let I = 
min{m, n}, a C {1 ,2 , . . . , / } ; and u be an integer with 1 < u < I — \a\. 
Then for 1 < ii < • - • < iu ^^ — W\^ 

Y[a,A{AB)/a] > {{XlUA*)/a]\i_^^^_^^,[{B*B)/a] 

t=l t=l 

and 

flat[{AB)/a] > f[Xl[{AA*)/a]Xl_^^^_.^^^[{B*B)/a]. 
t=l t = l 

Corollary 2.11 Let A e C^^"^ and B G C^""^. Let I = min{m,n,p}; 
a C {1 ,2 , . . . , /}^ and u he an integer such that \ < u <l — \a\. Then for 
n — p + 1 < ii < •' • < iu < I — \OL\, 

u u 

n '^t[{AB)/a] > n 4[{AA*)/a]ap^t+,{B) (2.6.41) 
t = l t = l 

and if n = p, then 

u u 

l[ai,[{AB)/a] > J]Aj[(A^*)/a]<7„_t+i(-B). (2.6.42) 
t = l t=l 

Proof. If B*B is singular, for t = 1 we have ap-t-^i{B) = CFp{B) = 0. The 
first inequality holds, li B*B is nonsingular, then Theorem 2.18, together 
with Theorem 2.2, yields the first inequality again. The second inequality 
can be obtained in a similar manner. I 

Corollary 2.12 Let all the assumptions of Theorem 2.19 he satisfied. Then 

u u 

J\ot[{AB)la\ >^\l[{AA*)la]an-u+i{B) 

t=l t=l 

and 

l[at[iAB)/a] > na, ,+ |„ | (A)At|„ |_ , , .+i[(5*S)/a] . 
t=l t=l 
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All the inequalities we obtained so far in this section present lower 
bounds for the singular values. It is tempting to obtain analogous results 
on upper bounds. For instance, we may ask if an analog of (2.0.2) 

/ r I I ^ 

l[a,A{AB)/a] < min I H a,M/o^)^t{B). l[at{A/a)a,,{B) I 
t=i U=i t=i J 

or an analog of (2.0.3) 

at[iAB)/a] < mm {ai{A/a)aj{B), a,(S/a)c7^(A)} 
z-\-j=t-\-l 

holds. The answer is negative as the following example shows: Take 

A = l2. ^ = ( ^ 2 l ) ' ' ' ^ ^ ^ ^ ' 

Then ai[(AB)/a] = ai(5) - 5, ai{A/a)ai{B) = ai{B) = VE. Thus 

ai[{AB)/a]>ai{A/a)a,{B). 

This says neither of the above two inequalities holds. This comes as 
no surprise if one reinspects the signs of the second summands in (2.6.35) 
and (2.6.38). Furthermore, invalidity remains true even if one replaces the 
pair a{A/a) and a{B/a) or a{A) and a{B) by the pair X^{AA'^)/a] and 
Xi[{BB*)/a]. 

Finally, we apply the theorems of this section to obtain some new upper 
bounds for eigenvalues of the Schur complements of BAB^, where A is nxn 
positive semidefinite and B is any mx n matrix. 

Theorem 2.20 Let A he n x n positive semidefinite and B hem xn. Let 
I — min{m,n}, a C {1,2, . . . , / } ^ and a^ — {1, 2 , . . . ,n} —a. Then for every 
i = 1, 2 , . . . ,m — |a| and every t = 1,2,.. . ,/ — |a|; 

Xi[{BAB'')/a] < min \s{A[a'])at\B/a). 
s-\-t=i-{-l 

Proof. Without loss of generality, assume a = { l , 2 , . . . , | a | } . By Theorem 
2.17, since (^ i )* = A*, (^-^)* = A'^Joit^ 1, 2 , . . . , / - | a | , we have 

(Jt^{B/a) = Gt^ \[BA^A-'^)la 

> max Xr,-ia\-i+t{A-' /a)Xi[{BAB^)/a]. 
i= l ,2 , - - - ,m—|Q;| 

By Theorem 1.2, we have 



82 EIGENVALUE AND SINGULAR VALUE INEQUALITIES CHAP. 2 

So, for any 1 < j < n, we have 

A - i ( ^ - V a ) = A„_|„|_,-+i(4a^]). 

It follows that, for every i — 1, 2 , . . . , m — |a| and t = 1,2,..., / — |a|, 

Xi[{BAB*)/a] < min <72(i?/a)A,_,+i(^K]) 
t=l,2, . . . , (—jaj 

= mm UAWVt{Bla).t 
t-{-s=l-\-l 

Setting B — I iii Theorem 2.20 results in eigenvalue inequalities that 
may be compared with the ones in Section 2.1: For z = 1, 2 , . . . , n — |a|, 

\i{Ala)<\i{A[a']). 

By Theorems 2.18 and 2.19, one gets the following result which is proven 
in a manner similar to that of Theorem 2.20. 

Theorem 2.21 Let all the assumptions of Theorem 2.20 he satisfied. Let u 
he an integer such that 1 <u <l — \a\. Then for I <ii < • - - < it ^l — \(y-\, 

l[Xul{BAB*)/a] < min \l[Xi,iA[a''])atHB/a),l[Xt{A[a^])cTu^{B/a) 



Chapter 3 

Block Matrix Techniques 

3.0 Introduction 

This chapter is an expository study of matrix inequalities by means of the 
techniques on block matrices; usually they are 2 x 2 in most applications. 
The 2 x 2 , ordinary or partitioned, matrices play an important role in 
various matrix problems, particularly in deriving matrix inequalities. We 
begin by showing a few examples that often appear in the literature, in 
which the block matrix techniques are used to obtain the desired results. 

Example 1 on the eigenvalues of AB and BA. For m xn matrix A and 
n X m matrix B, AB and BA have the same set of nonzero eigenvalues, 
including multiplicity. Here is a neat and simple proof by similarity: 

I AyW AB 0\ f I A\ _ f 0 0 
0 I J \ B 0 J \0 I J ~ \ B BA 

Example 2 on the singular values of matrices. To extend a result on 
Hermit ian matrices to a general matrix A, say, an eigenvalue or singular 
value inequality, one sometimes needs to form the block Hermitian matrix 

f 0 A 

If ai{A),..., o-r{A) are the nonzero singular values of the (square or rectan­
gular) matrix A, then cri(A),.. . , ar{A), 0, • • • ,0, —ar{A),..., —ai{A) are 
the eigenvalues of the Hermitian matrix H. Thus the properties of the 
Hermitian H may pass to A, which was embedded in iiT as a submatrix. 

For instance, given that Amax(^ + N) < Amax(^) + Amax(^) for Her­
mitian matrices M and N^ where Amax(^) denotes the largest eigenvalue 

of the Hermitian matrix X, setting K — ( ^^ ^ ], we obtain o-max{A + B) < 

<^max(̂ ) + o-ma^iB), wherc crniax(AC) is the largest singular value of X. 
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Example 3 on the convexity of the numerical range of a complex matrix. 
The well-known Toeplitz-Hausdorff Theorem asserts that the numerical 
range of a complex matrix is convex in C. Its proof is by a reduction 
through unitary similarity to the 2 x 2 case (see, e.g., [230, p. 18]). 

Example 4 on the solution to the matrix equation AX — XB = C. A 
classical result in solving matrix equations states that the matrix equation 
AX — XB = C has a solution X if and only if the block matrices 

A C \ ^ f A 0 

0 B ) ^̂ ^ [o B 

are similar. As a consequence, if s{A) fl s{B) = 0; that is, A and B have 
no eigenvalues in common, then the matrix equation has a solution X for 
every matrix C of appropriate size (see, e.g., [55]). 

Example 5 on the numerical radius of a square matrix. For an n x n 
matrix A, the numerical radius of A is defined and denoted by w{A) := 
rmix{x*Ax : ||x|| = 1}. That w{A) < 1 can be characterized by the positive 
semidefiniteness of certain block matrices [19]. To be precise, a matrix A 
has w{A) < 1 if and only if there exists a Hermitian matrix Z so that 

A* I-Z ) -^' 

The purpose of this chapter is to present, mainly through demonstrating 
examples, a variety of matrix inequalities by the techniques on 2 x 2 ma­
trices. Much of the material is in the spirit of the Schur complement. We 
have made no attempt to cover all the methods on the 2 x 2 block matrices 
nor to include all the results on the matrices; either is an impossible task. 

In addition to the notations A > 0 for the positive semidefiniteness of 
the matrix A and \A\ for the matrix absolute value of A, we denote by (u, v) 
the inner product of vectors u and v in a vector space. In particular, for x, 
y e C^, {x,y) = y*x, and for A, B in the unitary space C"^^^ of all m x n 
complex matrices, {A,B) = tr{B*A). A norm || • || on the matrix space 
^mxn jg g^-^ Q̂ ^^ unitarily invariant if \\UAV\\ = ||A|| for all A G C^^^ 
and for all unitary matrices t/ G C'^^'^ and F G C'^'^. Throughout the 
chapter all norms are assumed to be unitarily invariant. 

Unitarily invariant norms of matrices can be characterized by singular 
values and symmetric gauge functions. A celebrated theorem due to von 
Neumann and Fan [301, p. 264] reveals an important connection between 
the inequalities on singular values and unitarily invariant norms. 

For vectors x = (xi, X2,.. •, Xn) and y = (?/i, y2, - •, Vn) with nonnega-
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tive entries in decreasing order, we write x ~<w y to mean 

k k 

Y^Xi < ^yi, k = 1,2,. . . ,n, 
i=l i=l 

and we say that y weakly majorizes x. If, in addition, the above inequality 
becomes an equality for A: = n, we write x -<y and say that y majorizes x. 

Let ^ be an n X n matrix. As usual, we designate the vectors of the 
main diagonal entries, eigenvalues, and singular values of A respectively by 

d{A) = (a i i , . . . , ann) , 

A(A) = (Ai(A),.. . ,An(^)), 

a{A) = {ai{A),..,,an{A)). 

The von Neumann-Fan theorem states that if ^ , Be C^^'^ then 

a{A) ^^ a{B) ^ \\A\\ < \\B\\ for all || • || on C^^^. (3.0.1) 

A theorem of I. Schur asserts that if iJ is a Hermitian matrix then 

d{H) ^ X{H). (3.0.2) 

It follows that for every Hermitian matrix H and unitarily invariant norm 

||diag(F)| | = | | i ? o / | | < | | F | | . (3.0.3) 

For more results on majorization inequalities, we refer the reader to [301]. 

3.1 Embedding approach 

While the sets of values x*Ax and y*Ax with some constraints on vectors 
X and y have been extensively studied as numerical ranges or fields of 
values [230, Chapter 1], we shall inspect a number of matrix inequalities 
that involve the quadratic terms x*Ax and x*Ay through the standpoint 
of embedding. Namely, we will embed x*Ax and x* Ay 'm2 x 2 matrices of 
the forms (^^^ l) and f * ^ / ^ ) 5 respectively, where ^ stands for some 
entries irrelevant to our discussions, so that the results on 2 x 2 matrices 
can be utilized to derive equalities or inequalities of x'^Ax and x^'Ay. This 
idea is further used to "couple" matrices A and X in the form K ^ \ ' \ 
when a trace inequality involving tr(^X*) = {A^X) is to be studied. 

To begin with, consider a 2 x 2 Hermitian matrix A = i^ \. It is 

obvious that yl > 0 if and only if a, c > 0, and |^|^ < ac. If we denote 
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the eigenvalues of ^ by a and /?, then a + /3 = a + c and af3 — ac — |6p. 
Furthermore, we have the following elementary results as a lemma in which 
lower bounds of certain expressions involving the eigenvalues of A are given 
in terms of those of the entries of A. 

Lemma 3.4 Let A = ( ^ ) be a 2 x 2 Hermitian matrix and let a and j3 

he the (necessarily real) eigenvalues of A with a> f3. Then 

2\h\ <a-(3. (3.1.4) 

/ / A is further positive definite; that is, a > ^ > 0, then 

i < ^ , (3.1.5) 
y/ac a + p ^ ' 

^ < ^ , (3.1.6) 

and 

^ < x / S - V ^ . (3.1.7) 

Proof. The inequalities (3.1.4) and (3.1.5) follow from the observation that 

a,^= 2 • 

To show (3.1.6), notice that for any real parameter t, 

Put t — a. The replacements of a + /? with a-]- c and a^ with ac— \h\^ on 
the left hand side lead to (3.1.6). To prove (3.1.7), use, for all t > 0, 

(a + /3) - apt < t-^ + (v^ - y/pf, 

then set t = c~^ and a -\- P = a -]- c, aP — ac — \h\^ on the left hand side. I 

We shall frequently use an equivalent form of (3.1.5): 

| 6 | = < ( ^ ) \ o . (3.1.8) 

In addition, (3.1.6) holds for c in place of a. This reveals the inequality 

A\b\ < ^ ^ . 
yap 
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In a similar way, from (3.1.7), one obtains 

V2\b\<{^/^~^/p)^/a + f3. 

Using embedding techniques, we proceed to inspect some matrix equali­
ties and inequalities that have often made their appearance; that is, we for­
mulate a matrix inequality in terms of a sesquilinear form involving {Ax, x) 
or (Ax^y) as an inequality involving the entries of a matrix or a subma-
trix of the original matrix. We will then extend our studies to the matrix 
absolute values and Ky Fan singular value majorization theorem [282]. 

The Cauchy-Schwarz inequality. The classic Cauchy-Schwarz in­
equality (see, e.g., [228, p. 261]) states that for any vectors x, ?/ G C^, 

| (x,?/)p < {x,x){y,y). 

Proof. This inequality is traditionally proved by examining the discrimi­
nant of the quadratic function {x -{-ty,x-i- ty) in t. We now notice that 

( - , . ) * ( - , . ) = ( ; ; ) ( x , . ) = ( ; ; ^ ; ; ^ ) > o . 

The inequality follows at once by taking the determinant for the 2 x 2 
matrix. Equality occurs if and only if the n x 2 matrix (x,y) has rank 1; 
that is, X and y are linearly dependent. I 

The Wielandt inequality. Let A be a nonzero nxn positive semidef-
inite matrix having eigenvalues Ai > A2 > • • • > An- The Wielandt inequal­
ity (see, e.g., [228, p. 443]) asserts that for all orthogonal x, y e C^, 

i^*^y|'^ ( x T r i ; ) (̂ *^ )̂(y*^y)- (3.1.9) 

Proof. (3.1.9) involves the quadratic terms x*Ax, x*Ay, and y*Ay. It is 
natural for us to think of the 2 x 2 matrix 

j^j ^ f a:*Ax x*Ay 
\ y*Ax y'^Ay 

If An = 0, (3.1.9) follows immediately by taking the determinant of 
M. Let An > 0. Then M ~ (x,y)*A(x,y) is bounded from below by 
\n{x,yY(x,y) and from above by Ai(a:,y)*(x,y). We may assume that x 
and y are orthonormal by scaling both sides of (3.1.9). Then An/2 < M < 
A1/2 and thus the eigenvalues A and ^ of M with X > fi are contained in 
[An, Ai]. Therefore j ^ < ^^~^" since | ^ is monotone in t. 



BLOCK MATRIX TECHNIQUES CHAP. 3 

An application of (3.1.8) to M results in 

\x*Ay\' < ( ^ ^ j {x*AxWAy) < ( ^ ^ ^ ^ ^ j {x*Ax){y*Ay). I 

In a similar manner, since t~j is an increasing function in t, by (3.1.6), 

\x*Ay\ < - -==^min{x*Ax , y*Ay} 

and, by (3.1.7), 

|xM^P < ( \ A i - A/A^)^ min{x*Ax, y'^Ay}. 

A theorem of Mirsky. The spreads of Hermitian matrices have been 
studied by many authors, especially by R. C. Thompson (see, e.g., [439]). 
Recall that the spread of a Hermitian matrix A is defined to be Spread (yl) = 
Amax — Amin, where Amax and Amin are the largest and smallest eigenvalues 
of A, respectively. It is shown in [315] and [316] that 

Spread(A) = 2sup|ifc*A^|, (3.1.10) 
u,v 

where the "sup" is taken with respect to all pairs of orthonormal u,v. 

Proof. To show (3.1.10), place u'^Av in a 2 x 2 matrix as follows: Let 

Let [/ be a unitary matrix with î , t' as the 1st and 2nd columns. Then 

U*AU=(^ * 

By the interlacing eigenvalue theorem, [Amax — Aminl ^ |A — Â |, where A 
and jji are the eigenvalues of M. On the other hand \\ — ii\ > 2\u'Av\ hy 
(3.1.4). It follows that Spread(A) > 2\u"'Av\. For the other direction of the 
inequality, that Spread(^) < 2sup^^ |ti*At'| is seen, as in [316], by taking 
u = -^{x -\- iy) and v = 4^(x — iy), where x and y are the orthonormal 
eigenvectors belonging to the eigenvalues A^ax and Amin, respectively. I 

We remark that (3.1.10) is proved in two separate papers. The inequal­
ity ">" follows from a discussion on the results of normal matrices in [315, 
Equation (6)], while "<" is shown in [316]. 
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Positivity and inner product. Let X G C^^'^. It is well-known 
that X > 0 <^ {X, Y) > 0 for every n x n positive semidefinite matrix Y. 
It would be tempting to generalize the statement for partitioned (block) 
matrices X, namely when X is given in a partitioned form. An existing 
result (see [228, p. 473]) has shed light on this: With A > 0, C > 0, 

^* C ) - ^ ^ 1^*^^!' - (^*^^)(2/*C'2/) for all X, y, 

Equivalently, by writing x*By = ti{yx'^B) = {B,xy*), we get 

B* C)-^ ^ [{B*,yx*) (C,yy*) ) - ^ - ^^-^'^^^ 

This generalizes to the following: 

whenever the conformally partitioned matrix 

P Q 

Proof, Let A G C^x^ , ^ G C"^^^, and C G C^^^. Then (3.1.11) ensures 
"4-" in (3.1.12) by taking P = xx*, Q = xy\ and R-^ yy"". For the other 
direction, let W be an (m + n) x (m + n) matrix such that 

^ ^ ] =z WW* 

Let U and V be the matrices consisting of the first m rows of W and the 
remaining rows of W^ respectively, and denote the ith column of U by Ui 
and the ith column of V by vi for each i. Then 

m-\-n m-\-n m-\-n 

P = ^ UiUl, Q = ^ UiVl, R = ^ '^i'^i-
i=l i=l i=l 

By using (3.1.11) again, the block matrix with the inner products in (3.1.12), 
when written as a sum of (m + n) positive semidefinite 2 x 2 matrices, is 
positive semidefinite. I 

Note that the positive semidefiniteness of the block matrix with inner 
products as entries in (3.1.12) implies the trace inequality 

I tr(5Q*)p < ti{AP) tr{CR). (3.1.13) 
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This trace inequality will be extensively used later. As an application, 
for any positive definite X 6 C™^'" and A, B G C"*^", since block matrices 

X I \ ( AA* AB* 

I X - i ; 1̂  BA* BB* 

are both positive semidefinite, we obtain the known trace inequality 

\tx{A*B)\'^ < tx{A*XA)tx{B*X-^B). 

In what follows we make use of (3.1.12) to the block matrix 

\A*\ A A* 1̂ 1 , > 0. (3.1.14) 

Notice that (3.1.13), applied to (3.1.14), shows the trace inequality 

I tr(A0*)|2 < tr(|A*|P) tv{\A\R) (3.1.15) 

whenever 

Following are immediate consequences of (3.1.15) for a square A. 

Case 1). Setting P = Q = R=:I yields | tr A| < tr |^ | ([468, p. 260]). 

Case 2). Putting P = Q = R= J^ the matrix all whose entries are 1, 

|E(A)|2<E(|A*|)E( |A|) , (3.1.16) 

where E (X) = Ylij ^ij is the sum of all entries of matrix X — {xij). Note 
that (3.1.16) implies |S(A)| < S(|74|) if ^ is normal (not conversely). 

Case 3). Letting P = |A|, Q = A*, and i? == |A*|, we obtain 

\tvA'\<tr{\A\\A^\). 

Note that ti{AA*) < tr{\A\ \A*\) is not generally true while it is valid that 

ItrA^I <tr(^^*). 

Case 4). Replacing P , Q, and R with yy"^, ?/x*, and xx*, respectively, 

\{Ax,y)\'<{\A\x,x){\A*\y,y). (3.1.17) 

Setting X — y in (3.1.17) leads to the statement on matrix normality: 

\{Ax,x)\<{\A\x,x) iov diWx eC^ ^ A is normal (3.1.18) 
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or 

|(Ax,x)| < (|A*|x,x) for a l l x G C ^ <=> A is normal (3.1.19) 

which have appeared in [247] and [157]. 
The sufficiency of (3.1.18) or (3.1.19) is immediate from (3.1.17), while 

the necessity is done in the same way as in [247] or [157] by an induction on 
n by assuming A to be upper triangular and by taking x = (1, 0 , . . . , 0)'^. 

If we use (3.1.13) and take the positive semidefinite matrices 

(j^ax(A)/ A \ ,^^ f yy" 2/̂ * 

we may obtain a representation of the spectral norm (see, e.g, [468, p. 91]) 

Crmax(A) == s u p \{Ax,y)\, 
lklNlli/ll=i 

where the "sup" is attained by taking x and y to be the first columns of 
the unitary matrices V and [/, here A = U didig{amax{A),..., an{A))V^. 

More generally if we take, in (3.1.15), the positive semidefinite matrix 

p Q \ __ f XX* x y * 

g* R J ~ \ YX'' YY* 

we get, for A G C^^^, X e C^>< ,̂ Y G C^^^, 

| t r (X*Ay) |^<tr(X*|yl* |X)tr(y* |A|F) , 

with which we can derive the representation (see, e.g., [230, p. 195]) 

J2''^(^) = ^^^^^^^^^.J\''i^*^n-- X*X = h^Y*Y}. (3.1.20) 
i=l ' 

To show (3.1.20), note that if P is n x n positive semidefinite having 
eigenvalues Ai > • • • > A ,̂ and U e C^^^ is such that 17*[/ = Ik, then 
tr(^*PC/) < Ai + h Afc. Noticing that \A*\ and \A\ have the same 
eigenvalues, we have for X G C^><^ and Y G Ĉ ><̂  with X*X = 4 = y * F , 

tr(X*|A*|X) and tr{Y''\A\Y) < ai{A)+ -" +ak{A). 

Thus 
| t r (X*Ay) | <ai{A)-^'-- + ak{A). 

For the other direction, let A = VDW be a singular value decomposition 
of A with the 2th largest singular value of A in the (i, z)-position of D for 
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each z, where V and W are rnxm and nxn unitary matrices, respectively. 
Then the extremal value is attained by taking X and Y to be the first k 
columns of V and W*, respectively. 

The representation (3.1.20) is traditionally and commonly proved through 
stochastic matrix theory [301, p. 511] or by eigenvalue and singular value 
inequalities for matrix product [230, p. 196]. The case k = 1 was discussed 
previously. For the case k = m = n (see, e.g., [228, p. 430]), we have 

ai{A) -h cr2(^) + • • • -f an{A) = max | ti{UA)\ 
unitary U eMn 

which is also proved by taking the positive semidefinite matrix in (3.1.15) 

P Q \ ^ ( I t/* 
Q' R ) \U I 

The representation (3.1.20) implies at once (see, e.g., [301, p. 243]) 

Theorem 3.1 (Ky Fan) Let A, Be C"^ '̂̂  andl<k< min{m, n}. Then 

k k k 

i=l i=l i=l 

that is, in the notation of majorization, 

(7{A-^B) -<^a{A)^-a{B). 

This theorem reveals that Nk{A) := X^^^i cFi{^) is a unitarily invariant 
norm for any k < min{m, n}; it is usually refered to as Ky Fan k-norm. 

3.2 A matr ix inequality and its consequences 

In this section we demonstrate how to use the Schur complement to obtain 
matrix inequalities. Much of the material of this section is taken from [469]. 

Let A > 0. It is easy to see that for any matrix X of appropriate size, 

X* X*l-^x)^' (3.2.21) 

and that X"" A ^X is the smallest matrix such that (3.2.21) holds; namely, 

> 0 ^ Z>X^A-^X. 
X* Z 
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In case where X*A~^X is nonsingular, taking the Schur complement of the 
(2,2)-block in the block matrix in (3.2.21) shows, with A~^ replaced by A, 

In particular, if X*X = / , then, by pre- and post-multiplying X* and X, 

(X*AX)-i < X*A-^X. 

Many matrix inequalities may be obtained similarly. For instance, since 

/ -h A* A A* + B* \ / / A* \ / / 5* 
A + B 1 + BB"" J \ B I J \ A I ' - ^ 

for any matrices A and B of the same size, and since / H- A*A is always 
positive definite, by taking the Schur complement of I -\- A*A^ we arrive at 

I + BB* > {A^B){I + A''A)-\A + By, 

which yields, when A and B are square, 

det(/ -h A*A) det(J -h BB*) > \det{A + B)f . 

Recall Theorem 1.20 of Chapter 1 that if A is an n x n positive semidef­
inite matrix and X is an n x m matrix such that the column space of X is 
contained in that of A, with A^ for the Moore-Penrose inverse of A, then 

^ ^ ^ >0 
X* X M t X J -

Theorem 3.2 Let Ai be n x n positive semidefinite matrices and Xi be 
nxm matrices such that the column space of Xi is contained in that of Ai, 
for i = 1,2,.. .,/c. Then 

Y,^^X^] E^^^O E^^^O ^E^^^^A^^- (̂ •2-22) 

Proof. Put 

« • = ' x} XMlX ' ^ » 
and let a i -h 0̂ 2 H- i- <̂ /c = 1, where all a^ > 0. By taking the sum, we 
have 
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Taking the Schur complement, we obtain the desired inequality. I 

Theorem 3.2 is discussed in [259] for the nonsingular case of k matrices, 
in [213] for the nonsingular case of two matrices, in [284] in the Hilbert 
space setting, in [179] for the singular case in terms of generalized inverses, 
and in [106] for the generalized inverse case of two matrices. We notice from 
the proof that the theorem obviously holds for the Hadamard product. 

As consequences of (3.2.22), we have the following results that have 
appeared in a fragmentary literature: For any n x n positive semidefinite 
matrices A and B (nonsingular if inverses are present), n x m matrices X 
and y , and scalars a and (3 such that a -\- f3 = 1, a , / 3 > 0 , 

{X + Yy{A + B)-^ {X-{-¥)< X'^A-^X + V'B-^Y; 

{aX + f3Yy{aX + (3Y) < aX*X + /?y*y; 

{aA + f3B)-^ < aA-^ + fSB'^; 

{aA + fiBf <aA^^pB^; 

{aA-^(3Bf/^>aA^/^ + pB^I\ 

We now present an explicit matrix inequality and discuss the related 
ones. Even though the inequality is obtainable from a later theorem, it is 
in a simple and elegant form and has many interesting applications. For 
this reason, we prefer to give a direct and elementary proof of it. Notice 
that if M > 0 and a is an index set, then the principal submatrix M[a] > 0. 

Theorem 3.3 Let M > 0 and let M[a] he nonsingular. If (3 <^ a^, then 

M[(3] > M[(3,a]M[a]-^M[a,(3]. (3.2.23) 

Proof. This is because the block matrix, a principal submatrix of M, 

M[a] M[a,p] 
M[/?,a] M[/3] 

is positive semidefinite. Taking the Schur complement reveals (3.2.23). I 

The following are immediate consequences of the above theorem. 

Corollary 3.13 Let ( B * c ) ^ ^̂  ^^ ^^^"^^ ^ ^ C^'' ' ' ^^^ ^ ^ ^ '^ ' ' ' ' 
Let a C {1, 2 , . . . , n}, /? C {1, 2 , . .» ,m}; and A[a] be nonsingular. Then 

C[f3]>B*[f3,a]A[ar'B[a,/3]. 
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Corollary 3.14 Let A he an nx n positive definite matrix. Then for any 
mxn matrixX and any index sets a C {1,2, . . . ,n} and(3 C {1, 2 , . . . ,m} ; 

X*[/3,a]yl[a]-iX[a,/3] < (X*^-^X)[/3]. (3.2.24) 

In particular, for any A> ^ and any matrix X, both nxn, 

X*[a]A[a]-iX[a] < {X""A-^X)[a]. (3.2.25) 

Proof. By (3.2.21) and the above argument, it is sufficient to note that 

/ A\a] X[a,/3] \ 

We now show some apphcations of the theorem. 

Application 1. Let Ahe n x n positive definite and a — {1 ,2 , . . . , A:}, 
where 1 < A: < n. W i t h i n ( 1 ) 0 ^ , X = / n + i , a == {1, 2 , . . . , A: + 1}, and 
yS = {2, 3 , . . . , n -f- 1} in (3.2.24), by computation, one gets 

^^f' S)<^~'- (3-2.26) 

Inequality (3.2.26) may generalize for any a by permutation similarity. 
As a result of (3.2.26) (or from (3.2.25) with X = / ) , one gets 

A\a\-^ < A-\o\. (3.2.27) 

Application 2. For A,B E C"^", since the Hadamard product Ao B is 
a principal submatrix of the Kronecker product ^ (g) B, we may write 

AoB = {A^B)\a]. (3.2.28) 

It is immediate from (3.2.27) that for any nxn positive definite A, B, 

A - ^ o B - i = {A-^ ® B-'^)[a] 

= {A®B)-^[a] 

> {{A®B)[a]r' 

= {AoBy\ 

In a similar manner, noticing that for any X, Y € C"^", 

{X*A--^X) ® {Y*B-'^Y) = (X* O Y*){A O B)-\X ® Y). 
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By (3.2.25), we have (see, e.g., [468, p. 198]) 

(XM-^X) o {V^B-^Y) >{Xo Yy{A o B)-\X o Y). 

Application 3. Taking A — I m (3.2.25) yields for any matrix X, 

X''[a]X[a] < (X*X) [a] (3.2.29) 

In particular, if X* = X, then 

X[af<X'^[a]. 

As an application of (3.2.29), if iJ is a positive definite matrix, we write 
H — CC*, a Cholesky factorization of iJ, where C is lower triangular with 
positive diagonal entries. Since Co C~^ = / , where C~^ = (C~^)^, and 

H 0 H-^ = (C 0 C-^)(C* 0 C - ' ) , 

we have 
H o H-^ >{Co C-^){C'' o C'^) - / . 

Inequality (3.2.29) yields at once: For any X G C^""^ and F G C^^'"^ 

(y*x*)[c^](xy)[a] < (y*x*xy)[a]. 

We next present a matrix inequality that generates a large family of in­
equalities, old and new, including (3.2.23) and many more on the Hadamard 
product. Such a technique by embedding the Hadamard product into a Kro-
necker product as a principal submatrix is often used for deriving matrix 
inequalities on the Hadamard product. 

Let A — {Aij)1j^i and B = {Bij)fj^i be 2 x 2 block matrices. We write 
the 2 x 2 block matrix with the Kronecker products of the corresponding 
blocks of ^ , ^ as 

..BM..,«.,, = (!:;If.; t'lf;^). 
It is easy to see that A^B is a submatrix oi A<^ B. Moreover A^B > 0 

if ^ , 5 > 0 and each diagonal block of A and B is square [233]. 

Theorem 3.4 Let H, R e C^x"^ and K, S e C^^^ be positive definite 
matrices. Then for any A, C e C^^"^, B, D e C9>< ,̂ U, V e C^^^ with 
rank(t/) = r or rank(F) = r, and for any real numbers a and b 

a^iAH-^A"") ^ {BK-^B"") + b^iCR-^C") 0 {DS'^D'') > 

{aAU''^B-\-bCV''®D){UHU''®K-^VRV''®S)~^{aUA^®B''-VbVC''®D''). 
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Proof. Note that if T > 0, then for any matrix X of appropriate size, 

T X* 
X XT-^X* ' " •̂ 

Thus, by pre- and post-multiplying the first row and the first column of 
the 2 x 2 block matrix by Y and F*, respectively, we have 

y r y * y x * \ 
XY* XT-^X* J -

Therefore the following block matrix M, the sum of two block Kronecker 
products, is positive semidefinite: 

Ayr - I ^ ^ ^ * ^ ^ ^ * \^f ^ ^ * 

bCV* b^CR-^C* J \ D DS-^D* 

The (1, l)-block of M is C/iJI7* ^K + VRV 0 5 , which is nonsingular 
since rank(f/) = r or rank(F) = r implies the invertibility of UHU* or 
VRV*. Taking the Schur complement in M gives the desired inequality. I 

In what follows we show that many existing inequalities (mainly on the 
Hadamard product) are in fact consequences of Theorem 3.4 by making 
special choices of the following numbers and matrices: 

m, n, a, 6, H, R, K, 5, A, B, C, D, U, V. 

Case 1. Take n = l, i ^ = - 5 = ^ = i:) = (1), U = V -:-Im- Then 

a^AiJ-^A*-f 6^Ci?-^C* > (aA + 6C)(i/-hi?)"HaA*-h6C*). (3.2.30) 

Setting a == 6 = 1 in (7.6.9) reveals the Haynsworth's inequality [213] 

Ai7-M* + CR-^C" >{A^ C){H -I- Ry^A + C)*. 

The case where A and C are vectors were discussed in [294] and [47]. 
Setting A = C = / in (7.6.9) results in 

a^H-^ + h^R-^ > (a + hf{H + R)'^, 

which is equivalent to the matrix inverse convexity inequality: For t G [0,1], 

tH~^ -h (1 - t)R-^ > {tH + (1 - t)R)~'^ . 
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Case 2. Set a = 1, 6 = 0, ^ = / , \/ = 0, and use (3.2.25) to get 

AH-^A"" o BK-^B'' >{Ao B){H o K)-^{A o Bf. 

It is immediate that, by taking H — K — I^ 

AA"" o 5 5 * >{Ao B){A o By (3.2.31) 

and that, by setting A=^ B = I, 

H-^oK-^ >{HoK)-\ 

Replacing K with H~^ yields 

HoH-^ > / . 

It is immediate from (3.2.31) that for any nxn matrices A, 5 > 0, 

A^oB^> {AoBf. 

Thus for A, 5 > 0, 

( A o 5 ) i >A^oB^. 

Case 3. Let H = K = R=^S = U = V = I. Then 

a^AA"" (g) 5 5 * + b^CC' 0 DD* 

>^{aA^B + hC^ D){aA* 0 5 * + 6C* 0 D*) 

= -{a^AA* 0 5 5 * + abAC 0 5 5 * 

+a5CA* 0 5 5 * + ^^CC* 0 5 5 * ) . 

Using (3.2.28) and (3.2.29), we have 

a^^A* o 5 5 * + ^^CC* o 5 5 * 

> ^(a^ylA* o BB* -f a6AC* o BD* 

+abCA* o 5 5 * + b'^CC' o 5 5 * ) 

> ^(aA oB + bCo D){aA'' o 5* + 6C* o 5*). 

Take C = 5 , 5 = A, and multiply through by 2. Then 

2(a^ + 62)(A^*o55*) 

> (a^ + 62)(AA* o BB"") + 2abAB'' o 5A* 

> (a + 6)2(Ao5)(A*o5*) . 
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Setting k = 2ah/{o? + 6^), then k G [—1,1]. The first inequality yields 

AA"" o BB"" > kAB"" o BA"" 

and the second one implies [448] 

AA^ o BB"" + kAB"" o BA* > (1 + k){A o B){A o Bf. 

In particular, 
A^* o 5 5 * > ±A5* o 5A* 

and 

A^* o 5 5 * > i(ylA* o 5 5 * + A5* o 5A*) > (^ o 5)(yl o 5)*. 

Ca^e >̂ . To show that Theorem 3.4 implies Theorem 3.3, we notice that 
for any m x n matrix M, a C {1, 2 , . . . ,m} , and /? C {1, 2 , . . . , n } , 

T M[a,l3] = SocMS\ 

where S^ is the |a| x n matrix whose j th row is the n-vector with 1 in the 
Qfjth position and 0 elsewhere. It follows that for any A^ B ^ C"^^'^, 

A o 5 = (A O 5)[a,/?] = Sa{A 0 5 )S^ , (3.2.32) 

where a = {l ,m-^ 2,2m-f 3 , . . . ,m^} and/? = { l , n + 2 , 2n + 3 , . . . ,n2}. 
Now we take a - = l , 6 = 0, B = K = (1), F == 0, and C/ = Sa to get 

AH-'A* > {ASl){Sc.HSl)-\SaAn-

Pre- and post-multiplying respectively by Sp and SI yields inequality (3.2.24). 
Note that S^ and S/5 are the only matrices of zeros and ones that satisfy 

(3.2.32) for all m x n matrices A and 5 . It can be shown that SaS'^ = I 
and 0 < SJScK < I and that there exists a matrix Qa of zeros and ones 
such that the augmented matrix (Sa^Qa) is a permutation matrix [448]. 

3.3 A technique by means of 2 x 2 block matrices 

In this section we continue to present matrix inequalities involving the 
sum and the Hadamard product of positive semidefinite matrices through 
2 x 2 block matrices. Two facts which we shall use repeatedly are A, B > 
0 ^ A -\- B, A o 5 > 0. In addition, for x = (x i , . . . ,Xn), we denote 
|x| = {\xi\,...,\Xn\)-
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Theorem 3.5 Let H and K be n x n Hermitian matrices. Then 

( K ^ ) > 0 ^ ± ^ < ^ ^ \K^)\ ^ - K^) ^ ll^ll < W\- (3.3.33) 

Proof. The implications "<=̂ " follow from the identity via *-congruence: 

^/2\ 
' I -/)] {ID . ^ \ ' Ml f H-K 0 

^ I, 0 H + K 

The second "=^" is immediate from (3.0.1). (If iJ > 0, "<=" also holds.) 
For the first "=>", note that the singular values of K are the absolute 
values of the eigenvalues of K. Since ±K < H yields ±11"'KU < U*HU 
for every nxn unitary matrix 17, without loss of generality, we may assume 
that K = diag(A:i,..., kn) is a diagonal matrix with ki > • - - > kn- Thus 
:tK < H implies that ib/ĉ  < ha^ i.e., \ki\ < ha for i = 1, 2 , . . . ,n, where 
hii are corresponding diagonal entries of H. 

On the other hand, by the eigenvalue interlacing theorem, 

m m 

2=1 i=l 

where Hm denotes the mxm leading principal submatrix of iJ, m < n. So 

m m m m 

i=l 2 = 1 2 = 1 2 = 1 

It follows that 
\X{K)\ ^^ X{H). I 

The eigenvalues of the block matrix ( ^ ^ ) are those of H ± K. A 

proof of "<^" in (3.3.33) for the real case of H and K is given in [168] via 
quadratic forms, and a characterization of the matrices iT, which comprise 
a convex set for the given H by trace inequalities, is presented in [42]. Some 
similar or stronger results are seen in [53, 231, 467, 470]. Moreover, we note 
that H > ±K and H > \K\ are not equivalent. Take, for example, 

^ = ( 2 4 ) and X = ( ^ _̂ 3 

Then 
±K <H but \K\ % H. 
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Notice that H > \K\ => H > ±K. It is also worth noting that 

H K \ _( H-K 0 \ ( K K 
K H ) ~ \ 0 H~K)^\K K 

We now show our basic inequaUties that easily follow from (3.3.33). 

Theorem 3.6 Let A, B, and C be n x n matrices such that 

A B 
B* C ) ^ ^ -

Then, with ^ for sum + or the Hadamard product ô  

± ( 5 * ^ ^ ) <Ai<C (3.3.34) 

and, for any unitarily invariant norm || • || on C^^^, 

\\B*i.B\\ < \\Ai.C\\. (3.3.35) 

Proof. Since the partitioned positive semidefinite matrix through a per­
mutation congruence transformation is also positive semidefinite, we have 

A B \ f C B* \ _ f AirC ^ * ^ 5 \ 
5* cJ'^yB A ; V^*^^ A^c J-

Thus both (3.3.34) and (3.3.35) follow from Theorem 3.5. I 

Note that B* • B < A ^ C alone does not imply ||B* ̂ 5 | | < | | ^ ^ C | | . 
Applications of Theorem 3.6 to some 2 x 2 block positive semidefinite 

matrices that we frequently encounter result in certain interesting inequal­
ities. We present some as examples. Assume in the following that matrices 
A, B, and C are all nxn. (Some results also hold for the rectangular case.) 

Application 1. Since I i ^̂  j for any ^ > 0, we have 

2A^<A^-I and A^ oA^ <AoL 

In particular, if >1 is a correlation matrix (all an — 1), then A"^ o A^ < I. 
For a pair of positive semidefinite matrices A, B of the same size, 

A A i ^ i \ Q ^ ±{A^B'^^B"^A^)<Ai.B. 
B2A2 B J ~ 

Application 2. Note that ("^^ ^ j > 0 for all square matrices A. So 

-̂f- ^* < / + A^A, AoA'^<Io AM. 
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More generally, since ( '^j^ |^*p(i-a) ) > 0 for any a e [0,1], we obtain 

In particular, taking a = | , we have 

±{A + yl*) < 1̂1 + 1̂ *1, ±{A o A*) < \A\ o 1̂*1 

and for any unitarily invariant norm 

||A + A * | | < | | | / l H - | ^ * | | | , | | A o > l * | | < | | m o | ^ * | | | . 

We point out that |A + A*| < |A| + 1̂4*1 does not hold in general as the 
following example, due to G. Visick, shows (there is an error in 3i) in [470]) 

/ I 0 1 \ 
A= \ 1 0 - 1 . 

\ 0 1 Oj 

Application 3. Let A, B he n x n and both positive definite. Then 

A I \ f B-^ I \ f AoB-^ I 
I A 

It follows that 

I A-^ r [ I B ] = [ I A-^oB I ^ O -

AoB~'^+BoA-^ >2I. 

Taking B — A shows 
AoA-^ >I. 

Application 4- Let A, B hemxn matrices. Then f g,^ B'B) —^- ^° 

±{A*Bi.B*A) < A*A-kB*B. 

By (3.3.35), we have [53] 

\\A*B + B*A\\ < \\A*A + B*B\\ 

and 
\\A*BoB*A\\ <\\A*AoB*B\\. 

Application 5. Let A, B hem x n matrices. Then 

A* A A* \ f I B* \_fI+A*A A* + B* , 
A I r^ [ B BB* ~ [ A+B 1 + BB* ' " 
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It follows that 

(^ + ^ ) o (^ + By < (/ + AM) o (/ + BB""). 

In a similar fashion 

>0 . 
A*A A* \ f B*B B"" \ _ ( A^'AoB'^B yl*oJ5* 

A I ) ' ^ \ B I ) ~ \ AoB I 

This reveals 
y l o 5 + y l * o 5 * < / - f A* A o B*B 

and 
A* o A o 5* o ̂  < diag(AM o B*B). 

We end this section by presenting a set of singular value inequalities 
concerning matrices A*B^ AA*, and BB* [52, 53]. 

Recall that for any n x n Hermitian matrices H and K (see (2.0.9)), 

Xt{H + K)< Xi{H) + Xj{K), if i + j = t + 1 

and 
Xt{H ^K)> Xi{H) + Xj{K), if i + j = t + n, 

here the eigenvalues As are enumerated in decreasing order. Thus, we have 

Xt{H^K)<Xt{H)^Xi{K) 

and 

Xt{H + K)> X2t-i{H) + Xn-t+i(K). 

Lemma 3.5 Let H and K be n x n positive semidefinite. Then for t <n, 

-\t{K)<\t{H-K)<\t{H). 

Proof. The second inequality follows by writing H — K = H + {—K): 

Xt{H -K)< Xt{H) + Ai(- i f) = \t{H) - \n{K) < Xt{H). 

Likewise, 

Xt{H -K)> X2t-i{H) + Xr,-t+i{~K) > X2t-i{H) - Xt{K) > -Xt{K). I 

Theoremi 3.7 Let A^ B be m x n complex matrices and denote by cri{Z) 
the ith largest singular value of matrix Z. Then for i = 1, 2 , . . . , min{m, n}, 

2cr^(A*J5) < cr^(AA* + BB""). 
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Proof. Let • ^ = ( 0 0 ) ^'^'^ ^ ~ ( 0 - / ) • Upon computation, we have 

^^, _f AA* + BB* 0\ y,^_fA*A A*B 
^^ - [ 0 0 ) ^ ^ ^~[B*A B*B 

and 

X*X - U{X*X)U* = ( 2^1^ ^^J^ \ := Y. 

Notice that the first n eigenvalues of Y are the singular values of 2A*B. 
On the other hand, by Lemma 3.5, we see for each i =^ 1,2,... , min{m, n}, 

-XiiU{X^X)Un < Xi{Y) < A,(X*X). 

It follows that 
~Xi{X^X) < Xi{Y) < XiiX'^X) 

or 
cTi{Y) < A,(X*X) = Xi(XX^) = ai{AA' + BE*). I 

The following result on unitarily invariant norms is immediate [53]. 

Corollary 3.15 For any unitarily invariant norm onC'^^'^, A, B G C^^^ 

\\A*B + B*A\\ < 2||A*^|| < \\AA* + B5* | | . 

More generally [52], for arbitrary n x n matrices A, B^ X, 

2||A*X5|| < WAA^'X + XBE^W. 

3.4 Liebian functions 

We have seen many inequalities on trace, eigenvalues, and unitarily invari­
ant norms in the previous sections. We now study a larger class of matrix 
functions and continue to derive inequalities through block matrices. 

If A, B, and C are n x n complex matrices such that 

B* C ) - ' 

then, by taking the Schur complement, we have C > B*A'^B, and thus 

|detS|2 < d e t ^ d e t C . (3.4.36) 
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There are many other inequalities resembling (3.4.36). For example, 
(3.4.36) holds for trace, the spectral norm, as well as unitarily invariant 
norms; all of these are members of a larger class of matrix functions. 

A continuous complex-valued function £ on a space of matrices is said 
to be a Liebian function if it is positive, i.e., A>0=> ^{A) > 0, and if 

Each of the following is a Liebian function [51, p. 269], [420, p. 99]: 

• trace tr(>l); 

• determinant det{A); 

• spectral radius p{A) = max^{|A^(A)|}; 

spectral norm crmax(^); 

• unitarily invariant norm ||A||; 

• unitarily invariant norm \\A\\P for ; 

• product of first k largest eigenvalues in absolute values Y[i=i I^*(^)l5 

• product of first k largest singular values Yli=i ^i(^)-

As is well known, M = ( g . c ) > 0 ^ W ^ > 0 and the converse is 
true if M = M*, A > 0, and if the space spanned by the columns of B is 
contained in that of A (Theorem 1.19). Thus one may verify that for any 
A > 0 and z G C, the following 2x2 block matrices are positive semidefinite: 

A A \ ( \z\A ZA \ ( A I \ .r A r. ^n A n^^ 

A A ) ^ [ ZA \Z\A)' [ I ^ - 1 j i f ^ > 0 - (3-4.37) 

In what follows we exhibit some examples of matrix inequalities on 
sum, Hadamard product, and on determinant, unitarily invariant norm; 
some are Cauchy-Schwarz type. These examples or results have appeared 
in the literature and have been employed to deduce many other advanced 
and sophisticated inequalities by a number of authors (see, e.g., [51, 230]). 

Example 1. Since 

A* \ f A^A A*B \ 
^ B* J ( ^ ' ^ ) " y B'A B-'B j - ^ ' 

we have 
|/:(A*5)|2 < £(A*A)£(5*5). 
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In particular, for any unitarily invariant norm || • || (see [232] or [230, p. 212]) 

WBf < P M | | ||5*5||. 

More generally, let Ai and Bi he rrii x n matrices, i = l,2,...,A:. Then 

^̂* '^{AuB,)^( jJA' 5!?' ^ >0. 
B* B*Ai B*Bi 

It follows that 

Thus [51, p. 270] 

ZA*A E^tBi 
ZBtAi Y.B*Bi 

>0 . 

1 ^ ,2 1 

< 
1 ^ II 

U = l II 

II ^ 1 

l u = i 1 

Example 2. Let A, B>Q. Then for any ^ e C, by (3.4.37), 

A A 
A A 

\z\B zB 
zB \z\B 

A+\z\B A + zB 
A + zB A+\z\B 

For any unitarily invariant norm, we have (see [54, 470]) 

||A + zS| | < | | A + | z | B | | . 

More generally, let Aj e C and Ai> 0, i = 1,2,.. .,k. Then 

\Xi\Ai XiAi \_f Z\^i\Ai E A i A 

> 0 . 

E XiAi \Xi\Ai ) \ Y.^i^i T.\M^i 

For determinant, we have [354, p. 144] 

>0 . 

det yY^XiAi <det l^jAijAi j . 

Similarly, one can obtain the singular value majorization inequality: 

( k \ k 

Y.XiAi\ ^^^ |A,(^) |a(^,) . 
Example 3. Notice that for any matrix A^ 

A 
I 

;^)(.i*,/)^(^/ f 1 >o. 

file:///Xi/Ai
file:///Xi/Ai
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We obtain that 
k k 

for each fc, that is, 
k k 

Y[\\i{A)\<\lai{A), 

from which we may derive [230, p. 171] 

|A(^)| -<^ aiA). 

Example 4- Since for any matrices A and B of the same size, 

AA* A \ f I B \_({AA*)oI AoB \ 
A* I J ° \ B * B*B)~\{AOB)* IO{B*B) ) -^' 

we have, by (3.0.3), for every unitarily invariant norm || • || [230, p. 212], 

\\A o Bf < \\{AA*) o 7|| \\{B*B) o I\\ < \\AA*\\ \\B*B\\, 

which is a Cauchy-Schwarz inequahty for the Hadamard product, and 

k k k 

Yla^AoB) <Y[ai{AA* oI)l[ai{IoBB*). 
•i=l 2=1 i=l 

This imphes 
a^{A o B) -<^ A(AA* o /) o A(/ o 5*^) 

which yields, by (3.0.2), 

a{AoB) -<^ a{A)oa{B). 

Example 5. For any matrices A and B of the same size, 

1̂ 1 A* \ f \B\ B*\_f\A\ + \B\ (A + B)* . . . 
A \A*\}^\B \B*\ J ~ \ A + B \A*\ + \B*' ' - "• 

/2 

It follows that for any unitarily invariant norm [227] 

IJA + BIJ < | | |A| + |B | | | i /2 | | |A* | + |B*|| | i 

< i ( | | | A | + | S | | | + |||A*| + | S * | | | ) , 

which is the refined norm triangle inequality for normal matrices A and B: 

||A + 5| |<|11A1 + 1B|1|<| | /1 | | + | |5|]. (3.4.38) 
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The first inequality in (3.4.38), though it is very tempting, does not hold 
in general for nonnormal matrices A and B by taking the spectral norm, 
A= (ID and B = (J ~ô )5 while the second inequality holds for all A and 
B (the triangular inequality). Note that || \X\ \\ = \\X\\. The analog of 
(3.4.38) for the Hadamard product of normal matrices should read 

P o 5 | | < | | | ^ | o | 5 | | | < P | | | | S | | . (3.4.39) 

Its proof is parallel to that of (3.4.38), and likewise the first inequality in 
(3.4.39) is false for nonnormal A and B in general [231], whereas the second 
inequality, which is essentially the same as | |AoB| | < ||^|| | |^| | , A, J5 > 0, 
has been known to hold for all positive semidefinite A and B of the same 
size. We note here that the Hadamard submultiphcativity of a unitarily 
invariant norm is equivalent to the conventional submultiphcativity of the 
norm; that is, \\X o Y\\ < \\X\\ \\Y\\ for all X and Y if and only if | |Xy || < 
||X|| | | r | | for all X and Y (see, e.g., [229] or [230, p. 335]). 

3.5 Positive linear maps 

Let M be an n X n matrix and let a C {1, 2 , . . . ,n} be a nonempty in­
dex subset. Two elementary but interesting known results on Hermitian 
matrices (see, e.g., [468, p. 177]) are 

A'^[a] > A[a]'^, if A is Hermitian 

and 
^~"̂ [< ]̂ > ^[o;]""^, if ^ is positive definite. 

Generalizations of these beautiful inequalities to primary matrix func­
tions involve matrix monotonicity and convexity and have attracted a lot 
of attentions [121]. Notice that the map A i-̂  A[a] is linear and positive; 
namely, ^[a] > 0 if ^ > 0. This idea of "extracting a principal submatrix" 
works well for more general positive linear maps; a map $ from the n x n 
complex matrix space to a matrix space is positive linear if ^ is linear and 
preserves positivity, that is, X > 0 ^ ^{^) ^ 0-

Let ^ be a normal matrix and let A = Yl7=i ^i^i^l ^^ ^̂ le spectral 
decomposition of A, where Â  are the eigenvalues of A and ui are the or-
thonormal eigenvectors belonging to Â  [468, p. 241]. Then Y^=i'^i^t ~ ^ 
and \A\^ — XlILi V^if'^i'K, ^̂ ^ ^^y ^̂ ^̂  ^- (Conventionally, we assume 
0° = 0.) Let <l> be a positive linear map. If A is Hermitian, then so is ^(A). 

Notice that for any A G C, a G [0,1], and ^ > 0, the 2 x 2 block matrix 

\\f-B XB \ 

file:////f-B
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Since ^ is positive linear, each ^{uiU^) > 0. By (3.5.40), for i == 1, 2 , . . . , n, 

XMmut) |A,p(i-)^(z.,<) >o. 

Thus 

thus, 

^ I Xi^imu*) |Ai|2(i-«)$(ui<) ; - "' 

$(|^P") HA) 
^A)* $( |A|2(i-")) ' - ^ • 

By taking the Schur complement, 

$ ( m 2 ( i - " ) ) > $(A)*$ (|A|2")^ $(A). 

In particular, 

(3.5.41) 

$( |A|) >$ (A)*$( | ^ | ) ^$ (A) . 

And also, for unitarily invariant norms, 

||$(A)|f < 11$ (|A|2«) II 11$ (|A|2(i-")) 

Putting ct—^, 

mA)\\ < m\A\)\\. 
If V is unitary, then 

mv)\\ < ii$(/)ii. 
In addition, by (3.3.34), (3.5.41) shows 

Similarly, noticing that A* A = J27=i IM'^'^i^i and A~^ = XlILi K^^i'^t 
when A is nonsingular, one arrives at 

( $(A)* $(AM) j ^ 0 and (̂  ^̂ ^̂  ^^^_i^ j > 0. 

Thus if # is further normalized; that is, it maps identity to identity, then 

$(A*A) > $(A)*$(A). 

If A is Hermitian, in particular, 

$ ( A 2 ) > $(A)2, (3.5.42) 
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and, if A is positive definite, 

^{A-^)>^{A)-\ (3.5.43) 

(3.5.42) belongs to Kadison [251] in the setting of C*-algebras. Both 
(3.5.42) and (3.5.43) are consequences of a result of Choi [120] which as­
serts that ^{f{A)) > f{^{A)) for all Hermitian matrices A, operator convex 
functions / , and normalized positive linear maps ̂ . 



Chapter 4 

Closure Properties 

4.0 Introduction 

Our purpose here is to understand matrix classes that enjoy closure proper­
ties under Schur complementation. In the process, certain other inheritance 
properties within classes are also encountered. 

In this and the next two sections, we assume that all matrices are square, 
have entries from a designated field F and are principally nonsingular {PN)^ 
that is, all principal minors are nonzero. If A is n x n and a C AT = 
{1,2, . . . ,n} is an index set, the Schur complement in A of the principal 
submatrix A[a] is, from (1.7) when /? = a, 

A/A[a] = Ala""] - A[a'',a]A[a]-^A[a,a'']. 

Throughout this chapter, we assume that a is a proper subset of N. 
In order to understand closure, we need to be able to refer generally 

to square matrix classes defined in all dimensions. To this end, let Cn 
be a set of n X n PA^-matrices and let C = UlLi^^- -^^ ^~^ ^^ mean 
{ A~^ : AeC}. We say that C is a SC-closed if for any AeC, A/A[a] G C, 
when it is defined (i.e., A is n x n over ¥, a C N). Class C is a hereditary 
if A G C implies A[a] G C, when it is defined. If C is a 5C-closed {a 
hereditary) for all a, we say that C is 5C-closed (hereditary). As we shall 
see, there are interesting classes that are, for example, a S'C-closed for 
some a and not others. 

4.1 Basic theory 

We recall certain background that will be needed. 
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Theorem 4.8 (Jacobi's identity [228, p. 21]) Let A be annxn matrix 
over ¥, and a, (3 C N. Then, 

det^-^[a^/3"]== (_l)(E.e«^+E,G/3i) det A[I3, a] 

detA 

Typically, we apply only the case a — (3, which becomes 

detA-Ma1 = ^ ^ . (4.1.1) 
^ ^ d e t ^ ^ ^ 

The special case of Theorem 1.2 in which the block with respect to 
which the Schur complement is taken is principal will be of considerable 
use. 

Theorem 4.9 (The Schur complement and blocks of the inverse) 
If A is a nonsingular nxn matrix over ¥, a C N and A[a] is nonsingular, 
then 

A-'[a^]^{AIA[a])-\ 

A key property of the Schur complement is its nested sequential nature 
that comes from Gaussian elimination. The following is equivalent to the 
quotient formula, Theorem 1.4. 

Theorem 4.10 (Sequential property of Schur complements) Let A G 
Mn{F) be PN and suppose that a is a proper subset of N and that (3 is a 
proper subset of a^. Then, 

iA/Ala])/iA/A[a]m = A/A[aUp]. 

Proof, Identify the /? of Theorem 1.4 with aU (3 above and note that 
iA/A[a])[/3] = A[aU/3]/A[a]. I 

Theorem 4.3 has a natural connection with 5C-closure. It shows, for 
example, that S'C-closure follows from a 5C-closure for arbitrary index 
sets a of cardinality 1. 

We may now make several simple, but far-reaching, observations that 
substantially clarify questions of S'C-closure. The first is the key. 

Theo rem 4.11 The class C is a SC-closed if and only if the class C~^ is 
a^ hereditary. 

Proof. Use the identity of Theorem 4.2. First, suppose that C is a SC-
closed and let AeC. Then A/A[a] G C, so that {A/A[a])-^ G C'^. Thus, 
^"-^[0;^] G C~^ and C"^ is a^ hereditary 

Conversely, if C~^ is a^ hereditary and AeC, then ^~-^[a^] G C~^. 
Then, {A/A[a])-^ G C"~\ which means that {A/A[a]) G C and C is a SC~ 
closed, completing the proof. I 

It follows readily that 
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Corollary 4.16 The class C is SC-closed if and only if the class C~^ is 
hereditary. 

It is not immediately clear whether Theorem 4.4 and Corollary 4.1 is 
more useful to exhibit 5C-closure of one class or heredity in another class. 
In fact, depending upon the class, they could be useful in either way. How­
ever, two further observations are worth making. 

Corollary 4.17 If a class C is (a) hereditary, then its inverse class C~^ 
is (a) SC-closed. 

As, here, we are primarily interested in S'C-closure and many classes are 
obviously hereditary, many examples of 5C-closed classes may be readily 
verified. 

In case a class is inverse-closed (C~^ = C), the two qualities coincide. 

Corollary 4.18 If a class C is inverse-closed, then C is SC-closed if and 
only if C is hereditary. 

It can happen that an inverse-closed class is neither (see the discussion 
of circulants to follow), but often, as we shall see, both do occur. As one 
may be easier to verify than the other, the above observation is useful. 

As some important classes involve diagonal products with matrices of 
another class, it is useful that diagonal multiplication commutes, in a sense, 
with the Schur complement. An easy calculation verifies that 

Lemma 4.6 Suppose that D and E are invertible diagonal matrices and A 
is PN. Then, 

DAI{DA)[a] = D[a'']{A/A[a]), 

AE/{AE)[a] = {A/A[a])E[a''], 

and 
DAE/{DAE)[a] = L>[a"](A/A[a])E[a"]. 

Proof. It suffices to verify the final statement and, for this, it suffices 
to consider the case in which a consists of the first k indices. Let D = 
(""o' D.)^E={''ol)'^^'i^={ Z t l ) ' i'̂  ^liich the upper left block 
is k X k in each case. Then, 

DAE/DiAnEi = D2A22E2 - D2A2iEi{DiAnEi)-^DiAi2E2 
= ^2(^22 - A2iA^iAi2)E2 
= D2(AMn)E2, 

as required. I 
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Now, let V be the set of nonsingular diagonal matrices and V^ be the 
set of positive (real) diagonal matrices. For a given class C, we may form 
such classes C as VC, I^+C, CD, CD+, VCV, and VJ^CV^. Call such classes 
diagonally derived from C. 

Corollary 4.19 Let C he a class of matrices diagonally derived from the 
class C. Then, C is SC-closed (a SC-closed) if and only ifC is SC-closed 
(a SC-closed). 

If C is a class of PN matrices, then so is —C = { —A : A ^ C}. It is 
clear that (—C)~^ — —C~^ and by direct appeal to the formula for Schur 
complement we have 

Lemma 4.7 The class —C is (a) SC-closed ((a) hereditary, inverse-closed) 
if and only if C is (a) SC-closed ((a) hereditary, inverse-closed). 

It follows that whatever closure properties hold in such classes as the 
positive definite or stable matrices also hold for the negatives of these classes 
(the negative definite or positive stable matrices). 

We close by noting that for a class C that is permutationally similarity 
invariant {P^CP = C whenever P is a permutation matrix), the inverse 
class is as well, and the class is {i} SC-closed if and only if it is {1} 
SC-closed (a SC-closed if and only if (3 SC-closed, whenever \a\ — \[3\). 
Because of the sequential property of Schur complements (Theorem 4.3), it 
then follows that SC-closure is equivalent to {1} SC-closure. Of course, 
many familiar classes are permutationally similarity invariant, but some, 
such as the totally positive matrices, are not. 

Theorem 4.12 Suppose that C is a permutationally similarity invariant 
class. Then, C is SC-closed if and only if C is {1} SC-closed. 

More generally, if C' = | Jp P^CP in which the union is over all per­
mutation matrices P , the set of all permutation similarities of matrices 
in C, then C is SC-closed (hereditary, inverse-closed) if C is SC-closed 
(hereditary, inverse-closed). Of course, C = C when C is permutationally 
similarity invariant, and, in general, C itself is permutationally similarity 
invariant, so that Theorem 4.5 applies to it. 

4.2 Part icular classes 

Of course, matrix classes of interest are not usually viewed as the union 
of sets from each dimension, but have a natural definition that transcends 
dimension. Using the tools derived in the previous section, we consider here 
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a wide variety of familiar classes. We continue to consider only subclasses 
of the PN matrices, and for convenience, we group the classes as follows: 
(a) "structured" matrices; (b) inverse-closed classes; (c) classes based upon 
dominance; (d) further positivity classes; and (e) other classes. 

a) Structured Matrices 

Matrices with special "structure" arise in many parts of mathematics 
and its applications. A natural question is which particular structures are 
preserved by Schur complementation. In this subsection, we answer this 
and other questions for a variety of familiar classes defined by some form of 
entry-defined structure. As in subsequent subsections, we give, at the end, 
a table summarizing our conclusions for each type of matrix. In most cases, 
the structure does not guarantee principal nonsingularity {PN)^ but this is 
assumed, in keeping with earlier comments. In each case, the observations 
of the first section will be used to give efficient discussions and to exploit 
or extend the observations to the inverse class. In particular, we note 
that, by Corollary 4.1, heredity and SC-closure for the inverse class are 
entirely determined by these properties for the class itself and that, by 
Corollary 4.3, in the event that the class is inverse-closed, it suffices to 
check either heredity or 5C-closure (and not both). 

• Diagonal matrices 
A matrix is diagonal if its off-diagonal entries vanish. It is obvious that 

the diagonal matrices V are hereditary and inverse-closed. Thus, it follows 
from Corollary 4.3 that T> is also S'C-closed. 

• Triangular matrices 
A matrix is lower (upper) triangular if its entries above (below) the 

main diagonal vanish. In either case, the matrix is said to be triangular. 
It is immediate that lower (upper) triangular matrices are hereditary and 
inverse-closed. Therefore, applying Corollary 4.3, we see that triangular 
matrices are also 5C-closed. 

We note also, by permutation similarity (see comment at end of Sec­
tion 4.1), that the essentially triangular matrices (those permutationally 
similar to some triangular matrix) are S'C-closed and hereditary, as well as 
inverse-closed. 

• Reducible matrices 
A matrix A is reducible if there is a permutation matrix P such that 

^ ^ ^ ' - \ , D 

It is apparent that a matrix is reducible if and only if its inverse is. Thus, 
the reducible matrices are inverse-closed. 



116 CLOSURE PROPERTIES CHAP. 4 

Consider the reducible matrix 

Since ^[{2,3}] = {\i) is not reducible, it follows from Corollary 4.3 that 
the class of reducible matrices are neither hereditary nor 5C-closed. Re-
ducibility will, however, occur for certain a specific to the particular A. 

• Irreducible matrices 
A matrix is irreducible if it is not reducible. Irreducible matrices are 

inverse-closed since reducible matrices are. 
Consider the irreducible matrix 

Since yl[{2,3}] — ( J^) is reducible, it follows from Corollary 4.3 that the 
class of irreducible matrices is neither hereditary nor 5C-closed. 

• Symmetric matrices; Hankel matrices 
An n X n matrix A = {ciij) is symmetric if aij — aji for all i,j G N 

or, equivalently, ii A = A'^. Since A~^ — {A'^)~^ = {A"^)^ for a symmetric 
matrix A, symmetric matrices are inverse-closed. Obviously, symmetric 
matrices are hereditary and so, by Corollary 4.3, they are 5C-closed. 

We say that a matrix A = {aij) is Hankel if, for some sequence a2, 
^37---5 <̂ 2n5 G'ij — CLi-\-j for all i , j G N. That is, the entries of A are 
constant down the "backward" (upper right to lower left) diagonal and also 
down the diagonals parallel to the backward diagonal. Hankel matrices are 
particular symmetric matrices. 

Consider the Hankel matrix 

A = 

/ I 0 1 \ 
Since ^({2}) = 0 3 - 1 does not have constant backward diagonal, 

we see that Hankel matrices are not hereditary, and, since 

/ I 2 
2 0 
0 1 

V 3 

0 
1 
3 

- 1 

1 \ 
3 

- 1 

W 
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they are not 5C-closed as well. Lastly, 

A-

f 34 - 6 - 5 - 2 1 \ 
- 6 1 1 4 
- 5 1 1 3 

V-21 4 3 13 / 

is not constant down the backward diagonal, illustrating the fact that Han­
kel matrices are not inverse-closed. 

• Persymmetric matrices; Toeplitz matrices 
A matrix A = (a^j) is called persymmetric if aij — an-\-i~j,n+i-i for 

alH,jf G AT or, equivalent ly, ii A = KA^K in which K is the backward 
identity (ones on the backward diagonal, zeros elsewhere). That is, A is 
persymmetric if it is symmetric with respect to the backward diagonal. 
Since A~^ ~ K{A^)~^K — K{A~^YK for each persymmetric matrix A, 
persymmetric matrices are inverse-closed. 

We say a matrix A — [aij) is Toeplitz if, for some sequence a_(^_i) , . . . , 
a_i, ao, tti,.. .,(2n-i, aij — aj-i for all z,j G N. Equivalently, a Toeplitz 
matrix is one that is constant down the main diagonal and down the diag­
onals parallel to the main diagonal and thus is persymmetric. Since B is 
Toeplitz if and only \iB — AK in which A is Hankel and K is the backward 
identity, one can use the Hankel matrix above to illustrate that Toeplitz 
(persymmetric) matrices are neither hereditary nor 5C-closed and use its 
inverse to show that Toeplitz matrices are not inverse-closed. 

• Bisymmetric matrices 
We say that a matrix A is bisymmetric if it is both symmetric and per­

symmetric. Since both symmetric and persymmetric matrices are inverse-
closed, so are bisymmetric matrices. Consider the bisymmetric matrix 

Since A({1}) — (22) is not persymmetric, we see that bisymmetric matrices 
are not hereditary, and, hence, not 5C-closed as well. 

• Hermitian matrices; Skew-Hermitian matrices 
A matrix A — (aij) is Hermitian if aij = ctji for alH, j G N or, equiva­

lently, if A = A* in which A* denotes the conjugate transpose of A. Since 
A~^ = {A*)~^ — (A""^)* for a Hermitian matrix A, Hermitian matrices are 
inverse-closed. Obviously, Hermitian matrices are hereditary and so, by 
Corollary 4.3, they are SC-closed as well. 



I 
0 
1 
0 

V 

0 
1 
1 
2 
1 

2 
3 
1 
3 
2 

1 
2 
1 
1 
0 

1\ 
0 
1 
0 
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A matrix A = {aij) is skew-Hermitian if â -̂ = — ^ for all i^jEN or, 
equivalently, if A == —A*. By a similar line of reasoning, it follows that 
skew-Hermitian matrices are inverse-closed, hereditary, and 5C-closed. 

• Cent rosymmetr ic matrices 
Call a matrix A = {cnj) centrosymmetric if aij — a^+i—j,n+i-j for all 

ijjEN or, equivalently, ii A = KAK in which K is the backward identity. 
(Essentially, such matrices are symmetric about their geometric center.) 
Since A~^ — KA~^K for each centrosymmetric matrix A, centrosymmetric 
matrices are inverse-closed. 

Consider the centrosymmetric matrix 

A -

/ I 1 1\ 
Since A({1,2}) = 3 1 0 is not centrosymmetric, we see that cen-

V2 0 l) 
trosymmetric matrices are not hereditary and, hence, not 5C-closed as 
well, by Corollary 4.3. 

• Circulant matrices 
We say that a matrix A — [aij) is a circulant matrix if for some sequence 

ao, a i , . . . , a^-i , aij — aj-i for all z, j G N. Here, the subscripts are taken 
modulo n. It is clear that each circulant is a polynomial in the basic circu­
lant P whose first row is [01 0 • • • 0] and thus circulants are inverse-closed. 

Consider the circulant matrix 

A = 

Since ^({1}) •= {W), one sees that circulant matrices are not hereditary 
and, thus, by Corollary 4.3, they are not 5C-closed. 

• Normal matrices; Unitary matrices; Householder matrices 
A matrix A is normal {unitary) if AA"" = A^A {A~~^ = A*). It is 

clear that normal (unitary) matrices are inverse-closed and that normal 
(unitary) matrices are not hereditary. Thus, by Corollary 4.3, they are 
not 5C-closed as well. A matrix A is said to be a Householder matrix 
li A = I — -^r^xx^ for some 0 ^ x G R'̂ . Thus, Householder matrices 
are symmetric, orthogonal, and (hence) inverse-closed. Since this class is 
obviously not hereditary, it is not SC-closed as well. 
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• Hessenberg matrices; Tridiagonal matrices 
We say a matrix A == aij is lower (upper) Hessenberg if aij — 0 for 

j — i > 1 (i — j > 1) or, equivalently, if the only nonzero entries lie in the 
lower triangular part or on the first super-diagonal (the upper triangular 
part or on the first sub-diagonal). In either case we say the matrix is 
Hessenberg. A matrix is tridiagonal if it is both lower and upper Hessenberg. 
It is known that a matrix is lower (upper) Hessenberg if and only if the 2x2 
minors above (below) or touching the main diagonal in its inverse vanish. 
It then follows that Hessenberg and tridiagonal matrices are 5C-closed 
(because the inverse classes are hereditary), and it is clear that they are 
hereditary. Lastly, since the inverse of a tridiagonal matrix is full when its 
super- and sub-diagonals are completely nonzero, neither Hessenberg nor 
tridiagonal matrices are inverse-closed. 

Table for Subsection (a) 

Class 
Diagonal 

Triangular 
Reducible 
Irreducible 
Symmetric 

Hankel 
Persymmetric 

Toeplitz 1 
Bisymmetric | 

Hermitian | 
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Centrosymmetric | 
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Unitary | 

Householder | 
Hessenberg | 
Tridiagonal | 
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Y 
Y 
N 
N 
Y 
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N 
N 
N 
Y 
Y 
N 
N 
N 
N 
N 
Y 
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Heredity 

Y 
Y 
N 
N 
Y 
N 
N 
N 
N 
Y 
Y 
N 
N 
N 
N 
N 
Y 
Y 

Inverse 
Closure 

Y 
Y 
Y 
Y 
Y 
N 
Y 
N 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
N 
N 

Inverse 
Class 
SC 

Closure 
Y 
Y 
N 
N 
Y 
N 
N 
N 
N 
Y 
Y 
N 
N 
N 
N 
N 
Y 
Y 

Inverse 
Class 

Heredity 

Y 
Y 
N 
N 
Y 
N 
N 
N 
N 
Y 
Y 
N 
N 
N 
N 
N 
Y 
Y 
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For completeness, consider closure properties of /c, ̂ -banded matrices. 
Say that an n x n matrix A over field F is k,l-handed if the nonzero entries 
are confined to the k bands below the main diagonal, the main diagonal 
and the / bands above the main diagonal. For example, tridiagonal is 1,1-
banded, while Hessenberg is 1, n— 1 or n— 1,1-banded. Triangular is 0, n—1 
or n — 1,0-banded. It is straightforward that the /e, /-banded matrices are 
hereditary, but, while the tridiagonal, triangular, and Hessenberg matrices 
are 5C-closed, other A:, /-banded classes are a 5C-closed only for certain 
a. To understand this, we discuss the case a — {z}, from which more 
general situations may be deduced. We determine k'^ V for which ^ /^[ i ] is 
/c',/'-banded. 

Now, 

A/A[i] - A{i) - —A{i,i]A[i,i). 

Since A{i) is A:, /-banded and an y>^ 0, it suffices to determine the handedness 
indices for the (n — 1) x (n — 1) matrix A{i,i]A[i,i). The vector A{i^i] has 
possibly nonzero entries stretching consecutively from position min{i —/, 1} 
to position max{z + A:—l,n — 1}, while in A[i,i) they stretch from min{i — 
A:, 1} to max{i -h / — 1, n — 1}. The outer product is then a block whose 
nonzero entries are confined to a rectangular submatrix whose northeast 
corner lies at 

min{i — /, 1}, max{i + / — 1, n — 1} 

and southwest corner at 

max{z + fc — 1, n — 1}, min{i — /c, 1}. 

Since the handedness indices for this block are the coordinate differences, 
we have that ^ /^[ i ] is A:',/'"banded for k' — max{A:, A;''},/' = max{/,/ ' '}, 
in which 

k" = min{i -}- A: — 1, n — 1} — max{i — A;, 1} 

and 
I" — min{z H- / — 1, n — 1} — maxjz — /, 1}. 

Note that the lower (upper) band index is determined by i and the lower 
(upper) band index for A\ no interaction occurs. It follows that for i = 
l ,2,n— l ,n (and, thus, for a any consecutive sequence containing one of 
these) we have a SC-closure, but there is not generally 5C-closure. For 
example, when n = 5,A: = / = 2 , i = 3, there is not. There is SC-closure 
when A;,/ G {0,l,n— 2,n — 1} and this is all, but for low-order cases. The 
case A; = / = 1 is the tridiagonal matrices, already addressed 
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b) Inverse-Closed Classes. 

In this subsection, prominent classes that happen to be inverse-closed 
and have not yet been discussed are addressed. By Corollary 4.3, such 
classes are either simultaneously hereditary and S'C-closed, or neither. This 
abbreviates the necessary discussion. As we saw in the prior section, both 
possibilities can occur; the symmetric matrices are both hereditary and 
5C-closed while the circulant matrices are neither. As usual, we conclude 
this subsection with a table summarizing the results of the discussion of 
each case. 

• PN—matrices 

The PN (all principal submatrices nonsingular) -matrices themselves 
are inverse-closed by Jacobi's identity. Theorem 4.1. Since it is immediate 
that they are hereditary, it follows that they are SC-closed as well. 

• P—matrices 

A real square matrix is called a P-matrix if all its principal minors are 
positive. Again by Jacobi's identity, this property conveys to the inverse, 
so that the P-matrices are inverse-closed. As heredity is also immediate, 
P-matrices are also both 5C-closed and hereditary. 

• Positive definite matrices 

A Hermitian matrix is positive definite {PD) if it is a P-matrix. (In the 
presence of Hermicity, this is equivalent to the positivity of the eigenvalues 
or the positivity of the quadratic form x*Ax on nonzero vectors x.) Since 
the Hermitian and P-matrices are inverse-closed, the PD matrices are as 
well. Since the Hermitian and P-matrices are hereditary, the PD matrices 
are and thus are 5C-closed as well. 

• Elliptic matrices 

An n X n Hermitian matrix is called elliptic (E) if it has exactly 1 
positive eigenvalue. Here, for consistency, we also require that a matrix 
be PN to be elliptic. Thus, there are n — 1 negative eigenvalues (and 
no principal submatrix has a 0 eigenvalue). That the elliptic matrices are 
inverse-closed follows from the spectral theorem; the inverse is Hermitian 
and the eigenvalues of the inverse are the inverses of the eigenvalues. That 
the elliptic matrices are not hereditary follows from the simple example 

^-[o -1 
since A[{2}] has no positive eigenvalues. By permutation similarity, there 
is a heredity for no a. Thus, the elliptic matrices are neither (a) 5C-closed 
nor a hereditary. 
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• Symmetric Sector Field Containment 

The field of values of an n x n complex matrix A is defined by 

F{A) = { x M x : X e C^, x*x = 1} . 

It is known that F{A) is a compact convex set in the complex plane, that 
F(A*) = F{A); and that, for a congruence C'AC, C e C^'^^ and nonsin-
gular, F{C*AC) lies in the same angular sector anchored at the origin as 
F{A) [230]. Now let S be an angular sector, anchored at the origin, that is 
symmetric with respect to the real axis. 

Figure 4.1: 

^r ^ 
^ s 

This sector is allowed to be either the positive or negative real axis. 
Since F(A[a]) C F(A), for any a C N [230], we see that the property that 
F{A) C 5 is hereditary. But, this property (call it symmetric sector field 
containment, or SSFC is inverse-closed, as F(A*A~M) = F(A*) = F{A) 
implies that F{A~^) lies in the same sector S. Thus, an SSFC class is 
both 5C-closed and hereditary. 

• Positive definite Hermitian part 

An important special case of the property of symmetric sector field con­
tainment is that in which S is the open right half-plane. This is equivalent 
[230] to the requirement that the Hermitian part H{A) — ^{A^- A*) be 
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positive definite. Thus, the matrices with positive definite Hermitian part 
(PDHP) are inverse-closed, 5C-closed and hereditary. 

• Regional Field Containment 

We conclude this section with a class that does not exactly fit, as it is 
not inverse-closed; but it is defined via the field of values. Let R be any 
region of the complex plane, and define TZ to be the class of matrices A 
for which F{A) C R. We say such a class is a regional field containment 
(RFC) class. By the principal submatrix containment property mentioned 
above, TZ is hereditary. But, as IZ is not generally inverse-closed, IZ is not 
S'C-closed. 

Table for Subsection (b) 

Class 
PN 
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Closure 
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Y 
Y 
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Y 
Y 
Y 
Y 
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Y 
N 
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SC 
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Y 
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N 
Y 
Y 
Y 
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Y 
Y 
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N 
Y 
Y 
N 

c) Dominance Based Classes. 

In this subsection we consider classes based upon some form of diagonal 
dominance. In each case the table profile will be the same. The iSC-closure 
is not so apparent (either directly or indirectly), but is based upon one 
calculation that we make. The SC-closure then follows from Corollary 4.5, 
as each class is permutationally similarity invariant. Several of these classes 
arise frequently, are very important in computation and the 5C-closure is 
key to their analysis. 

• Diagonal Dominance Classes 

An n X n complex matrix A — {aij) is called (strictly) row diagonally 
dominant (RDD) if, for each i, 1 < i < n, 

> El = KiA) 

It is straightforward [228] to show that an RDD matrix is nonsingular, and, 
as a moment's reflection reveals, that the property RDD is hereditary, and 
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that RDD matrices are PN. We may analogously define CDD to be the 
(strictly) column diagonally dominant matrices (i.e., A is CDD if and only 
if A^ is RDD), and, if both requirements hold for the same matrix, we 
use RCDD (row and column diagonally dominant). For both CDD and 
RCDD, heredity (and nonsingularity) are equally clear. What about SC-
closure, however? As heredity in the inverse classes is not immediate, we use 
the observation that these classes are permutationally similarity invariant, 
so that 5C-closure may be checked by checking {1} 5C-closure. We make 
this calculation only once, as it is similar for each class. Suppose that 
A = (aij) is RDD, and we calculate yl/^[{l}]. It sufiices to check that the 
first row of the result satisfies the row dominance criterion (though other 
rows would be similar). That first row is 

«22 - «2l( ), «23 - Ci2l{ ), . • . , Ci2n- Ct2l{ ). 
a i l ciii ail 

Then, we need to verify that the absolute first entry beats the sum of the 
absolute values of the remaining entries, or 

A = |a22 - a2i[ )| - |a23 - a2i( )| mn - ct2i{ }| 
a i l <^ii ^11 

> 0. 

But, 

A > |a22| - | a 2 i | | - ^ | - |a23| - | a 2 i | | - ^ | |a2n| - |a2i| |—^| 
ail a n a n 

— a22| — «21 

> \a22\-R^{A) 

> 0, 

as was to be shown. The last weak inequality is because -~^ < 1 by the 
row dominance in row 1 of 1̂ and the strict inequality follows from the row 
dominance in row 2 of A. We now have that each of the classes RDD, CDD 
and RCDD is SC-c\osed and hereditary, so that the inverse classes are as 
well. For n > 3, it is easily seen by example that none of these dominance 
classes is inverse-closed. 

• H—matrices 

A square matrix A is called an H-matrix if there is a (nonsingular) 
diagonal matrix D such that DA is CDD. (It is equivalent to say that AD 
be RDD or DAE, E diagonal, be RCDD.) Variants upon this definition 
occur in the literature, and it is the same to say that A G V{CDD) or 



SEC. 4.2 PARTICULAR CLASSES 125 

VJ^{CDD), etc. By Corollary 4.4, we conclude from the RDD, CDD and 
RCDD cases that the iJ-matrices are SC-closed and hereditary. Of course, 
they, again, need not be inverse-closed. 

• Z—matrices 

A Z-matrix is a matrix with nonpositive off-diagonal entries. The Z-
matrices are obviously hereditary, but are neither inverse-closed nor SC-
closed. 

• M—mat rices; L/^-matrices 

A very important special case of i7-matrices is the M-matrices: the 
real iJ-matrices that are Z-matrices with positive diagonal. Many other 
descriptions are available (see, e.g., [230] or [49]). In this case, the inverse 
class, the inverse M-matrices (nonnegative matrices whose inverses are M-
matrices) are of independent interest. It follows that if A is a Z-matrix, 
then yl/^[a] is also provided A[a] is an M-matrix. That M-matrices are 
5C-closed follows since /f-matrices are S'C-closed. Further, since H-
matrices and Z-matrices are hereditary, it follows that M-matrices are 
as well. (The M-matrices are permutationally similarity invariant.) Thus, 
the inverse M-matrices are also hereditary and 5C-closed, a fact not so 
easily seen directly. 

We mention two more classes without full discussion. The Z-matrices 
may be partitioned into a collection of classes L^, A: = 0 , . . . , n. In general, 
Lk consists of those Z-mat rices in which every txt principal minor, ^ < A:, is 
nonnegative (so that the corresponding submatrices are in the closure of the 
M-matrices) and some (k -\- l)x(A: + 1) principal minor is negative. Thus, 
Ln is the closure of the M-matrices. Let L'j^ = Lk H PN, k = 0 ,1 , . . . , n . 
We have just seen that L^ (the class of M-matrices) is hereditary and SC-
closed, i.e., ii a C N and A[a] is a principal submatrix of ^ G I/^, then 
A[a] e Lj^i and ^/A[a] G L'^^^^^- In general, L^, A: = 0 , 1 , . . . ,n - 1, is 
neither inverse-closed nor hereditary nor 5C-closed. But, as we shall see, 
certain subclasses have a S'C-closure. To see this, let A: G { 1 , . . . , n—1}, A G 
^n-/c' ^^^ a C TV in which |a| < n —A: (so that A[a] is an M-matrix). Then 
it follows from Schur's identity (Theorem 1.1) that yl/A[a] G Li_,^.f^ if 
every {n — k -i-1) x (n — A:+l) principal minor of A is negative (see [166]). 
So we have a S'C-closure under these restrictions. In particular, we note 
that L'^^i is always closed under Schur complementation since the only 
principal submatrix of order n — l + l = : n i s the matrix itself (which is not 
an M-matrix). 

Let L '̂ = UIL/c ^ i ' ^ ~ 1 , . . . , n, i.e., the class of Z-matrices in which 
every txt principal submatrix, t < A:, is an M-matrix. In order to analyze 
a S'C-closure in L '̂, assume that A e L'j^, say A e L'^ for some s > k. If 
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aCN with \a\ < k, then A/A[a] G L̂ - for some j >k- \a\ [166]. That is, 

A/A[a] e Ll_^^^ - U^JJ- |a |^^ Thus, L'l is a 5C-closed (and its inverse 

class a^ hereditary) provided \a\ < k. 
In order to analyze heredity in L '̂, again assume that A G L^', say 

A ^ L'^ for some s > k^ but, this time, assume that a C N with \a\ > k. 
Now, if 5 < \a\ (so that k < s < |a |) , ^[a] G I/̂ - for some j , 5 < j < |a|, 

and, hence, A[a] G U!=A: -̂ i ~ ^k- ^ ^ ^^^ other hand, if 5 > |a|, then A[a] 
is an M-matrix, i.e., A[a] G I/( , = L ( \ . So L'̂ ! is a hereditary provided 
|a| > k. Since the case |a| < A: is satisfied vacuously, L '̂ is hereditary (and 
its inverse class is 5C-closed). 

• Cassini matrices 

If A is not necessarily RDD but, for each pair i, j , 

\aii\\ajj\ > Ri{A)Rj{A), 

it is still the case that A is nonsingular. Because of the ovals of Cassini, as 
used by Brauer [228], we call the class defined by the above inequalities the 
Cassini class, denoted C. It is clearly hereditary, and it is also 5C-closed. 
Like the class RDD, the Cassini class is not inverse-closed. 

Table for Subsection (c) 
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d) Further Positivity Classes. 

We consider here several important classes involving positivity that have 
not been discussed in prior subsections. The most important of these is the 
very interesting case of totally positive {TP) matrices. In several other cases 
there is no a SC-closure, but clear heredity implies surprising SC-closure 
results for the inverse classes. 
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• Totally positive matrices 

Though it is the most complicated case discussed, we begin with the case 
of totally positive matrices. A real matrix is TP if all its minors are positive. 
It is important to note that this class is not permutationally similarity 
invariant; in fact, besides the identity, the only permutation similarity that 
does not change the signs of some non-principal minors is the one by the 
backward identity K. The TP class is clearly hereditary, is not generally 
5C-closed but is a 5C-closed for many a (and, in fact, for "other" a, 
^/yl[a] cannot remain TP). To determine when it is a 5C~closed, we 
observe that, by Jacobi's identity, the class TP^ while not truly inverse-
closed is almost so; an n-hy-n matrix B is inverse TP if and only if it is 
of the form SCS, in which S is the alternating sign signature matrix, i.e., 

/ I 
0 
0 

u 

0 
- 1 
0 

0 

0 • • 

0 
1 •• 

• 0 

0 ^ 

0 
s = 

and C is T P . 
Thus, the entries of such a B have a "checkerboard" sign pattern. In 

fact, again by Jacobi, a submatrix of B is inverse TP if and only if it is 
checkerboard. Thus, to determine the a^ for which {TP)~^ is a^ heredi­
tary (and thus the for a for which TP is a S'C-closed by Theorem 4.4) it 
suffices to determine the a^ for which B[a^] remains checkerboard. Though 
straightforward, this is somewhat tedious to describe. It hinges upon the 
maximal consecutive subsets of a^. Among these consecutive subsets, we 
distinguish the extremal ones (those containing 1 or n) and the "interior" 
ones. The extremal ones may be of any cardinality, but the interior ones 
must be of even cardinality to maintain the checkerboard pattern. We call 
an index set meeting these requirements proper. Now, it is important to 
reference index sets a relative to TP^, rather than the class TP of matrices 
of unboundedly many rows and columns (in the latter case, no extremal 
consecutive subset from the "end" makes any sense). We then have that 
TPn is a 5C-closed {{TP)~^ is a^ hereditary) if and only if a^ is proper. 
In fact, if a"" is not proper, A/A[a] is TP for no A e TPn. 

• Nonnegative, doubly nonnegative, completely positive, and copos-
itive matrices 

We next consider four interesting positivity classes simultaneously, as 
the results are identical and the analysis is similar because of the role of 
nonnegative entries. 
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A matrix is (entry-wise) nonnegative (positive) if all its entries are non-
negative (positive). We denote the nonnegative matrices by NN. A matrix 
that is both positive semi-definite (positive definite for us) and nonnegative 
is called doubly nonnegative (DN), and if A = BB^ ^ with B nonnegative, 
A is called completely positive (CP) (we add the requirement that B have 
full row rank). Finally, a real symmetric A is called (strictly) copositive 
(CoPos) i f x > 0 , 0 / x G i ? ^ imply x^ Ax > 0. (We add the requirement 
here that A be PN.) Clearly, a positive symmetric matrix is CoPos, as is 
a PD matrix or the sum of a nonnegative and a PD matrix. Because the 
inverse of a nonnegative matrix is nonnegative if and only if it is monomial 
(diagonal times permutation), none of the first three classes (nonnegative, 
DN^ CP) is inverse-closed. The class CoPos is also not, as shown by such 
simple examples as 

'1 2^ 
^ - \2 1 

Each of these four classes is hereditary, as is known and may easily 
be verified. None, however, is 5C-closed and, thus, not a 5C-closed for 
any a (as all are permutationally similarity invariant). The example above 
illustrates this fact for copositive matrices since A/an = —3. For the other 
three classes, consider the completely positive matrix 

A = 

(2 1 2^ 
{A=:BB^ in which B={2 1 1 I). 

1 1 2; 

Since 

it follows from Theorem 1.2 that 

A/an = 
5 - 4 
-4 5 

We conclude that the class of completely positive (nonnegative, doubly 
nonnegative) matrices is neither inverse-closed nor 5C-closed. Thus, none 
of the inverse classes is hereditary, but, curiously, each inverse class is SC-
closed. 
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• Stable and positive stable matrices 

A square complex matrix is positive stable (stable) if all of its eigenvalues 
lie in the open right (left) complex half-plane, denoted PST {ST). Each 
class, stable and positive stable, is inverse-closed but neither is hereditary 
nor 5C-closed, as seen by simple examples, such as 

- ( : ; I 
• Fischer matrices; Koteljanski matrices 

A P-matrix A = {aij) is said to be a Fischer matrix if it satisfies 
Fischer's inequality, i.e., 

det A[a U /?] < det A[a] det A[I3] 

for all a, /? C AT in which o; H /3 is empty and to be a Koteljanski matrix if 
it satisfies Koteljanski's inequality, i.e., 

det A[a U /?] det A[a fl /3] < det A[a] det A[I3] 

for all a,/3 C N. Here, det A[(/>] is taken to be 1. It follows from their 
definitions that each of the classes, Fischer and Koteljanski, are hereditary. 
Also, upon applying Jacobi's identity to the defining inequality for Kotel­
janski matrices, one finds that Koteljanski matrices are inverse-closed and, 
hence, 5C-closed. It is easily checked that 

is a Fischer matrix. By inspection of 

1 

one sees that the determinant of ^~^[{1, 2}] is greater than the product of 
its diagonal entries. So Fischer matrices are not inverse-closed. Moreover, 
since 

2 r A/a22 - \ _i I 

is not Fischer, Fischer matrices are not S'C-closed either. 
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• The s, t section of positive definite matrices 

We also mention the s,t section of the PD-matrices. Let 0 < s < t 
and define PD[s,t] = {A* = A : si < A < tl}. We mean to include the 
possibility of t == oo, making [s^t] = [5, 00] semi-infinite. The following are 
simple exercises (using Chapters 4 and 7 of [228]): 

0<s^ <s<t<f ^ PD^sA £ PD^s'.t']] 
PD^s^i\^ is hereditary; and 

Because of Theorem 4.2, A G PD[s,t] then implies (^/^[a])~^ G PD^i i] or 
A/A[Q:] G PD[s^t]- Thus, PD[s,t] is both hereditary and SC-closed, though 
not generally inverse-closed. 

Table for Subsection (d) 

Class 
TP 
DN 
CP 

CoPos 
PST 
ST 
NN 

F 
K 

PDM \ 

sc 
Closure 

* 
N 
N 
N 
N 
N 
N 
N 
Y 
Y 

Heredity 

Y 
Y 
Y 
Y 
N 
N 
Y 
Y 
Y 
Y 

Inverse 
Closure 

* 
N 
N 
N 
Y 
Y 
N 
N 
Y 
N 

Inverse 
Class 
SC 

Closure 
Y 
Y 
Y 
Y 
N 
N 
Y 
Y 
Y 
Y 

Inverse 
Class 

Heredity 

* 
N 
N 
N 
N 
N 
N 
N 
Y 
Y 

* Though in each case the entry is, in general, N, see the discussion about 
particular index sets and inverse structure. 

e) Other Classes. 

In this subsection, we collect several classes of interest that have not fit 
into prior categories. 

• Distance matrices 

A matrix A — {aij) is called a distance {squared distance) matrix if there 
exist points pi,p25---,Pn iii Euclidean n-space such that aij — d{pi,pj) 
{aij = [diPi^Pj)]'^) in which d{pi^pj) denotes the distance from pi to pj. It 
is clear from the definition that distance (squared distance) matrices are 
hereditary. We denote the distance (squared distance) matrices by DIST 
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{SQDIST). Consider the squared distance matrix 

/O 1 2 2 \ 
1 0 1 5 
2 1 0 10 

\ 2 5 10 o y 

for the points pi = (1 , -1) , P2 = (2,-1) , ps = (2 , -2) , and p4 ~ (1,1). 
Since 

AM[{i,2}]=(:^ _-'o) 

one sees that squared distance matrices are not 5C-closed and, by Theorem 
4.2, are not inverse-closed either. By considering the distance matrix for 
these four points, one can show distance matrices are neither »SC-closed 
nor inverse-closed as well. 

• Sign nonsingular matrices 

A real square matrix A is called sign nonsingular {SNS) if any matrix 
with the same sign pattern (+, —, 0) as A is nonsingular, i.e., if det(PoA) ^ 
0, whenever P is a positive matrix, in which o denotes the entry-wise or 
Hadamard product of matrices. To be consistent with our PN requirement, 
we suppose that the main diagonal is totally nonzero (which may always 
be arranged via permutation equivalence) and, for convenience, that the 
diagonal is positive, which may be assumed without loss of generality via a 
benign multiplication by a signature matrix (diagonal matrix of ±l ' s ) . We 
call such SNS matrices "centered" (denoted CSNS) and, in particular, 
"positively centered". As each principal submatrix of a centered SNS 
matrix is SNS^ the centered ones are necessarily PN] in particular, the 
positively centered ones are P-matrices. Thus, the centered SNS class is 
hereditary, so that the inverse class is 5C-closed. What about S'C-closure 
of centered SNS matrices? This is not the case, as shown by the following 
example. Let 

/ I 1 l^ 
^ = - 1 1 2 

VO - 1 1 , 

which is SNS^ as all nonzero terms in the determinant are positive (and 
there are some). However, 

AIA[{2}]={\ -^ 

which is not SNS, as shown via Hadamard product with 
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P = 
1 6 
1 1 

As the centered SNS matrices are permutationally similarity invariant, 
they are, then, not a 5C-closed for any a. For n > 3, it is easily seen by 
example that centered SNS matrices are not inverse-closed. 

• Scalable matrices 

We call a square real matrix A scalable^ denoted SCL^ if there exist 
D^E e V^ such that DAE has constant, nonzero line (row and column) 
sums. It is straightforward that the scalable matrices are inverse-closed. 
However, as the following example shows, the scalable matrices are not 
hereditary, and, thus, not 5C-closed. Let 

A=^ 

Clearly, A is scalable (use D ~ E ^ I), but A[{1, 2}] is not. 

Table for Subsection (e) 

Class 
DIST 

SQDIST 
CSNS 
SCL 

SC 
Closure 

N 
N 
N 
N 

Heredity 

Y 
Y 
Y 
N 

Inverse 
Closure 

N 
N 
N 
Y 

Inverse 
Class 
SC 

Closure 
Y 
Y 
Y 
N 

Inverse 
Class 

Heredity 

N 
N 
N 
N 

4.3 Singular principal minors 

Thus far, we have assumed that each matrix encountered was PN. This is 
convenient, as it implies not only that the matrix is invertible, so that the 
formula in Theorem 4.2 may be used, but also that the Schur complement 
with respect to any principal submatrix may be formed via the standard 
definition. It need not always be that the PN property is present. This 
raises two natural questions for a non-PN matrix A: 

(1) What if the principal submatrix, A[a]^ with respect to which the Schur 
complement is being taken is nonsingular, but other principal minors, in­
cluding possibly det A, are zero? 
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(2) What if A[a], with respect to which the Schur complement is being 
taken, is itself singular? 

The question (1) often arises when the class C is being broadened some­
what to a kind of closure that allows some principal minors to vanish. For 
example, this is virtually always the case in unrestricted versions of the 
structured classes in subsection 4.2(a). But it also happens in many other 
situations, for example if the PD matrices are broadened to the positive 
semi-definite {PSD) matrices. Fortunately, in such cases, it generally hap­
pens that a continuity argument restores any positive conclusions about 
S'C-closure to the broadened class. 

An example is the following. Suppose that the P-matrices are broad­
ened to the P Q - matrices, those for which all principal minors are nonnega-
tive. If we form the Schur complement with respect to A[a] in a Po-matrix 
A, is A/yl[a] PQ when A[a] is nonsingular? Supposing without loss of gen­
erality that yl[a] = All, this may be analyzed for 

^^(An Au 
\A21 A22 

as follows. If we replace 4̂22 by A22 — ^22 + ^/, e > 0, to give A', it may be 
verified that A22 is P and that A! is invertible. By Jacobi's identity, A!~^ 
is Po and ( A 7 A i i ) " \ and, thus. A!jAx\ are PQ. But, 

so that 

AVAii - (A/All) + 6/ 

l i m A ' M i i ^ A M i i 

and a limit of Po-matrices is PQ. Thus, "5C-closure" holds for PQ, as long 
as A\oi\ is nonsingular. 

Addressing question (2) is necessarily more subtle, as it requires a more 
general definition of Schur complement to start. Somehow, A[a]~^ must 
be replaced in the definition of Schur complement, and, somehow, what is 
adopted must mesh with the nonsingular case. There seems to be no uni­
versal definition that works well in most cases, though the Moore-Penrose 
generalized inverse of A\o(\ (in place of A[Q;]~^) is a natural candidate and 
has been used. For the assessment of 5C-closure of the PSD matrices, 
we oflFer here a reasonably simple approach that requires no generalized 
inverse. 

Let A be PSD and a an index. We give a natural definition of A/A [a] 
for which 5C-closure of the PSD matrices may be verified. Heredity in the 
PSD case is well known (and straightforward), but Corollary 4.3 cannot be 
used to conclude S'C-closure, as A will not be invertible if A[a] is not. Some 



134 CLOSURE PROPERTIES CHAP. 4 

analog of Theorem 4.4 would be welcome in the general, possibly singular 
case. When A[a], etc is singular, our definition proceeds in two stages to 
simulate the important fact, Theorem 4.2, about Schur complements . 

First, if A[a] — 0, we note that A[a^, a] and A[a^ a^] must be 0. Then, 
we take ^ / ^ [ a ] = A[Q;^]. This seems an obvious candidate in any case, is 
consistent with using a generalized inverse in place of yl[a:]~^ and would be 
the case if A[a] were nonsingular and A[a^^ a] (and hence A[a, a^] since A 
is symmetric) were 0. Second, if A[a] ^ 0 (but is singular), we note that 
there is a principal submatrix A[(3] of A[Q\ that is rank A [o;]-by-rank A [a] 
and nonsingular (and thus positive definite). There may be several candi­
dates for /?, but any one may be used with an unambiguous final result, as 
discussed later. Now, calculate ^/^[/?] in the usual way, and notice that 
^[a]/^[/3], a principal submatrix of ^/A[/3], is 0. By the discussion rela­
tive to question (1), >1/A[/?] is PSD and, thus, has 0 rows and columns 
corresponding to the indices A[a]/A[/3]. Now, to complete the definition of 
A/A[a], extract the principal submatrix of A/A[a] that is complementary 
to the 0 block, A[a]/A[/3]. Thus, 

A/A[a] = {A/A[(3])[a% 

in case A[a\ ^ 0. Because A/A[/3] is PSD and PSD is hereditary, it 
follows that ^ / ^ [ a ] is PSD in any event, and PSD is 5C-closed under 
the extended definition. 

To see that the definition of i4/y4[a] is independent of the choice of (3 
(subject to the requirement that /? C a and A[f3\ is maximal nonsingular in 
A[a]), we will need to assume that, for some /?, 7 C a C A/', A[P] and A[^] 
are each maximal nonsingular in A[a] and show that A/A[P] = A/AIJ]. We 
first consider the case in which /3 fi 7 is empty. That is, consider the PSD 
matrix 

A = 

in which 

and 

^ u 

M i l 

[Ah 
U31 
\ ^ 4 1 

Bu--

m, 

A12 

A22 
A* 

A* 

= Ala] 

A22 = 

Ai3 Au\ 
A23 A24 

A33 A34 

_ / ^ l l ^12 

\Bi2 B22 
A43 A44J 

B22 - A44 = ^ M , 

= 47] , As 3 - ^ [ a - ( ^ U 

rank-Bii = rank An = rankA22 = \P\ — \l\ 

(so that All and A22 are nonsingular of the same order). Then, there exist 
matrices C, D, E such that 

A12 = AiiC Ai3 == AiiD, and A14 = AnE 
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or, equivalently, 

C = AnAi2, D^A^^Ai3, and E = A ^ / A ^ . 

It follows from the invertibility of An tha t 

A = 

so tha t 

in which 

/ An AnC AnD AnE \ 
C*An C*AnC C*AnD C*AnE 
D*An D*AnC D*AnD D*AnE 

\E*An E*AnC E*AnD Au J 

/O 0 0 

A/An = 0 0 0 
\ 0 0 A44-E*AnEj 

A44-E*AnE = A 4 4 - ( ^ n ^ i 4 ) * ^ i ( ^ n ^ i 4 ) 
— ^ 4 4 ~ ^ 1 4 ^ 1 1 ^14 -

Similarly, for matrices 

F = A2iAl2, G = A22A23, SiUd H = A22A2A^ 

we have 

A = 

so that 

in which 

Also, 

and 

/F*A22i^ i^M22 i^*A22G F * A 2 2 i / \ 
A22 A22G A22H I 

G*A22F G*A22 G M 2 2 G G*A22H 
\H*A22F H*A22 H*A22G A44 J 

/ G O 0 
A/A22 = 0 0 0 

VO 0 A44-H*A22Hj 

A44 - H*A22H = A44 - {A22 A24TA22{A^2 Mi) 
= A44 — A24A22 A24-

A24 = C*AnE = A t s ^ n ' ^ u 

A22 = C*AnC = Al2A-^^A^2. 
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Finally, noting that it follows from A22 = C^AnC and A12 = A\\C 
that C and, hence, A\2 have full rank, we have 

establishing the result. 

It follows from the quotient formula (Theorem 1.4) that the case in 
which /? n 7 is nonempty reduces to the first case upon taking the Schur 
complement of A[/?n7] in A. Hence, the definition of A/A[a] is independent 
of the choice of the maximal nonsingular submatrix A\ji\ of A\(y\. 

4.4 Authors' historical notes 

Schur complement closure results often arise, sometimes in disguised form, 
in a variety of mathematical and applied mathematical contexts. (It is often 
difficult to publish an isolated fact out of context.) A number of the ones 
mentioned here are surely known, though we know of no derivation of them 
from a unified point of view (as here). Proper attribution of particular 
cases is fraught with difficulty. Often such a result is known to a particular 
community, without having been published or having been published only 
in a non-transparent way, and then is later published by an unsuspecting 
author. Or one person who knows the result may not see it as sufficient for 
publication, and later someone else does. For example, the author Johnson 
recalls from stimulating discussions, early in his career, that several closure 
results were known to Velvo Kahan either prior to much later publication 
by others, or that have not been published. 



Chapter 5 

Schur Coraplements and Matrix 
Inequahties: Operator-Theoretic 
Approach 

5.0 Introduction 

The purpose of this chapter is to study the Schur complements for positive 
semidefinite matrices from the standpoint of order relation and to produce 
various kinds of matrix inequalities. 

For this purpose, we will take an operator theoretic approach. This 
means that a (complex) matrix is considered as a (continuous) linear op­
erator (= map) on a finite dimensional Hilbert space, say H , with inner 
product (•, •) and norm || • ||. When vectors are represented as (numerical) 
column vectors, the inner product and the norm are usually defined as 

{x^y) — y^'x and ||x|| = \/x*x. 

Here y* is the complex transpose of ?/, which is a (numerical) row vector. 
As far as possible, we will present the results in basis free form fit to 

the case of a Hilbert space, so that matrix entries seldom appear on the 
surface. 

In this introduction we prepare standard results concerning linear opera­
tors on a Hilbert space and point out the advantage of the finite dimensional 
situations (see [51, Chapter I]). 

Recall that the adjoint A* of a linear operator ^ on a Hilbert space H 
is defined as a linear operator satisfying the condition: 

{Ax,y) = {x,A''y) {x.yeH). 

When A = A*, it is called self adjoint or, in the case of matrices, Hermitian. 
Selfadjointness is characterized by the requirement that {Ax^x) is real for 
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all X G 7Y. Notice that coincidence of A and B follows from the requirement 
that {Ax,x) — {Bx^x) for all x. 

The order relation A> B (resp. A > B) for two linear operators A, B 
means that both A and B are selfadjoint and A — B is positive semidefinite 
(resp. positive definite). In particular, A>0 (resp. A > 0) means that A 
is positive semidefinite (resp. positive definite). Here positive semidefinite-
ness is defined as 

A>0 4 - ^ {Ax, x)>0 {xe H), (5.0.1) 

and consequently 

A>B ^=> {Ax, x) > {Bx, x) {x e n). (5.0.2) 

The strict order relation A > 0 (resp. A > B) is defined with > for x 7̂  0 
in (5.0.1) (resp. (5.0.2)) . For the case of matrices positive definiteness is 
also equivalent to positive semidefiniteness with invertibility. 

An important tool for our approach is the existence of a square root for 
any positive semidefinite operator ^ on a Hilbert space. More exactly there 
is uniquely a positive semidefinite operator, denoted by A^/^, whose square 
coincides with A. 

The order relation ^ > JB (> 0) is closely related to the range inclusion 
relations for A and B. We will use ran (A) and ker(^) to denote the range 
and the kernel of A, respectively; 

ran(^) = {Ax :x eH} and ker{A) = {x : Ax = 0}. 

Another important tool is the orthogonal decomposition theorem for a 
Hilbert space H. More exactly, for any (closed) subspace A^ of a Hilbert 
space 7Y, define its orthcomplement A -̂̂  as 

M^ = {z: {y,z) = OyyeM}. 

Then the orthogonal decomposition theorem says that 

An immediate consequence is that each vector x e H is uniquely written 
a,s X = y -\- z with y G M,z G M^. The correspondence x 1—> y defines 
a linear operator, denoted by P ^ and called the orthoprojection to the 
subspace M. It has the following properties: 

0<P^<I, Pl=P^ and ran(P^) - M, ker(P^) = M^, 
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where I denotes the identity operator. Notices that a linear operator P 
coincides with the orthoprojection P^ if and only if it is selfadjoint, idem-
potent, that is, P^ == P , and ran(P) = M. 

For a vector x and a (closed) subspace M the norm ||P;v42:|| has the 
following characterizations: 

o^yeM \\y\r y^M^ 

In a Hilbert space H the orthocomplement of ran(^) coincides with 
ker(^*) while that of ker(A) coincides not with ran (A*) but with its closure 
ran(A*)~: 

mn{A)^ = kev{A*) and ker(A)-^ - ran(A*)-. (5.0.4) 

For any positive semidefinite operator A on a Hilbert space the identity 

kei{A) = ker(^i/2) 

is always true. Though the inclusion ran(A) C ran(i4^/^) is always valid, 
the equality sign does not occur in general. By (5.0.4) the orthocomplement 
of ker(A) coincides not with ran(A) but with its closure ran(74)~. Therefore 
what is derived from the above identity is 

ran(A)-=ran(Ai /2)-^ 

that is, ran(A) is dense in ran(A^/^). It is easy to see that 

ran(A) = ran(^^/^) <=^ ran(^) is closed 

and that the closedness of ran (A) is equivalent to that of ran(A^/^). 
It is known that for positive semidefinite operators A^ B the range in­

clusion relation 
ran(yl) D ran(5) 

is equivalent to the existence of a linear operator C such that AC — B. li 
is further equivalent to the existence of 7 > 0 such that ^A^ > B^. 

From now on, let us consider only the case of a finite dimensional Hilbert 
space 7Y, and use the word ^^matrij^' in place of "linear operator". Then 
since every subspace is closed, we can say that for any positive semidefinite 
matrix A 

ran(^) = ran(^i/2)^ 

file:////y/r
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Therefore for any positive semidefinite A^ B 

ran(^) D ran(^) 4==̂  7 ^ > 5 3 7 > 0. (5.0.5) 

Notice that if Pran(A) is the orthoprojection to the subspace ran(A) then 
-Pran(A) ^ud A havc the same range. Therefore it follows from (5.0.5) that 

lPr.n{A) >A> - P r a n ( A ) 3 7 > 0. (5 .0 .6) 

For positive semidefinite A, B^we use the notation AAB — 0 to mean 
ran(^) nran(jB) = {0}. Then it is easy to see from (5.0.5) and (5.0.6) that 

A A ^ = 0 <̂==> {X>0: X<A,B} - {0}. (5.0.7) 

An advantage of the positive semidefiniteness of A is in the existence of 
its natural Moore-Penrose inverse A^. Since A is bijective on the subspace 
ran(A) and vanishes on ker(^), the Moore-Penrose inverse A'^ is defined 
as (A|ran(^))~'^ ou the subspace ran(yl) and as 0 on ker(^). The Moore-
Penrose inverse is again positive semidefinite and 

{A^y = A, A^A=^AA^ = P,,^^A) and (ylt)i/2 ^ (^i/2)t. ^^gg) 

With the help of the Cauchy-Schwarz inequality it is easy to see that 
when A is positive definite, 

By definition of the Moore-Penrose inverse, this is extended to the following 
form for any positive semidefinite matrix A: 

{A^x.x) = | |(At)i/2xf = s u p ( i ^ ^ ^ : 0^yemn{A)\. (5.0.9) 

5.1 Schur complement and orthoprojection 

In this section we introduce the Schur complement of a positive semidefinite 
matrix relative to a subspace. We will show relationship between Schur 
complement and orthoprojection, and present various characterizations of 
the Schur complement. We note that some of our results have appeared in 
the previous chapters in diff'erent forms. 

Let H be a finite dimensional Hilbert space, and let A4 be a subspace 
with orthocomplement M^. According to the orthogonal decomposition 
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every matrix A is written in a block-form 

where A^^ (resp. A^^) is considered as a linear operator on M (resp. M.-^) 
while ^12 (I'esp. ^2 J is that from A1-^ (resp. M) to M (resp. A^-^). If ^22 
is invertible (on A^"^), the Schur complement of A relative to A22 (or even 
to the subspace M^), denoted by A/M-^^ is defined as (see Chapter 1) 

By definition the Schur complement is a linear operator on Al, that is, a 
matrix of smaller size. But from our standpoint, it is often useful to extend 
A/M-^ to a linear operator on the whole space H or a matrix of full size, 
denoted by [A^]A, as 

When A is positive semidefinite, ^22 î  positive semidefinite. Therefore 
with use of its Moore-Penrose inverse A^̂  in place of the inverse, we will 
define the Schur complement, even when ^22 ^̂  ̂ ^^ invertible, as 

A/M^ = A,,-A,,AlA,„ (5.1.10) 

and the associated linear operator [M]A on ?Y or a matrix of full size as 

[M]A = f^^' ~ ̂ ^24^2^21 0^ (5.1.11) 

We shall use the term '^Schur complemenf also for [A1]A. 
Anderson [10] and Anderson-Trapp [13] called [M]A in (5.1.11) the 

shorted operator in connection with multiports electric network theory. 
To get a geometric meaning of the Schur complement (5.1.11), let us 

introduce a (positive semidefinite) inner product and the associated semi-
norm, induced by a positive semidefinite matrix A, as 

{x,y)^~{Ax,y) and ||x||^ - V(x,x)^ . (5.1.12) 

The space H equipped with this inner product will be denoted by HA-
Notice that when A is not positive definite the space HA is merely a pre-
Hilbert space in the sense that \\X\\A ~ 0 does not imply x = 0. Therefore 
everything is determined modulo the subspace ker(A). 
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A word "^ " will be used with respect to this inner product. For 
instance 

x^y ^-orthogonal <̂ => {x,y)^=0. 

First notice that when A is positive semidefinite then A22 is positive 
semidefinite, A*̂  == 1̂31 and ran(yl2j C ran(^22)- Then by (5.0.9) and 
ran(^2i) ^ ^^^(^22)' ^̂ ^ ^^y ^1 ^ ^ we have, with convention 0/0 = 0, 

( ^ 1 2 ^ 2 2 ^ 2 1 ^ 1 5 ^ 1 ) — ( ^ 2 2 ^ 2 1 ^ 1 ' ^ 2 1 ^ 1 ) 

(\{A^-,x^,y^)\'^ . . 

Therefore it follows from (5.0.3) that, denoting by Q ^ ^ the A-orthoprojection 
to the subspace A^-'- in the pre-Hilbert space H^, 

and hence 

{{A/M-^)x,,x,) = {x,,x,)^-{Q^^x,,x,)^ 

Since, for a vector x — x^ -\- x^ with x^ E Ai, x^ E Ai'^, 

{{[M]A)x,x) = {{A/M^)x,,x,) 

and / — Qj^_i_ is the ^-orthoprojection to the A-orthocomplement of the 
subspace A -̂̂  in the pre-Hilbert space 7Y ,̂ the following relation is proved. 

Theorem 5.1 For any positive semidefinite matrix A and any subspace 
M C H the quantity {{[M]A)x,x) coincides with | | Q ^ ^ | | ^ ; where Q^ is 
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the A-orthoprojection to the A-orthocomplement M of the subspace M^ in 
the pre-Hilbert space Ti^; 

{{[M]A)x,x) = \\Q^x\\l=mi[\\x-y\\\ : y e A4^} [x eU), 

that is, 

The matrix 
p i 2 ^ l 2 ^ 2 i ^l2^ =A-[M]A 
\ ^ 2 1 ^ 2 2 / 

should have the properties complementary to those of [A^]A. 

Theorem 5.2 For any positive semidefinite matrix A and subspace M cH 

{iA-[M]A)x,x) = \\Q^,x\\l, 

that is, 
A-[M]A = Ql^AQ^, = AQ^,, 

where Q ^ is the A-orthoprojection to A4^ in the pre-Hilbert space Ti^. 

This is merely a reformulation of Theorem 5.1. 
Next we present the explicit forms of the subspace M and the A-

orthoprojections Q ^ and Q ^ • Since, by the definition, 

xeM 4=^ Axe (M^)-^ 

and (M-^)-^ coincides with M, we have 

M = {x : Ax e M}. 

Now we can give the representations 

where / ^ and / ^ are the identity operators on M and M-^, respectively. 
In fact, the matrix 

0 0 
21 ^ = U L A 2 , I 
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is idempotent with ran((5) C A -̂̂  and Qy = y [y e M-^). It remains to 
show that Q is yl-Hermitian. Since idin{A^^) C ia,n{A^^)^ this is seen by 
(5.0.8) as follows 

AQ = ( ^ - f -̂ t ' ) = Q*^-

Recall by (5.0.5) that for any positive semidefinite matrix X and any 
subspace M C 7i, the inclusion relation ran(X) C M is equivalent to the 
existence 7 = 7(X) > 0 such that X < jPj^, where P ^ is the orthoprojec-
tion to the subspace M. 

The following is the central result of this section. 

Theorem 5.3 For any positive semidefinite matrix A and any subspace 
Ai C 7i the Schur complement [M.]A satisfies the condition 

A > [M]A > 0 , 

and more precisely 

[M]A = max{X : A>X>0 and X < -fPM, ^1 = l{X) > 0} . 

Proof. The inequality in question is immediate from the identity in Theo­
rem 5.1. Now [A4]A satisfies the condition required for X in the right hand 
side of the above identity. Take B such that A> B >0 and ran(5) C M. 
Then since By = 0 (2/ G A4-^), again by Theorem 5.1, 

{{[M]A)x,x) = mi{\\x-y\\l : y e M^-} 

> mi{\\x~y\\l : y E M^} 

= {Bx,x), 

so that [A4]A > 5 , which proves the maximum property for [A^]A. I 

Theorem 5.4 For any positive semidefinite matrix A — i ^^ ^^^ j and 

any subspace M CH, 

A,,AlA,, = min|y: (J^^ Ĵ-̂  > 0 

where ( ^ ^'^ 1 is the block-form according to the decomposition H = 

M+M^. 
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by Theorem 5.3 

On the other hand 

[M]P^ 

we have 

p 

, since 

< P^r 

< Pu 

P 

< I a 
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This is just a reformulation of Theorem 5.3. 
It is obvious from definition that for any subspace M C H and the 

identity matrix 1 = 1^ 
[M]I = P^. 

This can be extended to the case of an orthoprojection as follows. 

Theorem 5.5 For any suhspaces M, Af CH 

[M]P^ = lAf]P^ - P^ ,^ . 

Proof, Since 

and ran(P^^^) c M, 

< I and ran([A^]P^) CMHAT, 

These prove one of the desired identities. The other one is proved by 
interchanging the roles of A4 and Af. I 

The range of the Schur complement [M]A is described in terms of M 
and ran (A) as seen in the following theorem. 

Theorem 5.6 For any positive semidefinite matrix A and subspace M CH 

Tdin{[M]A) = MnTdin{A). 

Proof, The left hand side of the above is included in the right hand side 
by (5.0.5) and Theorem 5.3. To see the converse, take any nonzero vector 
a E Ai n ran(A). Then since the range of the rank one matrix aa* is 
contained in A^ fl ran(yi), again by (5.0.5) and Theorem 5.3, we obtain 
[A^]A > 7aa* for some 7 > 0, which implies a G ran([A^]^). Since a is 
arbitrary, this proves that the right hand side is included in the left hand 
side, proving the identity. I 

For any positive semidefinite matrix X and any subspace M C H the 
formula (5.0.7) shows that 

X A P ^ = 0 <^=^ A l n r a n ( X ) = {0}. 

On this basis we can state another characteristic property of the Schur 
complement [A4]A. 
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Theorem 5.7 For any positive semidefinite matrix A and subspace M cH 

iA^[M]A)AP^ = 0. 

Further the decomposition of A as 

A = [M]A^{A-[M]A) 

is a unique decomposition A = X -\-Y such that X^Y > 0 and 

X < -fP^ 3 7 > 0 and YAP^=0. 

Proof. To see the first assertion, suppose by contradiction that 

Mnvdin{A- [M]A) j^ {0}. 

Then by (5.0.7) there is nonzero J5 > 0 such that 

ran(B) cM and B <A- [M]A. 

This implies that 

0<[M]A + B <A and mn{[M]A +B) C M. 

Then by Theorem 5.3 we are led to a contradiction. 

[M]A+B< [M]A. 

The uniqueness in the second assertion can be seen as follows. For X, Y in 
the question, by Theorem 5.3, X < [M]A so that 

0 < [M]A-X < [M]A. 

On the other hand, since 

[M]A~X < A-X = Y, 

it follows from the assumption that 

mn{[M]A-X) C At H ran( r ) = {0}. 

This implies [M]A = X. • 

To close this section, we present an expression of the Schur complement 
[A^]A, corresponding to an identity in Theorem 5.1. 
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Theorem 5.8 For any positive semidefinite matrix A and sub space M cH 

[M]A = Ai/2p^Ai/2, 

where Pj^ is the orthoprojection to the subspace J\f = {x : A^^'^x £ M}. 

Proof. By Theorem 5.1, 

({[M]A)x,x) = mi{\\x-y\\l: y € M^} 

= mi{{Aix-y),x-y) : yeM-^} 

= ini{\\A^/^x - A^/%f : y e M^} 

where 

A^= 1^1/2^: yeM-^^ 
_L 

Since (M-^)-^ = M, we can see 

AT = {z : A^^^z e (M-^)^} - [z : A^^^z G M} . 

Therefore J\f coincides with Af = {x : J^l^x G A1} and we can conclude 

(i\M\A)x, x) = \\P^A'/^xf = {{A'/^P^A'/^)x, x) (x 6 W), 

which yields the identity in the assertion. I 

We end the section by pointing out that the approach to the Schur 
complement as in Theorem 5.1 is presented here for the first time. But it 
was implicit in Theorem 5.3 established by M. G. Krein [269] in connec­
tion with an extension problem of Hermitian positive semidefinite forms 
and rediscovered by Anderson [10] and Anderson-Trapp [13] (as well by 
Ando) in connection with the shorted operator. See also Li-Mathias [280]. 
Theorem 5.6 was obtained by Anderson-Trapp [13] while Theorem 5.7 was 
mentioned in Ando [15] under a more general setting. Finally Theorem 5.8 
is a restatement of a more general result for a Hilbert space operator by 
Pekarev [348] and Kosaki [264]. 
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5.2 Propert ies of the map A \—> [M]A 

Each subspace M CH gives rise to a non-affine map A i—> [A^]yl on the 
class of positive semidefinite matrices. In this section we investigate the 
properties of this map. 

The following properties of this map are easily derived from the maxi­
mum property of [M]A in Theorem 5.3. 

Theorem 5.9 The map A i—> [M]A has the following properties. Here 
A, B , . . . are positive semidefinite matrices and M, M are subspaces ofH. 

(i) [M]{XA) = X[M]A (A>0) ; 

(ii) [M]{A + B) > [M]A+ [M]B; 

(iii) M D ran(A) =^ [M]A = A] 

(iv) MDM=> [J^A > [M]A; 

(v) AniA=>[M]Ani[M]A. 

Here A^ [ A means that Ai > A2 > - - - and limn-.oo An = A. 

Our basis free definition of Schur complements makes it possible to 
generalize the so-called Quotient Formula (see Theorem 1.4) for the case of 
positive semidefinite matrices. 

Theorem 5.10 (Generalized Quotient Formula) For any subspaces M^ 
Af cH, the map [M] commutes with the map [N]. More precisely 

[Af] o [M] = [M]o[Af] = [MnN], 

that is, 
[^{[M]A) = [M]{[N]A) = [MnM]A (A > 0). 

Proof, Since by Theorem 5.3 

[AT] {[M]A) < [M]A < A 

and by Theorem 5.6 

ran ([A/] {[M]A)) = J\f D mn {[M] A) ^ Af n {M D ran(A)) cMnAf, 

it follows again from Theorem 5.3 

[Af]{[M]A)<[Mn^A. 
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On the other hand, by Theorem 5.9 (iv) 

[MnAr]A<[M]A. 

Since by Theorem 5.3 

mn{[MnAf]A) cMnAfcM, 

it follows again from Theorem 5.3 that 

[Mnf^A<[N]([M]Ay 

which proves 
[N]o[M] = [MnAf]. 

Finally interchange of the roles of M and J\f in the above argument 
yields the other identity. I 

In our notation the classical quotient formula for Schur complements 
says that for a general matrix A and subspaces M C M CH 

A/{^fnM^)^ = {A/M^)/{AfnM^)^, (5.2.13) 

provided that the Schur complements in the expressions are well defined. 
When A is positive semidefinite, this formula can be derived from The­

orem 5.10. In fact, (5.2.13) means by definition 

[^fnM^]A = [AfnM^]{[J\f]A). 

Since {^fnM-^) nAf = J\fnM-^, the identity follows from Theorem 5.10. 

Let A be a general matrix with the block-form 

^ ^ Mil A2 I 
\ ^ 2 i ^ 2 2 / 

according to the orthogonal decomposition H = M -}- M^. If A, A^^ and 
4̂22 are all invertible, by the Schur determinant formula (Theorem 1.1) 

det(A) - det {A J det {A,,-A,^A;^^ A J 

= det{AJdet{A^,-A,^A;^'A,,), 

so that both A^^ — A^^A~^A^^ and A^^ — A^^A~^A^^ are invertible. Fur­
thermore it is well known that the inverse A~^ admits the following block-
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representation (Theorem 1.2) 

( ^ 1 1 ~ ^ 1 2 ^ 2 2 ^ 2 l ) " ~ ( ^ 1 1 ~ ^ 1 2 ^ 2 2 ^ 2 1 ) ^ 1 2 ^ 2 2 \ 

^ ~ ^ 2 2 ^ 2 1 ( ^ 1 1 ~ ^ 1 2 ^ 2 2 ^ 2 1 ) ( ^ 2 2 ~" ^ 2 1 ^ 1 1 ^ 1 2 ) / 

A-' = 

( ( ^ 1 1 ~ ^ 1 2 ^ 2 2 ^ 2 1 ) ~ ^ l l ^ 1 2 ( ^ 2 2 ~ ^ 2 1 ^ 1 1 ^ 1 2 ) \ 

" ( ^ 2 2 — ^ 2 1 ^ 1 1 ^ 1 2 ) ^ 2 1 ^ 1 1 ( ^ 2 2 — ^ 2 1 ^ 1 1 ^ 1 2 ) / 

If A is positive definite, so are Â ^ and A22; and this formula shows 

{[M]A)' = P^A-'P^ (A>0). (5.2.14) 

The identity (5.2.14) is useful to derive inequalities related to positive 
or negative powers of a positive semidefinite matrix and their Schur com­
plements. 

Though integral and fractional powers A^ of a positive semidefinite 
matrix A are defined in a natural way, we confine ourselves here to the 
observation of the most interesting cases: a = 2,1/2 and —1. In the course 
of the proof we use rather well known general inequalities ([51, Chap. V]) 

X > y > 0 = ^ X-^ <Y-^ (5.2.15) 

and 

X > y > 0 = ^ X^ /2 > y i /2 ^ (5.2.16) 

Theorem 5.11 Let M. he a subspace ofTi. Then 

{\)[M]{A'')<(\M]Af (^>0); 

(ii) [M]{A^'^) > {lM]Ay/^ {A > 0); 

(iii) [>l](A-i) < ([M]A)t {A > 0). 

Proof, (i) Since An = A + ^I and A^ are invertible and they converge 
decreasingly to A and A^ respectively as n —+ oo, by Theorem 5.9 (v), 

{[M]Af= \im {[M]Anf and [MKA"^) = lira {[M]iAl). \ 2 _ 
n—>oo 
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So for the proof of (i) we may assume that A is invertible. By (5.2.14), 

{[M]{A^))' = P^iA'r'P^ 

> (P^A-'P^f 

= {{{M]Af}l 

Since both [A^](^^) and ([A^]^)^ are invertible on A^, we conclude from 
(5.2.15) that 

[M]{A') = {{[M]{A')yy < {{([Al]A)2}t}t =. {[M]Af. 

(ii) Apply (i) to ^^/^ in place of A to get 

[M]A<{[M]{A^^^)}^. 

which implies (ii) by (5.2.16). 

(iii) Apply (5.2.14) to A~'^ in place of A to get 

{[M]{A-')}^ = P^AP^>[M]A. 

Since both [A^](A~-^) and [M]A are invertible on M, taking the Moore-
Penrose inverses of both side we have (iii) by (5.2.15) as above. I 

One may ask whether (5.2.14) is true for every positive semidefinite 
matrix A in the form 

{[M]A)^ = P^A^P^. (5.2.17) 

This is, however, not the case in general. For instance, let A = P ^ be an 
orthoprojection which does not commutes with P ^ . Suppose that (5.2.17) 
holds for this A. Since by Theorem 5.5 

{[M]Af = iP^^^)^ ^ P^^^ and P^P^P^ ^ P^P^P^ 

we have 
p — p p p 

which leads to the commutativity of PM and P^ , a contradiction. 
Let us present, without proof, the following characterization of a positive 

semidefinite matrix A and a subspace M for which (5.2.17) is valid. A proof 
is based on tedious, repeated uses of Theorem 5.3. 
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Theorem 5.12 In order that the relation 

{[M]Ay = P^A^P^ 

hold for a positive semidefinite matrix A and a subspace M C Ti, it is 
necessary and sufficient that 

ran(P^A) C ran(^). 

Note that Theorem 5.9 is mentioned in Anderson-Trapp [13] while The­
orem 5.10 was established by Ando [17]. 

5.3 Schur complement and parallel sum 

In this section we will show that the Schur complement has intimate connec­
tion with an important operation of parallel addition for positive semidef­
inite matrices. The climax is the recapture of the Schur complement in 
terms of parallel addition. 

For two positive definite matrices A and B^ the operation dual to the 
usual addition (A, B) i—> A^- B should be 

{A,B) K-^ {A-^+B-^}-\ 

Following Anderson-Duffin [11] (see also Pekarev-Smulian [349]), we call 
this operation parallel addition and denote the parallel sum of A and B by 

A'.B = {A-^^B-^}-^ ( A , B > 0 ) . (5.3.18) 

Notice that 

{A-^^B-^}-^ - A{A + B)-^B 

= B{A-\-B)-^A 

= A-A{A-{-B)-^A 

= B-B{A-^B)-^B. 

Then considering the block-forms 

A A \ ^ (B B 
A A-VB) ^^^ [B A + B 

as linear operators on the direct sum 7Y 0 7Y, the parallel sum A : B foi 
A,B > 0 is written as 

A-B - ( ^ ^ ^•^ ~ U A + B )/^t= {B A + 5 ) / ^ ^ (5-3-19) 
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where H^ is the first summand of W 0 W. 
The formulas (5.3.18) and (5.3.19) are extended to the case of positive 

semidefinite matrices. Now the parallel sum A : B for positive semidefinite 
matrices A^B is defined as 

A.B = A-A{AA-B)^A = B-B{A-\-B)^B ( A , ^ > 0 ) . (5.3.20) 

Then (5.3.19) is valid. The properties of parallel sum can be derived from 
those of Schur complements. 

Theorem 5.13 For any positive semidefinite matrices A^B 

{{A:B)x,x) = M{{Ay,y) + {Bz,z) : x = y + z} {x eU). 

Proof. By (5.3.20) and Theorem 5.1 

= M{{A{x-z),x-z)^{Bz,z) : zeH}. 

Replacing x — z by y we arrive at the assertion. I 

Theorem 5.14 The parallel addition has the following properties. Here A^ 
B, (7 , . . . are positive semidefinite matrices. 

(a) {aA):{PA) = ^ A ( a , /3>0) ; 

(h) A:B = B -.A; 

(c) (AA) : (AS) = A(A : B) (A > 0); 

(d) {A:B):C = A:{B: C); 

{e) A, B > A:B > 0; 

(f) A, > A„ B,>B, =^ A,:B, > A,: B,. 

More precisely, A^ i A, B„ | B = > A^ : B.^ I A : B; 

(g) ( 4 +A,):iB,+ B,) > A,:B,+A,: B,; 

(h) {S*AS) : {S*BS) = S*{A: B)S for all invertible S. 

Proof, (a) to (g) are immediate from Theorem 5.13. Finally (h) is obvious 
for invertible A,B by (5.3.18) while the general case follows by (f). I 
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Theorem 5.15 For any positive semidefinite matrices A, B 

ran(^ : B) = ran(A) fl ran(jB). 

Proof. By (5.3.19) and Theorem 5.6 

= {x : X = A{y-\-z) =—Bz 3 y^z} 

= ran(A) n ran (5 ) . • 

Theorem 5.16 For any positive semidefinite matrices A^B and any sub-
space M CH 

[M]{A:B) > [M]A: [M]B. 

Proof. Since by Theorem 5.3 

A > [M]A and B > [M]B, 

we have by Theorem 5.13 (f) 

A:B > [M]A : [M]B. 

Further since obviously 

TSin{[M]A:[M]B) c M. 

The assertion follows from the maximum property in Theorem 5.3. I 

The following result should be compared with Theorem 5.5. 

Theoremi 5.17 For any subspaces M, J\f cH 

P ' P — ^P 

Proof. Since P ^ ^ ^ <Pj^^ ^N^^Y Theorem 5.12 (a) and (f) 

i P = P • P < P • P 

On the other hand, since by Theorem 5.14 (f) and Theorem 5.15 

Pj^'.Pj^ < 1:1 = \I and ran(P^ :P^) C MnN 

we can conclude from Theorem 5.3 that 



SEC. 5.3 SGHUR COMPLEMENT AND PARALLEL SUM 155 

Putting the above arguments together completes the proof. I 

We have defined parallel sum A : B in terms of Schur complement. In 
the converse direction we will show that Schur complement can be recap­
tured with use of parallel addition. 

Consider two positive semidefinite matrices A,B. Since by Theorem 
5.14 (f) and (e) 

A:B < A: {2B) < • • • < A: {nB) < ' < A 

we define the limit of the sequence A : {nB)^ n ^ oo, denoted by [B]A, as 

[B]A ~ \im A: {nB). (5.3.21) 
n—^oo 

Since all nB have the same range ran(jB), 

[B]A < A and ran([5]A) C ran(5) 

which implies by Theorem 5.3 

[B]A < [ran(B)]A. 

Let us show that the reversed inequality holds. To this end, let C = 
[rain{B)]A. Since ran(C) C ra,n{B) due to Theorem 5.3, by (5.0.5) 

C <jB 3 7 > 0, C < A and ran(C + -fB) = ran(5). 

Then by (5.0.9) and (5.3.20) 

{{C:{nB))x,x) = (Cx, x) - sup | ^ ^ i ^ j L : 2; G r a n ( 5 ) | , 

it follows by the Cauchy-Schwarz inequality that 

0 < {Cx,x)-{{C :{nB))x,x) 

^ f {Cy^y) • {Cx,x) 
{{1-hnj ^){Cy,y) 

< ; {CX,X), 

n + 7 

which implies 
[ran(^)]A - C = lim C : {nB) < \im A : {nB) = [B]A. 

Thiis we have proved the following theorem, the central result of the section. 
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Theo rem 5.18 For any positive semidefinite matrices A^ B 

[B]A = [ran(B)]A. 

Theo rem 5.19 Given two positive semidefinite matrices A^B, let 

A^ = [B]A and A^ = A-A^. 

Then A = A^ -{- A^ is the unique decomposition such that 

0 < ^1 < 7 ^ 3 7 > 0 and A^AB = 0. 

This is a reformulation of Theorem 5.7 based on Theorem 5.18. 

Theo rem 5.20 Let A, B, and C be positive semidefinite matrices. Then 

(i) [aB]A=[B]A ( a > 0 ) ; 

(ii) [5*55](5*^5) - 5* • [B]A • S for all invertible 5; 

(iii) 0<B<C =^ [B]A < [C]A; 

(iv) ran(A) C ran(5) = ^ [B]A = A; 

(v) [B]A=[A:B]A. 

Proof, (i) follows from Theorem 5.18 because ran(a-B) = ran(B). (ii) 
follows from Theorem 5.14 (h) and definition (5.3.21). (iii) and (iv) are 
obvious. For (v), by Theorem 5.18, Theorem 5.14, and Theorem 5.10 

[A:B]A = [mn{A : B)]A 

= [idin{A) n mn{B)]A 

= [ran(B)]([ran(^)]^) 

= [B]A.M 

Note that the expression of the parallel sum in terms of the Schur com­
plement was first pointed out by Anderson-Trapp [13]. They established 
also Theorems 5.13 and 5.15. Theorem 5.17 is due to Anderson-Schreiber 
[12]. The operation [B]A was introduced by Ando [15], and Theorem 5.18 
is a restatement of a more general result for Hilbert space operators by 
Ando [15]. 
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5.4 Application to the infimum problem 

In this section we will present an important application of the map A i—> 
[B]A to show its usefulness in the investigation of the order structure of 
the cone of positive semidefinite matrices. 

For any pair of positive semidefinite matrices A and B^ the set {X : 
X < A,B} does not admit the maximum element in the class of Hermitian 
matrices, except when A and B are comparable, i.e., A> B or A< B. 

The situation is, however, different if observation is restricted to the 
cone of positive semidefinite matrices. The purpose of this section is to 
find a condition so that the set {X > 0 : X < A, B} admits the maximum 
element. When this is the case, the maximum will be denoted by A A B 
and referred to as the infimum of A and B. 

Note that the notation AAB already appeared in Section 5.1 for the case 
AAB = 0. Moreover, it is easy to see that when A, B are orthoprojections, 
that IS, A = P ^ , B — P ^ , their infimum always exists, and 

First if 0 < X < ^ , ^ , by Theorem 5.20 (iv) 

X = [B]X < [B]A and X = [A]X < [A]B. 

Therefore if [A\B and [B]A are comparable, then A AB exists and 

AAB = mm{[A]B,[B]A}. 

The converse direction for the existence of infimum is the central part 
of the following theorem. In the investigation of the order structure of the 
set {X >^:X<A,B}we may assume that A^ B — I. This is seen as 
follows. Let M = ran(A + B). Since ^ < X < A,B implies that the map 

X K-̂  $(X) = {{A + B)^f^^ • X . ((A + 5)^)1/2 

is an affine order-isomorphism from the set {X >{): X < A,B} to the set 
{y > 0 : y < ^{A),^{B)} in the class of positive semidefinite operators 
on the Hilbert space M and ^{A) + ^{B) = Ij^, and this isomorphism 
satisfies, by Theorem 5.20 (ii), the conditions 

^{[A]X) = [^{A)]^{X) and ^{[B]X) = [^{B)]^{X). 

Theorem 5.21 Positive semidefinite matrices A and B admit the infimum 
A A B if and only if [A : B]A and [A : B]B are comparable. In this case 

AAB = mm{[A:B]A,[A:B]B}. 
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Proof. Notice first that by Theorem 5.20 (v) 

[A]B = [A : B]B and [B]A - [A : B]A. (5.4.22) 

Now let A^B be positive semidefinite matrices of order n for which the 
infimum AAB exists. As explained above, we may assume that 

A + B = I. (5.4.23) 

We may further assume that A (and so B) is not an orthoprojection. Oth­
erwise under (5.4.23) 

AAB = 0 and [A:B]A=[A:B]B = 0. 

By the spectral theorem (see [51, p. 5]) there is a unitary matrix U for 
which [/*A[/ (and hence U'^BU ^ / - V'AU) is diagonal. By Theorem 
5.20 (ii) we may further assume that both A and B are diagonal and of the 
form 

A = diag(Ai, A2, • • • , A^), where 0 < Ai < A2 < • • • < An < 1. (5.4.24) 

and by (5.4.23) 

B = diag(l - Ai, 1 - A2, • • • , 1 - An). (5.4.25) 

Since A is not an orthoprojection by assumption, with AQ ^ 0 and A^+i = 1, 
there are I < p < q < n such that 

Ap_i = 0 < Ap < Ag < Ag+i = 1. (5.4.26) 

Let 
C = diag(min(A,-,l-A,))"^^. (5.4.27) 

Clearly 0 <C < A,B so that by assumption 0< C < AAB. Take any D 
such that C < D < A,B. Then since 

0 < D-C < A-C and 0 < D~C < B-C, 

we have by (5.0.5) 

Tan{D-C) C r a n ( A - C ) and ran(i:> - C) C ran(5 - C). 

On the other hand, since by (5.4.24), (5.4.25) and (5.4.27) 

A-C = diag (max(2A^. - 1, 0))^^^ 
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and 
5 - C = d i ag (max( l -2A. ,0 ) ) ; ^ j , 

we can infer 
ran(A - C) n ran(^ - C) - {0}, 

so that ran(i) — C) = {0} hence D — C. This shows that C is a maximal 
element in the set {X > 0 : X < A, JB}, thus it must coincide with At\B. 

It follows, by (5.4.24) and (5.4.25), from definition (5.3.21), that 

[B]A = d iag(0 , . . . ,0 ,Ap, . . . ,A„0, . . . ,0 ) 

and 
[A]B = d i a g ( 0 , . . . , 0 , l - A p , . . . , l - A „ . . . , 0 ) . 

Suppose, by contradiction, that [B]A and [A]B are not comparable, i.e., 

[B]A t [A\B and {B\A ^ \A\B, 

which is equivalent by (5.4.26) to saying that 'p < q and 

1 - 2Ap > 0 and 2Ag - 1 > 0. 

Choose e > 0 and ^ > 0 such that 

e < 5 < 2 e < 7 - e , where 7 = min{Ap, 1 - 2Ap, 1 - \q,2\ - 1}, (5.4.28) 

and consider the Hermitian matrix F = {fij)2j=i with entries 

fvp = f,, = ^' fp, = f,P=^ ^^d 4 = 0 for other i, j , 

First, F is not positive semidefinite because by (5.4.28) 

detF[p,q] = e^ -S"^ < 0, 

where F[p,q] is the 2 x 2 principal submatrix of F indexed by p,q. 

Next C — F is positive semidefinite. To see this, it suffices to show the 
positive semidefiniteness of the principal submatrix 

(c-F)M={\y i_-,̂ _,) 

We can see from (5.4.28) that 

\r ,--/-> C-T A'̂ »-
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Finally, let us show that 

C -F <A, B or equivalently A - C + F, 5 - C + F > 0 . 

As above, it is sufficient to show the positive semidefiniteness 

{A-C + F)[p,q]>0 and (J5 - C + F)[j9, ]̂ > 0. 

Since 
max(2Ap - 1,0) -: 0 and max(2A^ - 1,0) =: 2Â  - 1 

we can see from (5.4.27) that 

{A-C + F)M=(^, 2 A , - l + e 

and 

det(^ - C + F)[p, q] = e(2A^ - 1 + e) - ^^ > ^^^ ^ )̂ _ ^2^ 

By (5.4.28) 
e7> {5-e){5^e) 

which implies the positivity of the determinant, so {A — C -{- F)\p^ q\ > 0, 
hence A — C -\- F >0. That B — C ~\- F >0 is proved in a similar way. 

Now we are in the position that 

0<C-F<A,B. 

Since C = AAB, we have C—F<C. This contradicts the fact that F is 
not positive semidefinite. Therefore [A]B and [B]A have to be comparable. 
Thus [A : B]A and [A : B]B are comparable by (5.4.22). I 

Notice that if A,B are orthoprojection, then [A]B — [B]A by Theo­
rem 5.5 so that AAB = [A]B = [B]A by Theorem 5.21. 

There are positive semidefinite matrices B for which the infimum AAB 
exists for all A in a wide class of positive semidefinite matrices. 

Theorem 5.22 Let B be a matrix such that 0 < B < I and rank(5) > 2. 
Then in order that the infimum AAB exist for all 0 < A < I, it is necessary 
and sufficient that B is an orthoprojection. In this case A A B = [B]A. 

Proof. First we suppose that B is an orthoprojection, B = P ^ for some 
subspace M. By Theorem 5.20 we have 

lPj.]A < IP^]I = P, M ' 



SEC. 5.4 APPLICATION TO THE INFIMUM PROBLEM 161 

and 
[PM]A = [[P^]A]i[PjA) < [[PJA]P^ <[A]P^, 

which shows that [ P ^ ] ^ ^^^ [^I^A^ ^^^ comparable and 

min{[P^]yl,[^]P^} = [P^]A 

hence by Theorem 5.21 AAB = [B]A. 

Suppose now that B is not an orthoprojection. Since B is of rank > 2, 
there are mutually annihilating orthoprojection P^, P^^ commuting with 
B, and 0 < e < 7 < 1 such that 

BP, > jP, and jP^>BP^>eP^. (5.4.29) 

Let 

A ^ I ± f p ^ + l ± 2 p ^ . (5.4.30) 

Then 0 < ^ < / , and A and BP^ + BP^ are not comparable. By (5.4.29) 
and (5.4.30) 

which implies by (5.0.5) 
ran(B) D ran(A) 

so that, by Theorem 5.20 and (5.4.22), 

[B]A=[A:B]A=[A]A=A. 

On the other hand, by (5.4.30) 

P,+P, > A > e{P, + P,) 

and since Pi -j- P2 is an orthoprojection commuting with 5 , we have by 
definition (5.3.20) 

[A]B = [Pi + P2]B = BP1 + BP2. 

Therefore [A]B and [B]A are not comparable. By Theorem 5.21 the infi­
mum A A B does not exists. I 

Theorem 5.23 Let B be a positive semidefinite matrix. Then in order 
that the infimum A A B exist for all A > 0, it is necessary and sufficient 
that B is of rank less than or equal to 1. 
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Proof. Suppose that B is of rank < 1. By Theorem 5.18 and Theorem 5.3 

ran([A]5), rSin{[B]A) C ran(5) 

and since B is of rank < 1, both [A]B and [B]A are nonnegative scalar 
multiphes of B so that they are comparable. Then the existence oi A A B 
follows from Theorem 5.21. 

Suppose now that B is of rank > 2. Via multiplication by a positive 
scalar we may assume that B < ^L Then since B is not an orthoprojection, 
as in the proof of Theorem 5.22 there is 0 < A < J such that the infimum 
A A B does not exists. I 

We conclude the section by pointing out that the problem of infimum 
in the cone of positive semidefinite operators on a Hilbert space has been 
discussed by a group of mathematical physicists. The results of this section 
for the case of matrices are obtained by Moreland-Gudder [324]. The proofs 
presented here, however, are quite different from theirs and adopted from 
those of the corresponding results for Hilbert space operators by Ando [20]. 



Chapter 6 

Schur complements in 
statistics and probability 

6.0 Basic results on Schur complements 

In this chapter we survey the use of the Schur complement in statistics and 
probability, building upon the surveys by Ouellette [345] and Styan [432] 
published, respectively, in 1981 and 1985. We will use Roman boldface cap­
ital letters for matrices and Roman boldface lower case letters for vectors. 
We use a prime to denote transpose and all our row vectors are primed. 
Scalars will be denoted by lower case lightface italic letters. In Section 6.0 
our matrices are all complex, but in all subsequent sections unless stated 
explicitly to the contrary, our matrices are real. 

We will use several basic results on Schur components as studied in 
Chapter 0. These results include the important Aitken block-diagonalization 
formula as well as the Haynsworth inertia additivity formula, and the Ba-
nachiewicz and Duncan matrix inversion formulas. We also look at the in­
version formulas due to Bartlett, to Sherman-Morrison, and to Woodbury. 
We introduce the Albert nonnegative (positive) definiteness conditions, as 
well as the generalized quotient property and the notion of generalized 
Schur complement. 

In Section 6.1 we consider several matrix inequalities which are useful 
in statistics and probability. In 6.2 we study correlation and in 6.3, the 
general linear model and multiple linear regression. In Section 6.4 we look 
at experimental design, where the Schur complement plays a crucial role as 
the so-called C-matrix. We end the chapter with an analysis-of-covariance 
model associated with Broyden's mark-scaling algorithm [97], published in 
1983. 
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6.0.1 The Aitken block-diagonahzation formula 

Let the partitioned (block) matrix 

where the square matrix P is nonsingular (invertible); the matrix M need 
not be square. Then 

M / P = S - R P - ^ Q (6.0.2) 

is the Schur complement of P in the partitioned matrix M. 

We find the Aitken block-diagonalization formula 

/ I 0 \ / P Q \ / I - P - ^ Q \ / P 0 ^ 

l - R P - i l) I R S i lo I J ~ 10 M/P. 
(6.0.3) 

introduced in (0.9.1), to be very useful. In (6.0.3) neither M / P nor S need 
be square. The two triangular matrices in (6.0.3) each have determinant 
equal to 1 and so, they are both nonsingular. It then follows at once that 
rank is additive on the Schur complement 

rank(M) = rank(P) + rank(M/P) = rank(P) + rank(S - RP~^Q), (6.0.4) 

which we refer to as the Guttman rank additivity formula, see also (0.9.2). 
Since P is nonsingular, we see that the nullity of M and the nullity of the 
Schur complement M / P are the same 

u{M) = z/(M/P) = i/(S - R P - ^ Q ) . (6.0.5) 

When M is square, taking determinants of (6.0.3) shows that determinant 
is multiplicative on the Schur complement as established by Schur [404] in 
1917. 

det(M) - det(P) • de t (M/P) = det(P) • det(S - R P - ^ Q ) . (6.0.6) 

We refer to (6.0.6) as the Schur determinant formula, see also (0.3.2). 

6.0.2 The Banachiewicz, Duncan, Sherman—Morrison 
and Woodbury matr ix inversion formulas 

Let us consider again the square complex nonsingular partitioned matrix 

M = f j ^ g j as in (6.0.1) above, with P nonsingular, and therefore the 
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Schur complement M / P = S — RP~^Q also nonsingular. Then from 
the Aitken block-diagonalization formula (6.0.3) above, we obtain the Ba-
nachiewicz inversion formula^ see also (0.7.2), 

/ p - i _̂  p - i Q ( M / P ) - i R P - i - P - i Q ( M / P ) - i \ 

\ - (M/P) - iRP- i (M/P)-i J 

When S is nonsingular, then the Schur complement M / S = P — QS~^R 
is also nonsingular and 

^ / (M/S) - i - ( M / S ) - i Q S - i \ 

V - S - i R ( M / S ) - i S-i + S - i R ( M / S ) - i Q S - 7 

with P not necessarily nonsingular. When, however, both S and P are 
nonsingular, then we may equate the top left-hand corners in (6.0.7) and 
(6.0.8) to yield (M/S)-^ = P~^ + P - i Q ( M / P ) - i R P - i or explicitly, as 
in (0.8.3), 

(P - QS-^R)-^ - P - ^ -h P-1Q(S - R P - i Q ) - ^ R P - \ (6.0.9) 

which we refer to as the Duncan inversion formula] we believe (6.0.9) was 
first established by Duncan [151]; see also Guttman [197]. Grewal & An­
drews [189, p. 366] call (6.0.9) the Hemes inversion formula following a 
reference to H. Hemes by Bodewig [64, p. 218]; see also [190, p. 309] and 
our Chapter 0. 

The formula (6.0.9) was also obtained six years later in 1950 by Wood­
bury [461], who established that 

(P + Q T R ) - i - P - ^ - P - ^ Q T ( T + T R P - ^ Q T ) - ^ T R P - \ (6.0.10) 

which we refer to as the Woodbury inversion formula and which follows 
easily from (6.0.9) by substituting S = —T""^. At first glance (6.0.10) seems 
not to require that T be nonsingular. But T is a factor of T- | -TRP~^QT, 
which is nonsingular, and hence so is T; see also Henderson & Searle [219], 
where many special cases and variations of the inversion formulas (6.0.9) 
and (6.0.10) are presented. 

Hager [200] focuses on the inverse matrix modification formula 

(P - QR)-^ = P - ^ + P-^Q(I - R P - ^ Q ) - ^ R P " \ (6.0.11) 

and observes that the matrix I — RP~-^Q is often called the capacitance 
matrix^ see also [356]. The inverse matrix modification formula (6.0.11) is 



166 ScHUR COMPLEMENTS IN STATISTICS CHAP. 6 

the special case of our Duncan inversion formula (6.0.9) with S == I and 
the special case of our Woodbury inversion formula (6.0.10) with T = —I. 
Hager [200] notes moreover that his inverse matrix modification formula 
(6.0.11) is frequently called the Woodbury formula. 

When 

M = r p '̂ 
yr* s 

with q and r column vectors and s a nonzero scalar, then the Schur com­
plement M / S becomes 

M/5 = P - i q r * , 
s 

and the Duncan inversion formula (6.0.9) becomes 

(P - i q r * ) - i = P - I + i _ - ^ p - i q r * p - l , (6.0.12) 
s 5 —r*P~-^q 

where the scalar Schur complement M / P = 5 — r * P ~ ^ q ^ O . 

The special case of (6.0.12) with s = —1, 

(P + qr*)-i = P- I - I p - ^ q r * p - \ (6.0.13) 
1 + r*P ^q 

was apparently first established explicitly by Bartlett [36] in 1951 and so 
we refer to (6.0.13) as the Bartlett inversion formula. We note that (6.0.13) 
is the special case of the inverse matrix modification formula (6.0.11) with 
Q = —q and R = r. 

The special case of the Bartlett inversion formula (6.0.13) with q = e^, 
the column vector with 1 in its ith position and 0 elsewhere, is 

(P -f e,r*)-i = P - I - _ - - L _ _ p - i e , r * p - \ (6.0.14) 
1 ~\~ T JL G'i 

which shows how the inverse changes when the row vector r* is added to 
the ith row; the column vector P~^e^ is the ith column of P~^. The special 
case of (6.0.14) with r == kej^ 

shows how the inverse changes when k is added to the (i, j ) th element. In 
(6.0.15) the column vector Ui = P~^e^ is the ith column of P~^, the row 
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vector Y'J is the jth row of P~"^, and p^'^ = e^P~^e^ is the (j, i)th element of 
P"-'^. The matrix P remains nonsingular after the (i,j) element has been 
changed from pij to pij -i- k if and only if & ^ —p^̂ . 

We believe that the formula (6.0.15) was first explicitly given in 1949 by 
Sherman & Morrison [416] and first published in 1950 [418]. The formula 
(6.0.14) was apparently first given in 1949 at a meeting in Colorado by 
both Sherman & Morrison [416] and by Woodbury [325, p. 192], whose 
formula was presented on his behalf at this meeting by the economist Oskar 
Morgenstern (1902-1976). 

We refer to (6.0.15) as the Sherman-Morrison inversion formula and 
(6.0.14) as the Sherman-Morris on-Woodbury inversion formula. 

For the inverse matrix modification formula (6.0.11), the term Sherman-
Morris on-Woodbury formula is used by Golub & Van Loan [185, p. 50] in 
their well-known Matrix Computations book; see also [190, p. 309], [258, 
pp. 52-53], and [313, p. 124], while Duda, Hart & Stork [149] in their 
Pattern Recognition book, call our Bartlett inversion formula (6.0.13) the 
Sherman-Morris on-Woodbury matrix identity. In their Global Positioning 
Systems book, Grewal, Weill & Andrews [190, p. 309] call our Bartlett 
inversion formula (6.0.13) the Sherman-Morrison formula; see also [258, 
p. 52]. Meyer [313, p. 124] in his recent Matrix Analysis and Applied Linear 
Algebrahook calls (6.0.13) the Sherman-Morrison rank-one update formula. 

6.0.3 The Haynsworth inertia additivity formula 

For the partitioned complex Hermitian matrix 

^Au Ai2 \ 

we define the inertia triple 

InA = {TT, 7, C}, 

where the nonnegative integers TT = 7r(A), 7 = 7(A), and (^ — C(A) give 
the numbers, respectively, of positive, negative and zero eigenvalues of A. 
Here A n is nonsingular and A^2 is the conjugate transpose of A12. And 
so, since A is Hermitian, 

rank(A) = 7r(A) -f- 7(A) and z/(A) = C(A), 

where iy{-) denotes nullity. 
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Then Haynsworth [210, 211] proved the Haynsworth inertia additivity 
formula (0.10.1) 

I n ( A ) = I n ( A n ) + In (A/An) 

= In(An) + In(A22 - AI^A^.'AU) (6.0.16) 

from which it follows at once that A is nonnegative definite if and only if 
Al l is positive definite and the Schur complement A / A n is nonnegative 
definite. And then A and A / A n have the same nullity, i^(A) = z/(A/Aii). 

6.0.4 The generalized Schur complement and the 
Albert nonnegative definiteness conditions 

Let us now suppose that A is nonnegative definite and that A n is possibly 
singular. Then we define the generalized Schur complement 

A / A l l = A22 - Aj2AnAi2 , (6.0.17) 

where the superscript ~ denotes generalized inverse so that G~ is a general­
ized inverse of the (possible rectangular) matrix G whenever G = G G ~ G . 
For more details on generalized inverses, see, e.g., Ben-Israel & Greville 
[45], and for generalized Schur complements, see, e.g., Ouellette [345]. 

To show that our generalized Schur complement as defined in (6.0.17) 
does not depend on the choice of generalized inverse, we write the nonneg­
ative definite matrix 

A = BB' = (Bt B^) = I ' , (6.0.18) 
\ B 2 / \B2B1 B2B2/ 

and so we see that the generalized Schur complement 

A / A l l = A22 - Ai2Aj"iAi2 

= B2B* - B2B]:(BiBI)-BiB^ (6.0.19) 

does not depend on the choice of generalized inverse since the orthogonal 
projector B i ( B i B i ) ~ B i does not depend on the choice of generalized in­
verse. This leads to the generalized Aitken block-diagonalization formula 

All 0 \ 

0 (A/Aii)j • 
(6.0.20) 

file:///B2B1
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And SO when A is nonnegative definite and Hermitian, we see that 
inertia is additive on the generalized Schur complement 

In(A) = In(An) + In(A/An) , 

- In(An) + In(A22 - A*2AriAi2), (6.0.21) 

and hence so is rank 

rank(A) = rank(Aii) + rank(A/Aii) 

= rank(Aii) + rank(A22 - A];2AfiAi2), (6.0.22) 

and nullity 

u{A) = iy{An) + ^ ( A / A n ) = i/(An) + i/(A22 - At2AriA12). (6.0.23) 

The three additivity formulas (6.0.21), (6.0.22) and (6.0.23) use the non-
negative definiteness of A to ensure that the generalized Schur complement 
A22 — Ai2Aj~iAi2 does not depend on the choice of generalized inverse 
Aj~i. And as Albert [6] noted, see also Baksalary & Kala [24], the general­
ized Schur complement A22 — A^2Aj~jAi2 does not depend on the choice 
of generalized inverse Ajf̂  if and only if rank(Aii : A12) = rank(Aii), or 
equivalently if and only if C(Ai2) C C(Aii), where C(-) denotes column 
space (range). And so as shown by Albert [6], see also Pukelsheim [357, 
p. 75], the following three statements are equivalent: 

(ao) A >L 0, 

(bo)Ai i>LO and A22 - A*2A^i A12 >L 0 and C(Ai2) C C(Aii), 

(co) A22 >L 0 and A n - Ai2A^2At2 >i 0 and C(Ai2) C C(A22), 

where >L denotes the Lowner partial ordering so that A >L 0 means that 
A is nonnegative definite. We refer to the set of statements (ao), (bo), (co) 
as the Albert nonnegative definiteness conditions. 

While we believe that Albert [6] was the first to establish (in 1969) these 
nonnegative definiteness conditions, we are well aware of Stigler's Law of 
Eponymy [428, ch. 14], which "in its simplest form" states that "no scientific 
discovery is named after its original discoverer" [428, p. 277]. 

When All >L 0, i.e.. A n is positive definite, it follows at once that 
rank(Aii : A12) = rank(Aii) and so C(Ai2) C C(Aii). And, of course, 
the Schur complement A n — Ai2A^2^A^2 ^̂  unique! Hence the following 
three statements are equivalent: 
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(ai) A > L O , 

(bi) All >L 0 and A22 - Ai2Af/Ai2 >L 0, 

(ci) A22 >L 0 and A n - Ai2A^2^ A12 >L 0, 

see also the inertia formula (6.0.16) above. We refer to the set of statements 
(ai), (bi), (ci) as the Albert positive definiteness conditions. 

An interesting special case is when A12 = I and 

/ A n I \ 
A - > L O . 

V I A22; 
(6.0.24) 

Then both A n and A22 are positive definite. To show this, we note from 
the conditions in (bo) and (CQ) above, A >L 0 implies C(I) C C(Aii) and 
C(I) C C(A22) and so both A n and A22 are positive definite. Hence 

and 

>L 0 <^ A n >L A22̂  <^ A22 >L Â î  
^Aii 

. I 

A l l 

I 

I 

A22 

I ̂  

A22, 
>L 0 <^ A n >L A22̂  ^ A22 >L Ai/. 

6.0.5 The quotient property and the 
generahzed quotient property 

Let us consider the partitioned matrix 

/ P Q \ 
M = 

. R S 

P u 

P21 

P12 

P22 

Q i 

Q2 

VRi R2 • s y 

(6.0.25) 

where the matrices P and P u are both nonsingular (invertible); the matrix 
M need not be square. Then Haynsworth [210] proved 

M / P = ( M / P i i ) / ( P / P i i ) , (6.0.26) 

which we refer to as the quotient property; see also Crabtree & Haynsworth 
[131] and Ostrowski [342]. 
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The property (6.0.26) has also been called the Crabtree-Haynsworth 
quotient property. 

On the right-hand side of (6.0.26), we see that the "denominator" matrix 
P i i "cancels" as if the expressions were scalar fractions. When M is square 
and nonsingular, then we may take determinants throughout (6.0.26) and 
apply the Schur determinant formula (0.3.2) to obtain 

det (M/P) 
de t (M/Pi i ) 

d e t ( P / P n ) 

This quotient property may be generalized as follows. Suppose now 
that the matrix M is Hermitian and nonnegative definite and partitioned 
essentially as in (6.0.25), with P21 = P12 ^^^ R = Q* 

M = : 

P n 

P 12 

P12 

P22 

Q i 

Q2 (6.0.27) 

VQt Q2 : s / 

Then the generalized Schur complements (M/P) , ( M / P n ) and ( P / P n ) 
are each unique and well defined. And so (6.0.26) still holds and we have 
the generalized quotient property 

M/P = (M/Pn) / (P /Pn) , (6.0.28) 

see, e.g., [345, Th. 4.8]. We will use the quotient property (6.0.26) and the 
generalized quotient property (6.0.28) to prove an interesting property of 
conditioning in the multivariate normal distribution, see Section 6.2 below. 

6.1 Some matr ix inequalities 
in statistics and probability 

In this section we study certain matrix inequalities which are useful in 
statistics and probability and in which the Schur complement plays a role. 
We begin with the Cramer-Rao Inequality, which provides a lower bound 
for the variance of an unbiased estimator. In addition we look at the 
Groves-Rothenberg inequality and matrix convexity, as well as a multi­
variate Cauchy-Schwarz inequality. 
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6.1.1 The Cramer-Rao Inequality and the unbiased 
estimation of a vector-valued parameter 

According to KendalVs Advanced Theory of Statistics [430, Section 17.15], 
the inequahty, popularly known as the Cramer-Rao Inequality, is "the fun­
damental inequality for the variance of an estimator" and was first given 
implicitly in 1942 by Aitken & Silverstone [5]. As noted by C. R. Rao [376, 
p. 400], the "Cramer-Rao bound has acquired the status of a technical term 
with its listing in the McGraw-Hill Dictionary of Scientific and Technical 
Terms [304] and has been applied in physics [447]. 

It seems that the Cramer-Rao Inequality was so named by Neyman & 
Scott [333] but was mentioned by C. R. Rao in the course on estimation 
he gave in 1943 [376, p. 400]. It "is named after two of its several discover­
ers": Harald Cramer (1893-1985) and C. Radhakrishna Rao (b. 1920), see 
Cramer [132, Section 32.3] and Rao [367]. The inequality was given earlier 
in 1943 by Maurice Rene Frechet (1878-1973) in [172] and is also known as 
the Frechet-Cramer-Rao Inequality or as Frechet ^s Inequality, see Sverdrup 
[434, ch. XIII, Section 2.1, pp. 72-81]. 

The lower bound is sometimes called the amount of information or the 
Fisher information in the sample [430, Section 17.15] and Savage [397, 
p. 238] proposed that the inequality be called the information inequality. 
For a vector-valued parameter the lower bound is a covariance matrix known 
as the Fisher information matrix, see, e.g., Palmgren [346], or just the 
"information matrix", see, e.g., Rao [372, Section 5a.3, p. 326], who also 
considers the situation when this lower bound matrix is singular; see also 
Rao [376, p. 398]. The inequality is in the Lowner partial ordering. 

Let Lo{y) denote the likelihood function of the unknown parameter 
vector 0 corresponding to the observable random vector y. Let g(^) be a 
vector-valued function of 0 and let 

Let t(y) denote an unbiased estimator of g(^); then, under certain regu­
larity conditions, see, e.g., Rao [372, Section 5a.3, p. 326], the covariance 
matrix 

cov(t(y)) >L G^F-G'^ (6.1.2) 

in the Lowner partial ordering. The lower bound matrix G^F^G'^ does 
not depend on the choice of generalized inverse F ^ , see (6.0.17) above. We 
refer to (6.1.2) as the generalized multiparameter Cramer-Rao Inequality. 
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When as unbiased estimator to, say, exists such that its covariance 
matrix equals the lower bound matrix G^F^G^ then to is known as the 
Markov estimator [434, ch. XIII, Section 2, pp. 72-86] or minimum vari­
ance unbiased estimator oi ^{6). 

To prove the generalized multiparameter Cramer-Rao Inequality (6.1.2), 
it suffices to show that the joint covariance matrix of t(y) and the score 
vector d log Le/dO is 

* = c„vf '<>'' U f " ' ( ' W ) '^•V (6.1.3) 

Since a covariance matrix is always nonnegative definite, it follows at once 
that G^F^ G^ does not depend on the choice of generalized inverse F ^ and 
that the generalized Schur complement 

^/Fe = cov(t(y)) - G^F 'G'^ >L 0, (6.1.4) 

which leads directly to the inequality (6.1.2). 

To prove (6.1.3), we first note that the covariance matrix 

cov 

since 

as J Le (y) dy = 1. The third equality depends on the regularity condition 
that we may interchange the integral sign with the differential d/d6. 

Furthermore, the cross-covariance matrix 

cov ( t (y ) ,^ i^^)=E( t (y )^ l2 |^ ) 

^ E ( t ( y ) ) = -Q^ = Ge 

(6.1.6) 
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An important special case of the inequality (6.1.2) is when g{6) — 6 
and so E(t(y)) = 6. Here G^ - dg{0)/de' = d\e)/de' - I, the identity 
matrix and the joint covariance matrix 

t(y) \ 

.aiogLe(y)/96>. 
covL. . , . , . J = ( ; ' „ I- (6.1.7) 

It follows that F^ is positive definite and the Cramer-Rao Inequality (6.1.2) 
becomes the reduced multiparameter Cramer-Rao Inequality 

cov (t(y)) >L F^ i . (6.1.8) 

A simple example in which the reduced multiparameter Cramer-Rao 
Inequality (6.1.8) yields the minimum variance unbiased estimator is in the 
usual general linear model with normality, see, e.g., [345, p. 290] Let y 
follow the multivariate normal distribution N(X7, cr^I), where X has full 
column rank; the vector 7 is unknown and is to be estimated based on a 
single realization of y. The log-likelihood 

n 1 
logL - - - log27r -nloga- — ( y - X7) '(y - X7) (6.1.9) 

and so the score vector 

^ = l x ' ( y - X7) = ^ ( X ' y - X 'X7) , (6.1.10) 

which has covariance matrix cov(9 log L/97) == (l/<j^)X'X. The lower 
bound matrix is, therefore, Y'Z^ = (j^(X'X)~^, the covariance matrix of 
the maximum likelihood estimator 7 — (X'X)~^X'y, which we may ob­
tain by equating the score vector (6.1.10) to 0. Hence 7 is the minimum 
variance unbiased (or Markov) estimator of 7. 

6.1.2 The Cramer—Rao Inequality 
and Schur products 

In this subsection we will show how the reduced multiparameter Cramer-
Rao Inequality (6.1.8) yields interesting matrix inequalities involving Schur 
products. 

Let A denote 3. p x p real symmetric positive definite matrix. Then 
using the reduced multiparameter Cramer-Rao inequality (6.1.8), Styan 
[431] proved that 

A * A >L 2(A * I)(A"^ * A + I ) ~ n A * I) (6.1.11) 
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A - i * A + I >L 2 ( A * I ) ( A * A ) - ^ ( A * I ) . (6.1.12) 

Here * denotes the Schur product (or Hadamard product) of two matrices 
multiplied together elementwise. Also used here is the theorem established 
in 1911 by Issai Schur [403, Th. VII] stating that the Schur product of two 
positive definite matrices is positive definite, see also [431, Th. 3.1]. 

Ando [16, Th. 20] proved the inequality (6.1.11) in a different (nonsta-
tistical) way and also showed that if both A and B are p x p and positive 
definite then 

A * B >L ((A + B ) * l ) ( A - i * B + B - ^ * A - f 2I)~^((A + B ) * I ) , 

which becomes (6.1.11) when A = B. Ando [16] also established other 
extensions of (6.1.11). 

To prove (6.1.11), Styan [431] considered the problem of estimating 
the unknown positive standard deviations ai , . . . , cTp in a p-variate normal 
distribution with zero mean vector and known positive definite correlation 
matrix R. A random sample of p x 1 vectors x i , ...,Xn, with n > p, is 
available and we will let the sample covariance matrix 

n 

With n > p the matrix S is positive definite with probability 1, see, e.g., 
Das Gupta [138]. Let I = —{2/n)\ogL — plog27r, where L is the joint 
likelihood of xi , ...,Xn and log is the natural logarithm. Then, as Olkin & 
Siotani [340] and Styan [431] have shown, 

^ ^ = 2( (R- i * S)<r(-i) - cr), (6.1.14) 

where the p x \ vector cr — {^(Ji)-, with (T^~^^ — {l/(J^}. From (6.1.14), it 
follows at once that the likelihood equations may be written as 

(R-^ * S)6-(~^^ = 6-. (6.1.15) 

The maximum likelihood estimator <T in (6.1.15) is unique since the Hessian 
matrix 

y = 2 ( R - i * S + A2) (6.1.16) 
a(T(-i)a(T(-i) 

is positive definite (with probability 1). Here A is the diagonal matrix of 
the Gi{% = 1,. . . ,p ) . 
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Let s denote the p x 1 vector formed from the diagonal elements of the 
sample covariance matrix defined in (6.1.13) and so E(s) = a^'^\ the p x 1 
vector of the erf (z = 1,. . .,p). To prove (6.1.11), we will use (6.1.8) with 
the parameter vector 0 = o'^'^\ the unbiased estimator t(y) — s, and the 
Fisher information matrix 

F = cov(91ogL/9o-^2))^ 

We will evaluate 

from which, using (6.1.8) the inequality (6.1.11) follows directly. 

We begin by proving that the covariance matrix 

cov(s) = - ( S * S) - - A 2 ( R * R ) A ^ (6.1.18) 

where the covariance matrix COV(XCK) = S = A R A . Let Si and Sj denote, 
respectively, the ith and j th element of s. Then for i, j = 1 , . . . ,p, 

cov(si, Sj) = ^ c o v f ^ x ^ . , ^x^A = -cov(Xf, X]) 

= ^ ( v a r ( X 2 + X 2 ) -var (X2) - v a r ( X | ) ) 

= i ( t r ( V 2 ) - a ? , - a J , . ) > (6-1-19) 

see, e.g., Searle [410, p. 57]; here Xi and Xj are bivariate normal with zero 
means and covariance matrix 

y ^ / ^ i i CTij\ (6.1.20) 
C^ii '3J 

Since tr(V^) = crf̂  + a'jj + 2cr|̂ - it follows at once that for i, j = • • • = p, the 
covariance cov(5^, Sj) — (2/n)cr|-, which is equivalent to (6.1.18). 

'J3 ' ^^^3 

Moreover the Fisher information matrix 

/ a i o g L \ f n dl \ r? /a t r^- i ) dl \ 

where i = — (2/n)logJD — plog27r. Clearly 

a<T(-l) 1 , 3 
r = — A ~ 
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and 

cov (-^) = h ^ ^ ^ = 1 A ( R - * R -, I)A. (6.1.21) 

The first equality in (6.1.21) holds since here 

^fdlogL d\ogL\ ^_^( dHogL 

see, e.g., [430, §17.14], while for the second equality in (6.1.21), we use 
(6.1.16) and E(S) = E. Therefore 

- 1 cj 4 1 - 1 q 
F^ =-zr^ ' - A ( R - ^ * R + I)A • - - A " ^ 

2 n 2 

= i A-"2(R-i * R + I) A - ^ (6.1.22) 
n 

which completes our proof of (6.1.11). 

6.1.3 The Cramer-Rao Inequality and BLUP 

The Cramer-Rao Inequality (6.1.2) can be nicely generalized to cover the 
case of predicting values of a random vector. Let y be an observable random 
vector and y / be an unobservable (observable in future) random vector with 
joint density feiy^Yf)^ where 0 is an unknown parameter vector. 

Let us consider the problem of predicting y / based on y. Let the statis­
tic t(y) be an unbiased predictor of y / so that 

E e ( t ( y ) ) = E e ( y / ) \/0, (6.1.23) 

and let now 

F. = E . ( ^ 1 ^ ^ ^ 1 ^ | ^ ) and G. = ^ ^ ^ . (6.1.24) 

Then, under certain regularity conditions, the covariance matrix of the 
prediction error 

cov0(t(y) - y / ) >L E0(cove(y/|y)) 4- G^F^G'^ (6.1.25) 

in the Lowner partial ordering. 

The proof of (6.1.25) follows from the fact that 

c o v 0 ( t ( y ) - y / ) =cov6i ( t (y) -E0(y/ |y ) ) + E0(cov0(y/|y)), 
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which was first considered by Yatracos [466]; see also Nayak [329, 330]. 
The unbiased predictor the covariance matrix of which attains the lower 
bound matrix (6.1.25) is called the uniformly minimum mean squared error 
unbiased predictor (UMMSEUP). 

Consider the linear model under normality. Then the joint distribution 
of y and y / is 

a) - ( (x ; . ) ' '̂ (w' V,)). (--) 
where X and X / are known model (design) matrices, /3 is a vector of 
unknown parameters, V and V / are known positive definite matrices, W 
is a known cross-covariance matrix and a^ is an unknown positive constant. 

Let Ty be a linear predictor of y / . The linear predictor Ty is unbiased, 
as in (6.1.23), if and only if the matrix equality 

T X = X / (6.1.27) 

holds. Furthermore, under normality, the Cramer-Rao lower bound for the 
covariance matrix of the prediction error is 

( 7 2 ( V / - W ' V - ^ W + ( X / - W ' V - ^ X ) ( X ' V - ^ X ) - i ( X / - W ' V - ^ X ) ' ) 
(6.1.28) 

and hence the matrix T, which satisfies (6.1.27), also satisfies the matrix 
inequality 

cr^(TVT' - T W - W ' T O >L 

^^((X/ - W ' V - ^ X ) ( X ' V - ^ X ) - i ( X / - W ' V - ^ X ) ' - W ' V - ^ W ) . 
(6.1.29) 

Goldberger [184] showed that the best linear unbiased predictor (BLUP) 
of y / is 

BLUP(y/) = Xf^ + W ' V - i ( y - X^) , (6.1.30) 

where /3 = {X'Y-^X)-^X'V-^y. And so for BLUP, the matrix T as 
introduced in (6.1.27) has the form 

T = X/(x'v-^x)-^x'v-^ -h w'v-^i - x(x'v-^x)-^x'v-^). 
(6.1.31) 



SEC. 6.1 MATRIX INEQUALITIES IN STATISTICS 179 

We note that the matrix product W V ^ I - X{X'V-^X)-^X'V-^) in 
(6.1.31) is the Schur complement of X'V~^X in 

/w'v-i w'v-^xX 
\^x'v-i x'v-^xy • 

The matrix T given by (6.1.31) satisfies the unbiasedness condition (6.1.27) 
and the covariance matrix of the linear predictor Ty of y / is the lower 
bound matrix in the matrix inequality (6.1.29). Thus, under normality, the 
best linear unbiased predictor (BLUP) of y / is also the uniformly minimum 
mean squared error unbiased predictor (UMMSEUP). 

6.1.4 The Groves-Rothenberg inequality 
and matrix convexity 

As Groves & Rothenberg [196] observed, "it is well known that if X is any 
positive [scalar] random variable then the expectation 

^Xj - E(X) ' 

provided that the expectations exist". A quick proof uses the Cauchy-
Schwarz inequality E(l72)E(y2) > E^{UV), with U = ^/X smdV = 1/VX. 

We now consider the nxn random matrix A, which we assume to be real 
and symmetric, and positive definite with probability 1. Then, as Groves 
& Rothenberg (1969) proved, 

E(A-^)>L (E(A))"^ (6.1.32) 

provided the expectations exist. To prove (6.1.32), Groves & Rothenberg 
[196] used a convexity argument. As Styan [432, pp. 43-44] showed, we 
may prove (6.1.32) very quickly using a Schur complement argument. 

The Schur complement of A in the 2n x 2n random matrix 

M = (6.1.33) 

is 0 and so using the Haynsworth inertia additivity formula (6.0.13), we see 
that M has inertia triple {n, 0, n} and hence is nonnegative definite with 
probability 1. It follows that the expectation matrix 

E ( M ) = ^ „ , . , J (6.1.34) 
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is nonnegative definite and hence the Schur complement 

E(M)/E(A) = E (A- i ) - (E(A))"^ >L 0, 

which establishes (6.1.32). 

Moore [322, 323] showed that the matrix-inverse function is "matrix 
convex" on the class of all real symmetric positive definite matrices in that 

AA-^ 4-(1 - A)B-^ >L ( A A + ( 1 - A ) B ) ~ \ (6.1.35) 

see also W. N. Anderson & Trapp [14], Lieb [283], Marshall & Olkin [301, 
pp. 469-471], Styan [432, p. 43]. 

To prove (6.1.35), we note that 

^ ^ /AA + ( 1 - A ) B I \ 

^ \ I AA-i + (1 - A ) B - 7 

and so the Schur complement 

G A / ( A A -}- (1 - A)B) = AA-i + (1 - A)B-i - (AA + (1 - A)B)~^ >L 0, 

from which (6.1.35) follows at once. 

The inequality (6.1.35) is a special case of 

j=l j=l j=l j=l 

where the matrices Xj are all n x p with full column rank p < n and 
the Aj are all n x n positive definite; the scalars Xj are all positive with 
Ai + . . . + Afc = 1. When /c = 2, Ai = A, Ai = A, As = B, Xi = X2 = I 
then (6.1.37) becomes (6.1.35). The inequality (6.1.37) is easily proved with 
Schur complements similarly to our proof of (6.1.35). 

The inequality (6.1.37) was apparently first established in 1959 by Kiefer 
[259, Lemma 3.2]; see also Drury et al [147, p. 456], Gaffke & Krafft [178, 
Lemma 2.1], Lieb [283], Lieb & Ruskai [284], Nakamoto & Takahashi [327, 
Th. 5], Rao [368, Lemma 2c]. 
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6.1.5 A multivariate Cauchy-Schwarz Inequality 

Let us consider again the 2n x 2n nonnegative definite matrix 

where the matrix A is positive definite. Let X denote an n x p matrix and 
let the n X q matrix Y have full column rank q. Then 

/X' OWA I W X OX /X'AX X'Y \ 

\0 Y7 VI A-7 yo Yj \Y'X Y'A-^Yj ~ 

and Y'A""^ Y is positive definite. And so the Schur complement 

S = X 'AX - X ' Y ( Y ' A - 1 Y ) - 1 Y ' X >L 0 (6.1.40) 

and hence 
X 'AX >L X ' Y ( Y ' A - ^ Y ) - i Y ' X , (6.1.41) 

which we may call a multivariate Cauchy-Schwarz Inequality. Equality 
holds in (6.1.41) if and only if S = 0 and this occurs if and only if 

/ X ' A X X 'Y \ 
rank = rank(Y'A-iY) = q (6.1.42) 

\ Y ' X Y'A-^YJ ' 

However, from (6.1.39), 

/ X ' A X X'Y \ / A I \ / X 0 \ 
rank = rank 

\ Y 'X Y 'A-^Yy VI ^ ) \^ V 
/ A X Y \ 

= rank = rank(AX : Y) = g 
V X A-^Yy 

if and only if Y = A X F for some conformable nonnull matrix F . 

When p = g = 1, then X = x and Y = y are column vectors and the 
inequality (6.1.41) becomes the (univariate) Cauchy-Schwarz Inequality 

with equality (for nonnull x and y) if and only if y = / A x for some 
nonzero scalar / . When A = I, the identity matrix, then (6.1.43) becomes 
the familiar Cauchy-Schwarz inequality 
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x ' x - y V > ( x V ) ' , (6.1.44) 

with equahty (for nonnull x and y) if and only if y = / x for some nonzero 
scalar / . For more about the Cauchy-Schwarz Inequality and its history, 
see [456]. 

6.2 Correlation 

As observed by Rodriguez [384] in the Encyclopedia of Statistical Sciences, 
"Correlation methods for determining the strength of the linear relationship 
between two or more variables are among the most widely applied statistical 
techniques. Theoretically, the concept of correlation has been the starting 
point or building block in the development of a number of areas of statistical 
research." In this section we show how the Schur complement plays a role 
in partial, conditional, multiple, and canonical correlations. In addition we 
show how the generalized quotient property of Schur complements plays a 
key role in the analysis of the conditional multivariate normal distribution. 

6.2.1 When is a so-called "correlation matrix" 
really a correlation matrix? 

We define a correlation matrix H to be a square p x p symmetric nonnegative 
definite matrix with all diagonal elements equal to 1. This definition is 
natural in the sense that given such a matrix R, we can always construct 
an n X p data matrix whose associated correlation matrix is R. 

Consider p variables ui,.. .,Up whose observed centered values are the 
columns of U == (ui : • • • : u^), and assume that each variable has a 
nonzero variance, i.e., u^ 7̂  0 for each i. Let each column of U have 
unit length. Now since the correlation coefficient rij is the cosine between 
centered vectors u^ and u -̂, the correlation matrix R is simply U'U, and 
thereby nonnegative definite. Note that U 'U is not necessarily a correlation 
matrix of -w^-variables if U is not centered (even though the columns of U 
have unit length). It is also clear that orthogonality and uncorrelatedness 
are equivalent concepts when the data are centered. 

Interpreted as cosines, the off-diagonal elements rij of such a correlation 
matrix then satisfy the inequality r|̂ - < 1 for all i 7̂  j ; i, j = 1, 2 , . . . ,p. 
To go the other way, suppose that the square p x p symmetric matrix R 
has all its diagonal elements equal to 1 and all its off-diagonal elements 
f^ij < 1; '^ 1^ J {hj = 1, 2 , . . . ,n) . Then when is R a correlation matrix? 
That is, when is it nonnegative definite? 
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The special case when]? = 3 is of particular interest. Indeed Sobel [424] 
posed the following problem in The IMS Bulletin Problems Corner: 

Problem 6.2.1. Let X, Y", and Z be random variables. If the 
correlations p{X^ Y) and p(y, Z) are known, what are the sharp 
lower and upper bounds for /?(X, Z)l 

This problem was apparently first solved by Priest [355] and Stanley & 
Wang [426]. See also Baksalary [22], Elffers [153, 154, 155, 156], Glass & 
Collins [182], Good [187], Olkin [339], and Rousseeuw & Molberghs [386]. 
For an approach using spherical trigonometry, see Good [186], Kendall & 
Stuart [256, Sections 27.28-27.19], and Stuart, Ord & Arnold [430, Sections 
28.15-28.16]; see also Elffers [153, 154, 155] and Yanai [462]. 

Let us consider the 3 x 3 symmetric matrix 

R -
/ 1 ri2 r i3^ 

ri2 1 r23 I , where all r^ < 1 (ij - 1,2,3). (6.2.1) 

\ri3 ^23 1 

Using the Albert nonnegative definite conditions given in Section 6.0.4 
above, it is now easy to prove the following theorem. 

THEOREM 6.2.1. The following statements about (6.2.1) are equivalent: 

(i) R is a correlation matrix^ 

(ii) det(R) = 1 - rf2 - ^13 - r^s + 2ri2ri3r23 > 0, 

(iii) (ri2 - ri3r23)^ < (1 - ^13)(1 " ^23). or equivalently, 

ri3r23 - \ / ( l - ^ 1 3 ) ( l - ^ 2 3 ) < ^12 < ^13r23 + \ / ( l - r i 3 ) ( l - ^ 2 3 ) . 

(6.2.2) 

(iv) ( r 2 3 - r i 2 r 3 i ) 2 < ( l - r y ( l - r i i ) , 

(v) ( r i 3 - r i 2 r 3 2 ) ^ < ( l - r ? 2 ) ( l - r i 2 ) , 

(vi) (a) r2 e C(Ri) and (b) R / R i = 1 - r'2R5"r2 > 0 , where 

R = ri2 1 ^23 I = I , ^ I , (6.2.3) 

\r-13 ^23 1 

file:///r-13
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(vii) 

/ 1-^13 1̂2 - ^13^23\ 
R i - r 2 r ' 2 = ^ ' > L O . (6.2.4) 

\ri2 - ri3r23 1-^23 / 

The proof of Theorem 6.2.1 relies on the fact that (i) is equivalent to 
the nonnegative definiteness of R. Let r^s denote the (3,3) element of R. 
Using the Albert conditions, and since r^s = 1 is certainly nonnegative, 
and since the column space C(r2) C M, (i) holds if and only if the Schur 
complement 

R/r33 = Ri - r2r'2 >L 0, (6.2.5) 

and thus (vii) is proved. Similarly, R >L 0 if and only if 

r2 e C(Ri) and R / R i = 1 - r2R5"r2 > 0 and R i >L 0. (6.2.6) 

In (6.2.6), the last condition is always true since rf2 < 1, and hence (vi) is 
obtained. Conditions (ii)-(v) follow from (vii) at once. 

The quantity 

' " • ^ " ( l - r ? 3 ) ( l - r i 3 ) ^'- '- '^ 

is defined only with both r^^ ^ 1 and r23 7̂  1 and then is the formula for 
the partial correlation coefficient (squared) between variables (say) xi and 
X2 when X3 is held constant. 

The quadratic form r2Rj7r2 = 1 — (R/Ri ) represents the multiple cor­
relation coefficient (squared) when xs is regressed on the first two variables 
Xi and X2: R3.12 = r2R5f r2. Matrix R i is singular if and only if rf2 = 1-
If ri2 = 1, then (a) of (vi) forces ris = r23. Choosing 

Rr = R r - | ( J J), (6.2.8) 

we get r2Rj"r2 = rf^. Similarly, if ri2 = — 1, then (a) of (vi) implies that 
ri3 = —r23, and again r2Rj~r2 = rf^. If ri2 7̂  1, then we have 

^2 _L ^ 2 :>2 _ ^13 + ^23 - 2ri2ri3r23 
.2 
12 

tiiu = '' f , ; ; ^ > (6-2.9) 
-L ' 1 

Of course, if ri2 = 0, then -̂ 3.12 = '̂ 13 + ?̂ 23' t>ut is interesting to observe 
that both 

^ i i 2 < ^ ? 3 + ^i3 and Rli2>rl3 + rl^ (6-2.10) 

can occur. As Shieh [419] points out, ".. .the second inequality in (6.2.10) 
may seem surprising and counterintuitive at first . . . but it occurs more often 
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than one may think" and he calls such an occurrence an "enhancement-
synergism", while Currie & Korabinski [135] call it "enhancement" and 
Hamilton [202] suggests "synergism". 

Using the Albert conditions, we see immediately that the first part of 
(6.2.10) is equivalent to 

Ri - ^ r 2 r ^ >L 0, (6.2.11) 
1*2̂ 2 

which further is equivalent to 

ru(n,--pp^)>0. (6.2.12) 
V ^ 3 + ^23/ 

which condition was shown by Hamilton [202] by other means; see also 
[50, 134, 175, 321]. 

Let us now take two simple examples. First, consider the intraclass 
correlation structure: 

(1 r r \ 
r 1 r . (6.2.13) 

r r ij 
The determinant det(A) = (1 - r)^{l + 2r), and hence A in (6.2.13) is 
indeed a correlation matrix if and only if 

- ^ < r < 1. (6.2.14) 

In general, the p x p intraclass correlation matrix must satisfy 

^ < r < l , (6.2.15) 
p-1 

which condition can be expressed also as 

( p - l ) r 2 
RW..p^i = r'2Rrr2 = ^l^_2)r ^ ^- ^^'^-^^^ 

As another example, consider 

(6.2.17) 

where a is a given real number, a^ < 1. What are the possible values for 
r such that B is a correlation matrix? It is now easy to confirm that the 
answer is 

r2 < 1 ± ^ . (6.2.18) 



186 ScHUR COMPLEMENTS IN STATISTICS CHAP. 6 

Olkin [339] extended the above results (i)-(vii) to the case where three 
sets of variables are available. For a general mathematical (and essentially 
nonstatistical) treatment of the null space of the correlation matrix, see 
Barretta & Pierce [34]. 

6.2.2 The conditional multivariate normal distribution 
and the generalized quotient property 

As Cottle [128] observed, the "multivariate normal distribution provides a 
magnificent example of how the Schur complement and the quotient prop­
erty (6.0.26) arise naturally". Let the p x 1 random vector 

x=rM, (6.2.19) 

where xi is pi x 1 and X2 is 7?2 x 1, with pi -\- P2 = P- We suppose that x 
follows a multivariate normal distribution with mean vector 

/ x - f ^ M (6.2.20) 

and nonnegative definite, possibly singular, covariance matrix 

(^11 5] i2 \ 
w ^ • (6-2-21) 

^ 1 2 - ^ 2 2 / 

Then the conditional distribution of xi given X2 is multivariate normal 
with mean vector ^'i = /x^ -f Tii2^22{'^2 ~~ M2) ^^^ covariance matrix the 
generalized Schur complement of 5]22 in S , 

XI/E22 = S i i — Ei25]225^i2 — ^11-25 (6.2.22) 

see, e.g., Anderson [9, Th. 2.5.1, p. 35], Ouellette [345, Section 6.1]. 

To prove this result, we note first that the distribution of 

/ x i - Ei25]^2X2\ _ / I -5]i25]^2\ / x A 

is multivariate normal with mean vector 

/ I - E i 2 E ^ 2 \ / M A _ //^i - 5]i2X;^2/^2^ 

[0 I / U 2 / ~ V ^2 y 

(6.2.23) 

(6.2.24) 
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and covariance matr ix 

(E /E22) 0 ^ 

0 E22> 

see also the generalized Aitken block-diagonalization formula (6.0.20). Hence 
x i — E 12X1^2X2 is distributed independently of X2, and so its conditional 
distribution given X2 is the same as its unconditional distribution. Thus Xi 
given X2 is multivariate normal with mean vector i/^ = //^ 4- Ei2E^2(^2 — 
112) Q-nd covariance matrix (6.2.22). 

Cottle [128, p . 195] gives an interesting interpretation of the quotient 
property for the multivariate normal distribution, see also [345, Section 
6.1]. Let 

X — and S = 

E l l 

12 

E12 

E22 

\ ^ 1 3 ^ 2 23 

E i 3 ^ 

E23 

5^33/ 

-'1&2 

.S'i 1&2;3 

-'1&2;3 

-•33 

where E is the covariance matr ix of the random vector x . Then the condi­
tional distribution of X3 given x i and X2 is the conditional distribution of 
X2 and X3 given x i conditional on the distribution of X2 given x i , in other 
words, we may condition sequentially. 

To see this, it suffices to apply the generalized quotient property (6.0.28) 
to the covariance matr ix E and so 

E / E i & 2 = ( 5 : / E i i ) / ( E i & 2 / E i i ) . 

6.2.3 Partial and conditional correlation coefficients 

Let z be a partitioned random vector with covariance matrix 

^ z i \ / E l l E12 
cov(z) = cov E. (6.2.25) 

^^2/ YE2I E22y 

We now establish a very powerful result: 

cov(z2 - F z i ) >L cov(z2 — E2iE]~iZi) for all conformable F , (6.2.26) 
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where the inequality refers the Lowner partial ordering. The minimal co-
variance matrix is the Schur complement 

cov(z2 — S2i5][";^zi) = E22 — 5]2IX]J";LEI2 = 5]22-i = 5] /Ei i . (6.2.27) 

We note that the covariance matrix in (6.2.27) is invariant for any choice of 
S^i, but this is not necessarily so with E2i5]j~jZi. The covariance matrix 
S / E i i in (6.2.27) is the covariance of the conditional normal distribution 
discussed in Section 6.2.2. The correlations associated with Xl/En are 
known as partial correlation coefficients when the underlying distribution 
is not necessarily multivariate normal. For more about the connection 
between conditional and partial correlation coefficients, see Lewis & Styan 
[278]. 

The proof of (6.2.26) is very simple with the help of the generalized 
Aitken block-diagonalization formula (6.0.3). Let us denote 

(6.2.28) 

0 \ 
(6.2.29) 

S22 — 5]2l5]]^iSi2/ 
indicating that ui and U2 are uncorrelated. We can, therefore, write 

cov(z2 - Fzi) = cov[(z2 - I]2i5]nZi) + ( E 2 i S n - F)zi] 

:=cov(vi+V2), (6.2.30) 

where the random vectors vi and V2 are uncorrelated and hence, 

C0V(Z2 - Fzi) = C0V(Z2 - ll2lS^iZi) + COv[(S2l5]J'i - F)zi] 

>L C0V(Z2 - S2lS^iZi), (6.2.31) 

which proves (6.2.27). 

In particular, if the random vector z is partitioned so that 

cov(z) = cov (^^ = (^J,' p ] = S e R(P+')x(P+'\ (6.2.32) 

where y is a, scalar, then 

minvar(?/ — f x) = var(?/ — (T2^IIX.) = a'^ ~ a'2^iia2 — c^yyx- (6.2.33) 
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Similarly we can find the vector g G M^ which gives the maximal value for 
the correlation between the random variables y and g'x, i.e., 

max corr(?/, g'x) — coTi{y, g'x). (6.2.34) 
b 

In view of the Cauchy-Schwarz inequality, we have 

c o r r % g ' x ) = ^ ^ | l ^ < ^ i 5 i i ^ ^ / ^ = ^ ^ ^ , (6.2.35) 

with equality if and only if S u g is a scalar multiple of cr2, i.e., Xing = 
ACT2, for some A G R. From this, it follows that a solution to (6.2.34) is 
g = X)ĵ ;Lcr2 (which could, of course, be multiplied with any nonzero scalar) 
and 

\/^2^2^iLCr2 
max corr(2/,g'x) == := Py.i..,p := Py.^ : = 11, (6.2.36) 

g (Jy 

the population multiple correlation coefficient [9, Section 2.5.2]. We note 
that since 

l-n^ = -^ \ ^^ , (6.2.37) 

it follows that cr^yx = cr^(l — 7^ )̂ < cr̂ . If S is positive definite, we have 

^ _ ^ 2 ^ _y 2 11 ^ 6.2.38 

where cr̂ ^ is the last diagonal element of I]~ . Using the Schur determinant 
formula, we immediately obtain, since S n is now positive definite, 

det E - (cr̂  - o-2E]"iV2) det E n < a^ det S n (6.2.39) 

with equality if and only if cr2 = 0. Hence 

d e t E < (JIC^ICTI - - • CFI 

with equality if and only if S is diagonal, see, e.g., Mirsky [314, Th. 13.5.2, 
p. 417], Zhang [468, Th. 6.11, p. 176]. This result is the special case of 
Hadamard's determinant theorem or Hadamard's inequality 

n 

I det(A)|2 < n ( l« i^ l ' + • • • + Kr\^) (6-2.40) 
h=l 
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which holds for any complex nonsingular n x n matrix A = {aij}. The 
inequality (6.2.40) was first established by Jacques Hadamard (1865-1963) 
in 1893 [199]; see also Mirsky [314, Th. 13.5.3, p. 418], Zhang [468, p. 176]. 

A statistical proof goes as follows. Write E — A R A , where R is the 
associated correlation matrix and A is the diagonal matrix of standard 
deviations. Then (6.2.39) becomes 

det(R) < 1 (6.2.41) 

with equality if and only if R = I, the identity matrix. To prove (6.2.41), 
we note that 

/ I \ "̂̂ ^ 
det(R) = Y[M^) < ( 7 tr(R) J = 1 (6.2.42) 

using the arithmetic mean-geometric mean inequality on the eigenvalues 
ch(R) of the correlation matrix R. Equality in (6.2.42) holds if and only if 
all the eigenvalues are equal and this occurs if and only if R = I. 

Consider partitioned random vector z as in (6.2.32). The best linear 
predictor (BLP) of y is defined as 

BLF{y) = a ' x - f S, (6.2.43) 

if it minimizes the mean squared error: 

minE[y - (a'x + h)f = E[y - (a'x + b)f. (6.2.44) 
a, b 

It is easy to see that 

E[y - (a'x + 6)]2 = var(2/ - a'x) + (/i2 - a ^ i - 6)^ (6.2.45) 

where /i2 = E(?/) and /x^ = E(x). Hence (6.2.26) gives immediately the 
formula for BLP (y): 

BLF{y) =fi2 + ^ 2 ^ n ( x - Mi); (6.2.46) 

see [9, p. 37], [122, Th. 6.3.2]. Clearly, if a random vector z is partitioned 
so that 

then the random vector /i2 + 5]2iX]J~i(x — /x^) is the best linear predictor 
of y in the sense that it minimizes, in the Lowner sense, the matrix 

E((y - Ax - b)(y - Ax - b) ') . (6.2.48) 
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We complete this section by noting the close connection between the 
results above and an important result concerning best prediction. Namely, 
if m(x) = E{y \ x) denotes the conditional expectation of y^ where m(x) is 
now considered as a random variable, then it can be shown, see, e.g., [373, 
p. 264], [122, Th. 6.3.1], that 

E [ i / - m ( x ) ] 2 < E [ ^ - / ( x ) ] 2 (6.2.49) 

for any other predictor / (x) . When the underlying distribution is multi­
variate normal then 

m(x) - E{y I x) = /i2 - o^2^n(x - Mi), (6.2.50) 

and hence (6.2.49) means that then m(x) is not only the best linear pre­
dictor but also the best predictor. 

6.3 The general linear model and 
multiple linear regression 

In this section, we consider the general linear model 

y = X/3 + s, (6.3.1) 

where 

E(y) = X/3, E(s) - 0, cov(y) - cov(£) = a^V. (6.3.2) 

We suppose that y is an n x 1 observable random vector, that e is an n x 1 
random error vector, that X is a known n x p model (design) matrix with 
rank r < p, that /3 is a ;? x 1 vector of unknown parameters, that V is 
a known n x n nonnegative definite matrix, and that a"^ is an unknown 
positive constant. The other notation is 

M - {y, X/3, a^V}. (6.3.3) 

We use the notation 
H = P x , M = I - H , (6.3.4) 

thereby obtaining the ordinary least squares estimator (OLSE) of 1^/3 as 

OLSE(X^) = X/3 - y = Hy = PxY, (6.3.5) 

the corresponding vector of residuals being y — Hy = My. Matrix H is 
known as the hat matrix, see, e.g., [114, 115, 223]; matrix M = I — H is the 
residual matrix. Clearly we have 

E(Hy) = HX/3 = X/3, cov(Hy) - a^HVH. (6.3.6) 
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In (6.3.5) the vector /3 = (X 'X) -XV, which becomes /3 = (X 'X) - iX 'y 
when X has full column rank. 

When X does not have full column rank, then the vector $ ~ (X'X)~X'y 
is not unique and is not a proper estimator: it is merely a solution to the 
normal equations; as Searle [410, p. 169] observes "this point cannot be 
overemphasized". 

A linear estimator Gy is the best linear unbiased estimator (BLUE) of 
X/3 if it has the smallest covariance matrix (in the Lowner sense) among 
all unbiased linear estimators: 

cov(Gy) < cov(By) for all By such that E(By) = X/3. (6.3.7) 

Since cov(Gy) = cr^GVG' and the unbiasedness of Gy means that G X = X, 
we can rewrite (6.3.7) as 

GVG' < B V B ' for all B such that B X = X. (6.3.8) 

We may recall here the fundamental "BLUE equation", see, e.g., [371, 
p. 282], [148, p. 55], that G has to satisfy for Gy to be the BLUE of X ^ 
under a general linear model {y, X/3, cr^V}: 

G(X : VM) - (X : 0). (6.3.9) 

For recent proofs of the BLUE equations, see [23, 193, 364]. 

In Section 6.3.2, we will consider the situation when V is positive defi­
nite, in which case the BLUE of X/3 is 

BLUE(X/3) = X ( X ' V - ^ X ) - X ' V - V = Px;V-iy- (6.3.10) 

Above Px;V-i denotes the orthogonal projector onto C(X) when the inner 
product between the vectors a and b is defined as a'V~^b. When V is 
singular, we have to use general representations for the BLUE(X/3), see, 
e.g., [7, 371]: 

BLUE(X^) - Hy - H V M ( M V M ) - M y 

BLUE(X/3) = y - V M ( M V M ) - M y 

BLUE(X/3) = X ( X ' W - X ) - X ' W - y 

- Giy , (6.3.11a) 

= G2y, (6.3.11b) 

- Gsy, (6.3.11c) 

where W - V + X U X ' and C(W) = C(X : V). When V is nonsingular, 
the matrix G such that Gy is the BLUE of X/3 is unique, but when V is 
singular this may not be so. However, the numerical value of BLUE(X/3) is 
unique with probability 1. The matrices X and V can be of arbitrary rank 
but the model must be consistent in that y G C(X : V) with probability 
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1. The consistency condition means, for example, that whenever we have 
some statements where the random vector y is involved, these statements 
need to hold only for those values of y which belong to C(X : V). 

We will use the notation BLUE(X/3) = X/3, but it is important to realize 
that in this notation vector (3 is unique (with probability 1) only if X has 
full column rank. In this case, the vector j3 is estimable^ i.e., it has an 
unbiased linear estimator, and one general expression for 0 is 

/3 = (X 'X)-^XV - (X 'X)-^X'VZ(Z 'VZ)-ZV 

= X+y - X+VZ(Z 'VZ)-ZV, (6.3.12) 

where Z is satisfies C(Z) = C(M). We can also define ^ as a solution to the 
generalized normal equations [25, 317, 370] X'W~Xy9 = X 'W~y , where 
W is defined as above. The quantity SSE(y) = (y - X ^ ) ' W - (y - X^) , is 
needed for finding the quadratic unbiased estimator of a^; see, e.g., [369]. 

6.3.1 A generalized Gaufi-Mcirkov Theorem 

Let us consider the full rank general linear or Gaufi-Markov model 

y = X/3 + s, (6.3.13) 

where X is a known n x p model or design matrix with full column rank 
p < n, and cov(y) = V is an n x n positive definite matrix. We are 
interested in estimating the unknown parameter vector (3 based on a single 
realization of y. The linear estimator A'y of (3 has covariance matrix 

a^A'VA (6.3.14) 

and is an unbiased estimator of /3 if and only if A' is a left-inverse of X, 
i.e., A'X = I. The ordinary least squares (OLS) estimator 

/ 3 = ( X ' X ) - i X V (6.3.15) 

is, therefore, an unbiased estimator of /3, and has covariance matrix 

a2 (X 'X) -^X 'VX(X 'X) -^ (6.3.16) 

The generalized least squares (GLS) or Aitken estimator [2, 222, 412], 

^ =: ( X ' V - ^ X ) - ^ X ' V - V (6.3.17) 

is also unbiased for /3, and has covariance matrix cr^(X'V~"^X)~^. 
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The well-known GauB-Markov Theorem [337] states that when V = I 
then the ordinary least squares (OLSE) estimator /3 is the "best" linear 
unbiased estimator (BLUE) of/3, where "best" is taken in the Lowner partial 
ordering of the covariance matrices, i.e., 

a^A'A>ia^{X'X)-^ : A'X - 1 . (6.3.18) 

A generalized GauB-Markov Theorem says that when V is not necessarily 
equal to I then the GLS estimator ^ is the BLUE of /3 in that 

a^A'VA >L a^{X'V-^X)-^ : A 'X - I. (6.3.19) 

When V - I then (6.3.19) becomes (6.3.18). 

We may prove (6.3.19) very quickly using Schur complements. We begin 
with the 2p x 2p matrix 

/ A ' O W V I W A ON 

I 0 X ' j \ I V - 1 / \ 0 X / 

^A'VA A'X \ / A ' V A I ^ 

, X 'A X ' V - i x j ~ I I X ' V - i X ; 
(6.3.20) 

since A 'X = I. The 2n x 2n matrix 

is nonnegative definite since V is positive definite and the Schur comple­
ment W 2 / V = 0. Hence W i is nonnegative definite and, therefore, so is 
the Schur complement 

W i / X ' V - ^ X = A'VA - (X 'V-^X)-^ (6.3.22) 

and the inequality (6.3.19) is established. 

It follows at once from (6.3.22) that cov(A'y) = cov(^) if and only if 
the Schur complement 

Wi/x'v-^x = o 
and hence if and only if 

rank(Wi) = rank(X'V-^X) = p. 
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Moreover 

/ V I \ / A 0 \ /VA X \ 
rank(Wi) = rank = rank ^ ^ VI v-7 \o xj \A v-ix; 

VA X \ / V A X \ 
= rank 

A v-^xy \ 0 oy 

= rank(VA : X) - rank(MVA) + rank(X) 

- r ank (MVA)+j9 , (6.3.23) 

where M - I - X ( X ' X ) - ^ X ' = I - H . It follows at once from (6.3.23) that 
rank(Wi) = p ii and only MVA = 0. 

Moreover, it is easy to see that when A'X = I then cov(A'y — $) = 
cov(A'y) — cov(^) and so cov(A'y) = cov(^) if and only if [364] 

A V = /3 with probability 1 4=4> MVA - 0. (6.3.24) 

When A'y is the OLS estimator $ = {X'X)-^X'y then (6.3.24) be­
comes the well-known condition for the equality of OLS and GLS, i.e., 

$ = ^ with probability 1 <^=^ M V X = 0, (6.3.25) 

or equivalently H V = VH. The result (6.3.25) is due to Rao [368] and 
Zyskind [473] and has been called the Rao~Zyskind Theorem^ see, e.g., [26]. 
Many further equivalent conditions for the equality of OLS and GLS are 
given in the survey by Puntanen & Styan [361]. 

6.3.2 Inverting the X'X matrix 

Let us consider the partitioned full rank linear model M = {y, X/3, cr^I}, 
where the n x (/c -h 1) model matrix X is partitioned as 

X = (e : xi : . . . : Xfc) = (e : Xo) = (Xi : x ^ , (6.3.26) 

where e G W^ is vector of ones and XQ is an n X fc matrix. Then 

where Ti = X ^ C X Q = {Uj}, 

T i = X ' X / e ' e , C = I „ - J , J - : ^ e e ' = P^; (6.3.28) 
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here C is the centering matrix. Denoting T^;^ = {f^} and (X'X)-^ = {f^} 
we obtain the last diagonal element of T^^, i.e., the last diagonal element 
o f (X 'X) - i : 

which is well defined provided x/c ^ C(Xi). We may note in passing that in 
the spirit of the quotient property (6.0.26), we can write 

x'̂ MiXfc = x 'x/x;xi = x[)CXo/x;cxi 
= (X 'X/e 'e ) / (X;Xi /e ' e ) , (6.3.30) 

Let us denote X* = (XQ : y), and consider the matrix 

/X'oCXo X(,Cy\ / T i tsX ^ ^ 
T = X;CX* = = • 6.3.31 

Vy'CXo y'Cyy \t', tyy) 

Since rank(e : X*) == 1 + rank(CX*) = 1 + rank(T), we see that 

rank(T) = A: + 1 <=^ (e : XQ : y) has full column rank. (6.3.32) 

If T is invertible, then the last diagonal element of T~^ is 

t^^ = C-x = ^ T— = — = T J ; ^ - (6.3.33) 
tyy-^2T^I^2 SSE T / T i ^ ^ 

Here SSE refers to the residual error sum of squares SSE = y'(In —Px)y — 
y'My. To confirm that SSE indeed can be expressed as in (6.3.33), we note 
that 

SSE = y'(l„ - Px)y = y'(I„ - J - Pcxo)y = y'(C - Pcxo)y 

= y'Cy - y'CXo(X^CXo)-iX(,Cy = tyy.^. (6.3.34) 

Let R be the (partitioned) sample correlation matrix of the variables 
xi,X2,...,Xk,y. Then 

R = (^l "l) = (diagT)-V2T(diagT)-V2; (6.3.35) 

here we assume that all variables have nonzero variances. Now the last 
diagonal element of R~^ is 

3,, ^ ^ SST / C y T.U{Vi-V? ^ _ 1 _ r. o o.^ 
SSE SSE y'My T.tM - Vi? 1 - ^ ' ' 
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where {yi] — y — Hy — y — My, SST refers to the total sum of squares, 
and R^ is the sample multiple correlation squared (coefficient of determina­
tion) when y is explained by the variables xi, ^ 2 , . . •, x/c (and a constant). 

The last regression coefficient 

(6.3.37) 

has variance 

var(^fc) = —f^ = TTjz—^-T—TTo , (6.3.38) 

X^MiXA: | | ( I - P i ) x / , P 
and so we may expect problems in estimation if the column vector x^ is 
almost in the column space C(Xi) for then the denominator in (6.3.38) will 
be close to 0. As noted by Seber & Lee [412, Ex 3, p. 53] and by C. R. Rao 
[372, p. 236], it follows that 

2 

var(^fc) > 4 - . (6.3.39) 

with equality if and only if X'̂ x/e = 0. 

If we consider such a linear model where x^ is explained by all other 
X variables (plus a constant), that is, the model matrix is Xi , then the 
residual sum of squares and the total sum of squares are 

SSE(A:) = x^MiXfc, SST(A:) = x^^Cx/, = tkk- (6.3.40) 

Moreover, the corresponding coefficient of determination is 

Rl = l - ^ ^ , (6.3.41) 

and x^MiX/c = (1 — Rl)tkk- Hence the variance of f3k can be expressed as 

var(^.) = y ^ . J - a^ ::. X ^ a\ (6.3.42) 
i — rCf^ tkk tkk 

where VIFfc is the variance inflation factor. As Belsley [43, p. 29] states, 
much interesting work on collinearity diagnostics has been done with VIF-
like measures, although the concept masquerades under various names [427]. 

We may note that, corresponding to (6.3.36), the ith diagonal element 
of R^^ can be expressed as 

r'' = , ^ = VIF,. (6.3.43) 
-•" ^ 2 . 1 . . . 2 - 1 , 2 + 1, . . . /C 
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We see that the diagonal elements of the correlation matrix can be quite 
informative for data analysis [381]. 

Let's study the last two regressors under the full rank model {y, X^, a^I} 
and set 

Xi = (e : xi : • • • : Xfc_2), X = (Xi : x^- i : x^) = (Xi : X2). 

Now the (sample) partial correlation between Xjt_i and x/c when variables 
in Xi are held constant, is defined as the (sample) correlation between the 
residual vectors 

s/,_i.i = ( I - P x i ) x / c _ i =MiX/,_i and s/,.i = ( I - P x j x f c =MiX/, . 

Because these residuals are centered, their (sample) correlation is 

corr(s,_i.i ,s, . i) = J ' J - ^ ^ ^ ^ ^ ^ ^ . (6.3.44) 
Vx'^_iMiXfc-i Vx'^MiXfc 

Since cov(^2) — c''^(X2MiX2)~^, it is straightforward to conclude that 

coTT0k-i^Pk) = -rk-i,k-i...k-2^ (6.3.45) 

see, e.g., Belsley [43, p. 33], C. R. Rao [372, p. 270 (with a missing minus 
sign)], and Kanto & Puntanen [254]. 

6.3.3 The covariance matr ix of the BLUE(X/3) 

Using (6.3.11) it is easy to introduce the following general representations 
of the covariance matrix of the best linear unbiased estimator (BLUE) of 
X/3 under the model M = {y, X/3, V}: 

cov(X/3) = H V H - H V M ( M V M ) - M V H (6.3.46a) 

= V - V M ( M V M ) - M V (6.3.46b) 

= X ( X ' W - X ) - X ' - XUX' , (6.3.46c) 

see also [27]. If X has full column rank, then the covariance matrix of the 
BLUE(^) can be expressed as 

cov(y9) - (X'X)-^[X'VX - X'VZ(Z'VZ)-Z 'VX](X'X)-^ 

- cov(/3) - ( X ' X ) - i X ' V Z ( Z ' V Z ) - Z ' V X ( X ' X ) - \ (6.3.47) 

where C(Z) = C(M) and so 

cov(/3) - cov(/3) = (X 'X)-^X 'VZ(Z 'VZ)-Z 'VX(X'X)- i 

= ( X ' X ) - ^ X ' V M ( M V M ) - M V X ( X ' X ) - ' ^ (6.3.48) 
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Because the joint covariance matrix of the OLS fitted values Hy and the 
residuals M y is 

/ H y \ / H V H H V M \ , „ v̂̂ x/xr̂ Tx TV̂N K. 

(6.3.49) 
and the covariance matrix 

/ y \ / V V M \ 
^°^(,Myj = (,MV MVMJ^=^i^' ^^-^'^^^ 

we observe immediately that the BLUE's covariance matrix can be inter­
preted as a Schur complement: 

cov(BLUE(X^)) = E H M / M V M = E J M / M V M . (6.3.51) 

To see that the BLUE's covariance matrix is a specific Schur complement 
we consider the general linear model {y, X^ , V} . Then Gy is unbiased for 
X/3 whenever G satisfies the equation GX = X. The general solution G to 
the unbiasedness condition can be expressed as G = H — F M , where the 
matrix F is free to vary [377, Th. 2.3.2]. In other words, all unbiased linear 
estimators of X ^ can be generated through Hy — F M y by varying F . If 
we now apply the minimization result (6.2.26) to the covariance matrix 

/ H y \ / H V H H V M \ ^ ,̂  ^ ,^, 

"̂ ^ VMyj ^ VMVH M V M J = ̂ ™ ' (̂ •̂ •̂ )̂ 

we obtain 

cov[Hy - H V M ( M V M ) - M y ] <L cov(Hy - FMy) for all F , (6.3.53) 

and so the minimal covariance matrix is, according to (6.2.27), the Schur 
complement S H M / M V M . Note that (6.3.53) indeed means that 

Hy - H V M ( M V M ) - M y - BLUE(X/3). (6.3.54) 

We note that since the rank is additive on the Schur complement 

rank[cov(X^)] - rank(V) - rank(VM) = dimC(X) n C(V), (6.3.55) 

and C[cov(Xy9)] - C(X) H C(V). 

6.3.4 The matrix M - M(MVM)-M 

We now look briefly at some properties of the matrix 

M = M ( M V M ) - M , (6.3.56) 
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which appears in several formulas above. We observe that M is unique if 
and only if C(M) C C(MV), which is equivalent to W = C(X : V). Even 
though M is not necessarily unique, the matrix product 

P v M P v = P v M ( M V M ) - M P v := M (6.3.57) 

is, however, clearly invariant for any choice of (MVM)~. Moreover, let 
W == V + XAA'X' be a nonnegative definite matrix such that C(W) = 
C(X : V), and let Mw = M ( M W M ) - M = M. Let 

Mw = P w M w P w = P w M P w = P w M ( M V M ) - M P w . 

The matrices M, M, and Mw are very useful in many considerations 
related to linear model M = {y, X/3, cr^V}. For example, the following 
properties hold: 

M ^ = P w M P w = W+ - W+X(X'W+X)-X'W+, (6.3.58) 

Mw = MMwM = M W + M - MW+X(X'W+X)-X'W-*"M. (6.3.59) 

Formula (6.3.58) can be proved by putting F = (W+)V2x^L = W V 2 M 
and noting that F'L = 0 implies P p 4- P L = P w ; inserting explicit ex­
pressions of P p and P L yields (6.3.58). Decomposition (6.3.58) can also be 
obtained using Corollary 3 in [27]. Note that clearly we have also 

Mw = PwZ(Z'VZ)-Z'Pw, (6.3.60) 

where C(Z) — C(M). We now see immediately that Mw is a specific Schur 
complement. If we write 

S = (X : M) 'W+(X : M) = ( ^ ^ + X ^ W | M ^ | ^^^^^^ 

it follows at once that 

Mw = P w M P w = S/X'W+X. (6.3.62) 

From (6.3.62), we can conclude that the equality 

B'MwC - B'MC - B'(S/X'W+X)C (6.3.63) 

holds for all matrices B and C such that C(B) c C(W), C(C) C C(W). 

Premultiplying (6.3.58) by W yields 

X(X'W+X)-X'W+ = P w - W M ( M V M ) - M P w 

= P w - V M ( M V M ) - M P w . (6.3.64) 



SEC. 6.3 GENERAL LINEAR MODEL 201 

Hence for every y G C(X : V) = C(W), we have 

X ( X ' W + X ) - X ' W + y = y - V M ( M V M ) - M y = y - V M y 

= y - V(S/X 'W+X)y = BLUE(X/3), (6.3.65) 

with probability 1. 

Note also that postmultiplying (6.3.64) with W yields 

X ( X ' W + X ) - X ' = W - V M ( M V M ) - M V , (6.3.66) 

and thereby 

X ( X ' W + X ) - X ' - XAA'X - V - V M ( M V M ) - M V , (6.3.67) 

showing the equality of two representations for the covariance matrix of 
BLUE(X)3). 

The BLUE'S residual can be conveniently expressed as 

s = y - BLUE(X/3) = VMy, (6.3.68) 

and the weighted sum of squares of errors can be written as 

SSE(F) - s ' W s = s 'V-s = y ' M V W - V M y = y 'My. (6.3.69) 

On the other hand, from (6.3.58) it follows that for every y G C(X : V), 

y ' P w M P w y = y 'My = y '[W+ - W + X ( X ' W + X ) - X ' W + ] y , (6.3.70) 

i.e., the weighted residual sum of squares can now be expressed as 

SSE(y) = / M y = y '[W+ - W + X ( X ' W + X ) - X ' W + ] y 
- y ' (S /X 'W+X)y. (6.3.71) 

We may note that the equality 

y 'My = y 'My V y G C(X : V) (6.3.72) 

was studied by GroB [191]. He showed that (6.3.72) holds if and only if 
V M is idempotent. 

Denoting F = (V-^)^/2X,L ^ V^/^M, we observe that if the condition 
F'L = X ' P v M = 0 holds, then M has the expressions 

M - P v M P v = V+ - V+X(X 'V+X) -X 'V+ , (6.3.73) 

M = M M M - M V + M - M V + X ( X ' V + X ) - X ' V + M . (6.3.74) 
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We denote the number of unit canonical correlations between Hy and My 
[359, Lemma 3.4.1] by 

u = rank(X'PvM) - rank(HPvM) = dimC(VH) H C(VM). (6.3.75) 

When X'X = Ip (and i/ = 0), it can be shown that 

(X'V+X)+ = X 'VX - X 'VZ(Z 'VZ)- Z'VX, (6.3.76) 

and hence, in this particular situation, 

X(X'V+X)+X' =: S H M / M V M = cov(BLUE(X/3)). (6.3.77) 

When V is positive definite, we obtain 

M = M ( M V M ) - M = M ( M V M ) + M = (MVM)+ 

= V-^ - V - i X ( X ' V - i X ) - X ' V - ^ = V - ^ ( I - P x ; v - i ) - (6.3.78) 

Denoting 

Sv- i = (X : M) 'V-^ (X : M), R v - i = (X : I ) 'V-^(X : I), (6.3.79) 

we see that M is two Schur complements 

M - Sv- i / X ' V - ^ X = R v - i / X ' V - ^ X . (6.3.80) 

We can of course replace X with H in (6.3.79) and (6.3.80). 

6.3.5 The covariance matrix as a shorted matrix 

The BLUE'S covariance matrix can be interpreted as a shorted matrix, as 
shown by Mitra & Puntanen [318]. Let V be a given n x n nonnegative 
definite matrix and X an n x p matrix. Consider the following set of 
nonnegative definite matrices: 

Ẑ  = {U : 0 < U < V, C(U) C C(X)}. (6.3.81) 

The maximal element JJ in U is the shorted matrix S(V | X) of V with 
respect to X, introduced by Krem [269]; see also W. N. Anderson [10]. 

Mitra & Puri [320] obtained explicit expressions for the shorted opera­
tor of a nonnegative definite symmetric operator in terms of a minimum-
seminorm generalized inverse and a semi-least-squares inverse of a complex 
matrix. This paper [320] may be considered, therefore, as the starting point 
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for statistical applications of the shorted matrix and the shorted operator. 
For more on shorted matrices and their applications in statistics, see [319]. 

As shown by W. N. Anderson [10] and by W. N. Anderson & Trapp [13], 
the set U in (6.3.81) has a maximal element and it, the shorted matrix, is 
unique. The shorted matrix of V with respect to X is, therefore, the unique 
nonnegative definite matrix which is "as close to V as possible" in the 
Lowner partial ordering, but whose column space is in that of X. We note 
that, in general, the concept of closeness between matrices is not uniquely 
defined, but closeness in the Lowner sense is quite natural, especially from 
the point of view of statistical applications. 

Consider now the general linear model A^ = {y, X/3, V } . Then Mitra 
& Puntanen [318] proved that 

cov(BLUE(X/3)) = 5(V I X), (6.3.82) 

which shows the close connection between the shorted matrix and the Schur 
complement. Mitra, Puntanen & Styan [319, Th. 3.2] also showed that the 
following five statements are equivalent when considering the linear model 
{y, X/3, V} with G a generalized inverse of X: 

(i) XGVG'X ' <L V, 

(ii) G' is a minimum-V-seminorm generalized inverse of X', 

(iii) XGy is the BLUE of X/3, 

(iv) XGVG'X ' <rs V, 

(v )XGVG'X ' = S ' (V |X) , 

In (iv) the symbol <rs denotes the rank-subtractivity partial ordering; see, 
e.g., [205]; see also [117, Lemma 1.2], [118, Lemma 1.2]. 

6.3.6 The Watson efficiency of the OLSE 

The ordinary least squares estimator (OLSE) and the best linear unbiased 
estimator (BLUE) of /3 under the full rank model M — {y, X/3, V} have 
the covariance matrices 

cov(^) = (X 'X)~^X'VX(X'X)~\ cov(^) = ( X ' V - i X ) - \ (6.3.83) 

and hence we have the Lowner ordering 

(X'X)~^X'VX(X'X)~^ - (X'V-^X)-^ >L 0. (6.3.84) 
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It is natural to ask how bad the OLSE could be with respect to the BLUE. 
There is no unique way to measure this. One frequently used measure [454, 
Section 3.3], [455, p. 330] is the Watson efficiency 

detcov(^) det(X'VX) • det (X'V-^X) ^ ^ 

Clearly 0 < 0 < 1, with </> = 1 if and only if OLSE = BLUE. 

Another measure of efficiency, introduced by Bloomfield & Watson [61], 
is based on the Euclidean size of the commutator HV — VH 

^ = i | | H V - V H | | 2 = ||HVM||2 = tr(HVMV). (6.3.86) 

Clearly ^ = 0 whenever OLSE = BLUE. Rao [375] suggested the difference 
of the traces (or equivalently the trace of the difference) of the covariance 
matrices of the OLSE and BLUE of X/3: 

trcov(X3) - trcov(X;3) = trHVH - t rX(X'V- iX) - iX' , (6.3.87) 

while Kramer [268] suggested the ratio of the traces 

trcov(X3) _ trHVH 
trcov(X^) t rX(X'V- iX) - iX' -

(6.3.88) 

When X has full column rank, then, according to (6.3.47), the covari­
ance matrix of the BLUE of /3 can be expressed as 

cov(/3) = (X'X)-^[X'VX - X'VZ(Z'VZ)-Z'VX](X'X)-i 

= cov(3) - (X'X)- iX'VZ(Z'VZ)-Z'VX(X'X)- \ (6.3.89) 

where Z is a matrix such that C(Z) = C(M). Substituting (6.3.89) into 
(6.3.85) yields 

detcov(,3) _ det (X'VX-X'VZ(Z'VZ)-Z'VX) 

(6.3.90) 

detcov(;9) detX'VX 

_ det(Sxz/Z'VZ) 
detX'VX ' 

where 

^ /X'y\ /X'VX X'VZ\ .„„.^, 
Sxz = cov (^^/y j = (^z/vX Z'VZ j • (^-^-^^^ 

It is interesting to note that in (6.3.90), the covariance matrix V need not 
be positive definite. 
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For the Watson efficiency 0 to be defined using determinants as in 
(6.3.90), the matrix X 'VX must be positive definite which happens if and 
only if C(X)nC(V)^ - {0}; since rank(X'VX) = rank(X'V) - r ank (X) -
dimC(X)nC(V)-L. Moreover, since rankcov(/3) = dimC(X)nC(V), we con­
clude that for the Watson efficiency 0 to be defined using determinants as 
in (6.3.91), we must have 

C(X) CC(V). (6.3.92) 

A linear model with X and V satisfying (6.3.92) is called a weakly singular 
model or a Zyskind-Martin model. We can rewrite (6.3.90) as 

0 = det(X'VX)-^ . det(X'VX - X 'VZ(Z 'VZ)-Z 'VX) 

= det(l - (X 'VX)-^X'VZ(Z'VZ)-Z 'VX) 

: = d e t ( I - L ) . (6.3.93) 

Since the eigenvalues of matrix L are the (squared) canonical correlations 
between random vectors X'y and Z'y, cc|(X'y, Z'y), say, we have 

(/> - n ( i - cc,2(xv, zv)) - n ( i - ^ '̂(H '̂ My))- (̂ •̂ •̂ 4) 
For related references, see [61, 37, 257, 359, 374, 414]. 

6.3.7 Adding a variable in multiple linear regression 

Let us consider the partitioned linear model 

Mi2 = {y, X;3, a^V} = {y, Xif3, + Xs/^^, a^V}, (6.3.95) 

where Xi is an n x pi matrix and X2 is an n x ^2; P — Pi + P2- We also 
denote 

M i = {y,Xi/3i , (72v}, (6.3.96) 

and A^2 is defined correspondingly. The ordinary least squares estimator 
of /3 under M.12 is (X having full column rank) 

OLSE(^) =$= f^A = ( X ' X ) - ' X V = ${Mi2). (6.3.97) 

where the notation ${Mi2) emphasizes that the estimator is calculated 
under the model Mu- When dealing with regression models, it is often 
very helpful to have the explicit expression for subvector f3n (or X2/92) 
available. We recall that if X has no full column rank, then /3 is merely a 
solution to normal equation. 
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Using the projector decomposition 

H = P ( x , : X.) = P x , + P M , X . =̂  P I + P M , X . , (6.3.98a) 

H y = Xi /3 i + X2/32 = P x , y + P M I X ^ Y ^ (6.3.98b) 

and premultiplying (6.3.98b) by M i , we see tha t if rank(M1X2) = rank(X2), 
then XsySs ^ X 2 ( X ' 2 M i X 2 ) - X ' 2 M i y , and if r a n k ( M i X 2 ) = P2, then 

^2 - ( X ^ M i X 2 ) - ^ X ^ M i y - $2{Mi2)- (6.3.99) 

We may note tha t , in view of [300, Corollary 6.2], 

r a n k ( M i X 2 ) = rank(X2) - dimC(X2) fl C(Xi ) , (6.3.100) 

and hence indeed r a n k ( M i X 2 ) = rank(X2) if and only if C(Xi )nC(X2) = 
{0}. The disjointness condition is actually a condition for the estimability 
of X2/32, and r a n k ( M i X 2 ) = P2 means tha t /32 is estimable under Mi2' 
We note tha t if r a n k ( M i X 2 ) == rank(X2), then we may write 

H y - X ^ = X i ( X ; M 2 X i ) - x ; M 2 y 4 - X 2 ( X ^ M i X 2 ) - X ' 2 M i y , (6.3.101) 

and so, in view of (6.3.98b), we obtain tha t 

Xi$,{Mn) = Xi /3 i (A4i) - P iX2/32(> t i2 ) . 

Hence if disjointness C(Xi) fl C(X2) = {0} holds and X i has full column 
rank, then 

$i{Mi2) = $i{Mi) - {X[Xi)-'X[X2$2iMi2). (6.3.102) 

Chu et al. [124, 125] recently considered the efficiency of the subvector 
/32. Using the Schur determinant formula, they showed tha t the Watson 
efficiency of j3 under the partitioned weakly singular linear model A4i2 = 
{y, X ^ , V } , where X has full column rank, can be expressed as a product 

0(/3 I M12) = H01 I Ml) • (/>(̂ 2 I A^i2) • au (6.3.103) 

where 0(- | •) is an obvious notation and 

det(XlM.VM.X,) 
det(X'2Mi(MiV+Mi)-MiX2) ^ 
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6.3.8 The Frisch-Waugh-Lovell Theorem 

Let us consider the full rank partitioned linear model M12 = {y, X/3, a^I}: 

y - X i ^ i + X 2 / 3 2 + 6. (6.3.105) 

Now we know that 

$2{Mi2) = (X'2MiX2)-'X'2Miy. (6.3.106) 

Premultiplying (6.3.105) by the orthogonal projector Mi yields the reduced 
model 

M12.1 = {Miy, M1X2/32, ^ ' M i } . (6.3.107) 

Taking a look at the models, we can immediately make an important conclu­
sion: the OLS estimators of /32 under the models M12 and Mi2-i coincide 

$2{Mi2) = $2iMi2.i) = (X'2MiX2)-'X'2Miy. (6.3.108) 

Davidson & MacKinnon [141, p. 19] and [142, p. 68] call (6.3.108) the 
Frisch-Waugh-Lovell Theorem "since those papers seem to have intro­
duced, and then reintroduced, it to econometricians"; see Frisch & Waugh 
[176] andLovell [292]. 

The covariance matrix in the model {Miy, M1X2/32, cr^Mi} is singular 
and hence there is a good reason to worry whether the 0LSE(/3) equals 
BLUE(/3) under that model. The answer is positive, however, since the 
column space inclusion C(Mi - M1X2) C C(MiX2) holds, and hence the 
equality condition of Rao [368] and Zyskind [473] gives the result. 

6.3.9 Partitioning the BLUE 

We recall that the best linear unbiased estimator (BLUE) of /3 under the 
full rank model AI12 is 

BLUE(/3) = ^= (^A = ( X ' V - ^ X ) - i X ' V - V = P{Mi2), (6.3.109) 

while the covariance matrix is 

cov(̂ ) = a^(X'V-^X)-\ (6.3.110) 

Assume that the column space disjointness condition C(Xi) nC(X2) = 
{0} holds and X2 has full column rank, i.e., 

rank(MiX2) = P2. (6.3.111) 
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Then /3 is estimable and its BLUE is 

p^iMu) = (X'2MiX2)-^X'2Miy, (6.3.112) 

where Mi = M i ( M i V M i ) ~ M i ; here (when V is positive definite), cf. 
(6.3.78)) 

Ml = M i ( M i V M i ) - M i = M i ( M i V M i ) + M i = (MiVMi)+ 

= v-^ - v-^Xi(x;v-^Xi)-x;v-^ (6.3.113) 

Moreover, if Xi has full column rank, then 

/3i(Xi2) - /3i(Mi) - (X;v- iXi ) - ix ;V- iX2/32(A4i2) . (6.3.114) 

One way to introduce the above properties of the subvectors of /3 is to use 
the projector decomposition 

P(Xi:X2);V-i = P x i ; V - i + P(I -Pxj^v- i )X2;V-i • (6.3.115) 

Just as M in Section 6.3.4 was a Schur complement, so is also Mi a 
specific Schur complement. Denoting 

S^3_i = (Xi : M i ) ' V - i ( X i : Mi ) , S^'-i = X 'V-^X, (6.3.116) 

we see at once that 
Ml - SV^-i/XiV-^Xi, (6.3.117) 

and, of course, 

X'2MiX2 = X 'V-^X/X ' iV-^Xi := S^^ - i /X iV^Xi . (6.3.118) 

Using the Schur complement notation we can express (6.3.117) and (6.3.118) 
as 

X 'V-^X/X ' iV-^Xi = X'2[(Xi : Mi ) 'V-^ (Xi : Mi ) /X;V-^Xi ]X2 . 

Let us next consider the expression for ^2 (-^12) in the general situation 
allowing V to be singular. Let us denote 

W = V + XX', Wi = V + X^X^, 2 = 1 , 2 , (6.3.119) 

and hence C(W) — C(X : V). Then, according to Rao [371], one general 
representation for the BLUE(X/3) is 

BLUE(X/3) = X ( X ' W - X ) - X ' W - y . (6.3.120) 
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It can be shown tha t if r a n k ( M i X 2 ) = P25 then 

^ 2 ( ^ 1 2 ) = ( X ^ M i w X 2 ) - ^ X ^ M i w y , (6.3.121) 

where M i w = M i ( M i W M i ) - M i - M i ( M i W 2 M i ) " M i . If X has full 
column rank and X2 satisfies condition 

C(X2) C C(Xi : V ) i.e., C(Xi : X2 : V ) - C(Xi : V ) , (6.3.122) 

then (6.3.121) simplifies to 

/32(Mi2) - ( X ' 2 M i X 2 ) - ' X ^ M i y , (6.3.123) 

and 

^i{Mi2) = PiiMi) - (x;w+Xi)-ix;w+X2/32(A/(i2). (6.3.124) 
The column space condition (6.3.122) is needed in order to avoid any con­
tradiction between the consistencies of the full model M,\2 and the smaller 
model hA\. 

6.3.10 A generalized Prisch-Waugh-Lovell Theorem 

Let us consider the parti t ioned linear model 

X i 2 - {y, X ^ , d^V} = {y, Xi/3i + X2^2 , ^ ' V } . (6.3.125) 

Premultiplying the model A^i2 by the orthogonal projector M i yields the 
reduced model 

X12.1 = { M i y , M i X 2 ^ 2 , a ^ M i V M i } . (6.3.126) 

Wha t about he BLUE of fi<2 in the reduced model AI12.1? In light of 
[371], one presentation of BLUE of ^2 under Mi2-i is 

^2{Mi2.i) = ( X ' 2 M i W r 2 . i M i X 2 ) - ^ X ' 2 M i W r 2 . i M i y , (6.3.127) 

where W12.1 = M i V M i + M i X s X ' s M i = M 1 W 2 M 1 = M i W M i . N o w , 
in view of (6.3.121), the formula (6.3.127) is just the same as presented for 
^2 under A^i2, and hence the equality 

^2{Mi2) = p2{Mi2.i) (6.3.128) 

is a generalized Frisch-Waugh-Lovell Theorem, which holds also for singular 
V ; see also [57, Th. 6.1], [119, Section 2.2], [164], [195, Th . 4], [194]. 
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6.3.11 Deleting an observation in 
multiple linear regression 

Let us consider three linear models: 

M = {y, X/3, a^I}, M^i) = {y(,), X(,)/3, a^In- i} , (6.3.129a) 

Mz = {y, Z7, aH} = {y, X/3 + u,J, a^I}. (6.3.129b) 

By ^ ( i ) we mean the version of M with the ith observation deleted; thus 
y(^) has n — 1 elements and X^̂ ) has n — 1 rows. For notational simplicity 
we delete the last observation. Model Mz is an extended version of M: 

Z - ( X : u , ) , u, = (0 , . . . , 0 , l ) ' , ^=(f)' (6.3.130) 

We will use the following notation: 

$ = 0iM), $z=0iMz), 5 = 5iMz), %=/3(A^(i)) . (6.3.131) 

Assuming that Z has full column rank we get 

^ ^ = [ X ' ( I - u , u O X ] - i X ' ( I - u , u ^ ) y , 5 = - ^ = £ ^ , (6.3.132) 

in view of (6.3.99). Here X and u^ correspond to Xi and X2, and r̂  refers 
to the ith element of the residual vector r = My. Furthermore, 

0z = (X'(,)X(,))-iX'(,)y(i) = /§(,). (6.3.133) 

This result can be seen as a consequence of the Frisch-Waugh-Lovell The­
orem: model Mz corresponds to the full model M12, model M(i) to the 
reduced model Mi2-i obtained by premultiplying Mz^Y I—u^u^, and M is 
the small model yWi. Rence 0^{M 12) = $iiMi)-{X[Xi)-'^X[X2$2(^12). 
and so /3(̂ ) =$- {X'X)-^X'ui6, and [44, p. 13] 

DFBETA^ = $- $a) = (X'X)-^X'ui S = — ( X ' X ) - ^ X ' u ^ . (6.3.134) 
^ ^ ma 

Since X(/3 — /3(2)) = Hu^(5, we obtain a representation for Cook's distance 
[127]: 

A = ^ ( / 3 - /3(,))'X'X(/3 - ^(,)) = ^ . (6.3.135) 

Furthermore, since 

P z - U , U ^ + P ( I _ „ . „ ; ) X = ( j ? ) + ( ^ J / " 0 ) ' ^^•^•'^^^^ 
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we observe that 

ssEz - y'(in - Pz)y = y[i){in-i - Px(,))y(i) = SSE(,). 

Now it is easy to conclude that the usual F-test statistic for testing the 
hypothesis 5 = 0 under the model Mz becomes 

' ^ 4 ^ y ' ( M - P M u . ) y ; ^ S S E ( , ) m , , ' 

which is the externally Studentized residual squared. 

We note that using the Schur determinant formula here gives 

det(Z'Z) = det(X'X) • det(Z'Z/X'X) - det(X'X) • (1 - ha), (6.3.138) 

and hence 

"^^' = d ^ ^ ( X ^ = det(X-X) • ^'•^•^^^) 

Note also that in view of the Woodbury inversion formula (6.0.11) or the 
Bartlett inversion formula (6.0.13), we have the identity 

(X'(,)X(i))-i = (X 'X)- i + ^ - i ^ ( X ' X ) - i x ( i ) x ' ( , ) ( X ' X ) - i , (6.3.140) 

where X^N refers to the ith row of X. 

Let ^ and /3(̂ ) denote the BLUEs of (3 under M = {y, X/3, a^V} and 
under M{i) — {y(i), ^(i)l3, cr^V(^)}, respectively. Using our generalized 
Frisch-Waugh-Lovell Theorem, it is straightforward to show that the gen­
eralized DFBETAi is 

DFBETAi(y) =^- ^.^^ = 4^ (X 'V-^X) -^X 'V-^u^ , (6.3.141) 
771: 

where 

77iii = u^Mui = u^M(MVM)-Mu^ 

= u^[V-^ - V - i X ( X ' V - ^ X ) - ^ X ' V - V ^ . (6.3.142) 

and f = My. The term 7hii corresponds now to TTIU in the formulas of the 
"original" Studentized residuals r̂  and ti. The generalized Cook's distance 
[398, p. 164], is 

^'^^^ ^ ^ ^ ^ ~ /3(i))'X'V-^X(^ - ^(,)), (6.3.143) 

where a'^ = SSE(y)/rank(VM), and SSE(y) refers to the weighted sum 
of squares of errors. For more about these so-called deletio7i statistics see 
[58, 123, 206, 209, 413]. 
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6.3.12 Mixed linear models 

A mixed linear model can be presented as 

y - X / 3 + Z7 + s, (6.3.144) 

where X and Z are known matrices, ^ is a vector of unknown fixed effects, 
7 is an unobservable vector of random effects with £(7) = 0, cov(7) — 
D, cov(7, e) = 0 and E(e) = 0, cov(£) = R. Writing 

^ = Z7 4- e, V = cov(l) - ZDZ' + R, (6.3.145) 

we can re-express (6.3.144) as 

y = X/3 + e E ( 0 = 0, c o v ( 0 - V . (6.3.146) 

Assuming that V is known and positive definite, and X has full column 
rank, we have 

BLUE(/3) = ^ = ( X ' V - i X ) - i X ' V - V - (6.3.147) 

As H. V. Henderson k Searle [219] point out, a difficulty with (6.3.147) in 
many applications, is that the matrix V = ZDZ' + R is often large and 
nondiagonal, so that inverting it is quite impractical. An alternative set of 
equations for solving for ^ is 

X ' R - ^ X X 'R-^Z \ (f3\ _ / X ' R - V 
Z'R-^X D-i H- Z'R-^Z i I 7 J " I Z'R-iy i v T-i-i . vy-R-W. M ^, i - I '7/-D-U. ] ' (6.3.148) 

as suggested by C. R. Henderson [217]. If/3 and 7 are solutions to (6.3.148), 
then X/3 appears to be a BLUE of X/3 and 7 is a BLUP of 7; see [218]. 
The BLUP of 7 can be expressed as 

7 = D Z ' V - i ( y - X^) . (6.3.149) 

The equations in (6.3.148) are known as Henderson^s mixed model equations. 
The proof is based on the equality 

(ZDZ' + R ) - i = R-^ - R-^Z(Z 'R-^Z + D - ^ ) - ^ Z ' R - \ (6.3.150) 

which comes from the Duncan inversion formula (6.0.9). Note that (6.3.150) 
means that XV~^X = A/A22, where A refers to the left-most partitioned 
matrix in (6.3.148). 

For further references to mixed model equations, see, e.g., [122, Section 
12.3] and [383, 411]. 
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6.4 Experimental design and analysis of variance 

In experimental design the Schur complement plays a crucial role as the so-
called C-matrix, introduced in 1947 by Bose [68] and first studied in detail 
in 1962 by Chakrabarti [111]; see also [112]. 

6.4.1 The C-matr ix of a block design 

Let us consider the two-way layout of analysis of variance with fixed effects 
and no interaction, see, e.g., Searle [410, Section 7.1], Latour & Styan 
[274]. Here we have observations which we label yijk arising from a random 
experiment involving two factors: the row effects, indexed by i, and the 
column effects, indexed by j . When the row effects identify treatments and 
the column effects blocks then the layout is often called a block design^ see, 
e.g., Dey [145, ch. 2], John & Wilhams [242, Section 1], Raghavarao [366, 
ch. 4], Roy [387]. 

The random observation y^jk comes from the kih. occurrence (or repli­
cate) of the ith row (treatment) and the j th column (block). We will assume 
that k = 1,2,... , n^j, with i = 1, 2 , . . . , r and j = 1,2,..., c. The riij are 
nonnegative integers and the associated r x c matrix 

N = {mj} (6.4.1) 

is known as the incidence matrix. We will write 

c r 

rii. = ^riij; i = 1,2, . . . , r and n.j = ^n^^-; j = 1,2,.. . ,c (6.4.2) 
j=i i=i 

and assume that 

Hi. >l] z = 1,2,. . . , r and n.^ > 1; j = 1, 2 , . . . , c (6.4.3) 

and so the diagonal matrices, respectively r x r and c x c, 

Dr — diagjn^.} and T>c = diag{n.^} (6.4.4) 

are both positive definite. The r x r Schur complement 

S^ = A/Dc - D^ - N D - ^ N ' (6.4.5) 

of Dc in the (r -h c) x (r -h c) matrix 

A = (6.4.6) 
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plays a key role in the analysis of the two-way layout and in the estimation 
of the r row (treatment) effects using ordinary least squares. When the 
two-way layout is a block design the Schur complement Ŝ^ is often known 
as the C-matrix. 

As noted by Pukelsheim [357, p. 412], reference to a C-matrix is made 
implicitly by Bose [68, p. 12] and explicitly by Chakrabarti [112], where 
C-matrix appears in the title. Other early references include Chakrabarti 
[111], Raghavarao [366, p. 49], V. R. Rao [379], Thompson [440, 441]. The 
C-matrix S^ is called the coefficient matrix of the design by Roy [387, 
p. 182], the contrast information matrix by Pukelsheim [357, p. 94], and 
just the information matrix by John & Williams [242, p. 12]. 

We note that all the on-diagonal elements of S^ are nonnegative and all 
the off-diagonal elements are nonpositive: a matrix with elements satisfying 
this sign pattern is called hyperdominant^ see, e.g., [253, 433], [435, p. 358]. 

Since S^e = D^e — ND~^N'e = 0, where e is the r x 1 column vector 
with each element equal to 1, we see that the row totals of the C-matrix 
Sr are all equal to 0 and so 

r a n k ( S ^ ) < r - l . (6.4.7) 

Since S^ is symmetric, it follows that the column totals of S^ are also all 
equal to 0 and hence we say that the C-matrix Sr is double-centered. As 
shown by Sharpe & Styan [415], see also [366, Th. 4.2.4, p. 51], the first 
cofactors of a double-centered matrix F, say, are all equal, say to / , and 
hence such a matrix may be called equicofactor; the nullity z^(F) = 1 if 
and only if / > 0. The first cofactors of the C-matrix S^ are, therefore, all 
equal, to g say, and so equality holds in (6.4.7) if and only ii g > 0. 

In electrical circuit theory, the admittance matrix is double-centered 
and like the C-matrix Sr is hyperdominant. The common value of the first 
cofactors of the admittance matrix is called the network determinant, see, 
e.g., Sharpe & Styan [415], Styan & Subak-Sharpe [433]. 

6.4.2 Connectedness 

When equality holds in (6.4.7), we say that the layout is connected. Dey 
[145, Th. 2.1, p. 44] and Raghavarao [366, Th. 4.2.2, p. 50] present this 
result as a theorem, preferring as definition that the layout be connected 
whenever every pair of treatments is connected [145, Def. 2.2, p. 45], [366, 
Def. 4.2.3, p. 49]. 

Another definition of connectedness is based on statistical considera­
tions. Let us assemble the random observations i/ijk into an n x 1 columh 
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vector 

y = 

/ y i i \ 

y2i 

XYrcJ 

where Yij = 
yij2 

i = l , . . j = : 1, . . . ,C, 

and so the vector y^j is Uij x 1. When Uij — 0 for a particular treatment i 
and a particular block j , then there is no vector yij in y . We may express 
the expectation of the random vector y as 

E(y) - X i a + X2/3, (6.4.8) 

where the n x r design matrix for rows X i has full column rank r cor­
responding to the r row or t reatment effects, the n x c design matrix for 
columns X2 has full column rank c corresponding to the c column or block 
effects, and X1X2 = N , the r x c incidence matr ix introduced in (6.4.1). 

A particular t reatment i and a particular block j are said to be associ­
ated whenever the t reatment i appears in the block j , i.e., when Uij > 1. 
A pair of t reatments is said to be connected whenever it is possible to pass 
from one to the other in the pair through a chain consisting alternatively of 
t reatments and blocks such tha t any two members of a chain are associated. 

The vectors a and /3 are unknown and to be estimated using a single 
realization of y . We will say tha t a linear function h'a is estimable whenever 
there exists a linear function k ^ such tha t E (k ' y ) = h ' a . We define ai—ai' 
to be an elementary contrast^ where i, z' = 1 , . . . , r (i ^ i ' ) . Here ai is the 
i th element of a , i — 1 , . . . , r . Then the layout is connected whenever all 
the elementary contrasts are estimable, see, e.g., [145, Def. 2.1, p. 44], [366, 
Def. 4.2.2, p. 49]. 

Another property (or definition) of connectedness is tha t the nx {r-{-c) 
partitioned matrix 

X - (Xi : X2) (6.4.9) 

have rank r -h c — 1. Here X i and X2 are defined as in (6.4.8). We have 

X'X = 
Xj^Xi X2X2 ^Br N^ 

= A (6.4.10) 
^X'2X2 X'2X2y \ N ' De^ 

as in (6.4.6). Then 

rank(X) = r ank (X 'X) - r a n k ( X ' X / D c ) + rank(Dc) (6.4.11) 
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since rank is additive on the Schur complement, see the "Guttman rank 
additivity formula" (0.9.2) in Chapter 0. Since rank(Dc) — c, and since 
rank(X'X/Dc) == rank(S^) < r — 1 from (6.4.7), we see that 

rank(X) = rank(S^) + c < r + c - l . (6.4.12) 

Since the design is connected if and only if rank(S^) = r — 1, we see imme­
diately that the design is connected if and only if rank(X) = r -\- c— 1. 

While we have seen that the C-matrix S^ is a Schur complement, we 
also note that S^ = X'iM2Xi, where the residual matrix 

M2 = I„ - X2(X^X2)-iX^ (6.4.13) 

is the Schur complement B/X2X2 of X2X2 in 

(In X2 \ ^ ^ 
B = ( ^ . (6.4.14) 

Here I^ is the nxn identity matrix. The matrix H2 — X2(X2X2)~^X2 = 
In — M2 is called the hat matrix. The residual matrix M2 is the orthogonal 
projector on the orthocomplement of the column space (range) of X2. 

We may use the Guttman rank additivity formula to evaluate the rank 
of the Schur complement B/X2X2 = M2. We note first that rank(B) = 
rank(X'2X2) + rank(B/X^X2) = rank(In)-l-rank(B/In) = c-f rank(M2) = 
n since the other Schur complement B / I^ = 0. Hence rank(M2) — n — c. 

6.4.3 Balance 

A connected design is said to be balanced whenever all the nonzero eigen­
values of the C-matrix S^ are equal. As already observed the design is 
connected whenever rank(S^) = r — 1 and so Sr has r — 1 nonzero eigen­
values. It is easy to show that these r — 1 eigenvalues are all equal if and 
only if Sr is a nonzero multiple of the r x r centering matrix 

Cr=Ir- -ee\ (6.4.15) 
r 

where I^ is the r x r identity matrix and each element of the r x 1 column 
vector e is equal to 1. Clearly the centering matrix C^ is idempotent with 
rank r — 1 and so there are r — 1 nonzero eigenvalues all equal to 1. 

When Sr = aCr then S^ has r — 1 nonzero eigenvalues all equal to a. To 
go the other way, suppose that Sr has r — 1 nonzero eigenvalues all equal 
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to 6, say. Then S^ = bSr and so 

(S^ - bCr){Sr + eeO - S^ - bCrSr + S^ee' - 6C^ee' 

- S^ - bCrSr = S^^-bSr = 0 (6.4.16) 

since S^e == C^̂ e = 0. Moreover S^e = 0 implies that rank(Sr + ee') = 
rank(Sr) + rank(ee') = (r — l) + l = r and so S^ + ee' is nonsingular and 
we may postmultiply (6.4.16) by (S^ -fee')~^ to yield Sr = bCr as desired. 

It is interesting to note that the centering matrix C^ is the Schur com­
plement E / r of the scalar r in the matrix 

(6.4.17) 

When the covariance matrix of the random vector y as defined above in 
(6.4.8) is cov(y) = a^In, for some unknown positive scalar cr̂ , then it was 
shown in 1958 by V. R. Rao [379] that the design is balanced if and only 
if all the elementary treatment contrasts are estimated by ordinary least 
squares with the same variance [145, Th. 2.2, p. 52], [366, Th. 4.3.1, p. 5]. 

When a connected design is not balanced then Chakrabarti [112] sug­
gested the measure of imbalance 

where Â  is the ith largest eigenvalue of S^. It is easy to see that 

^ - r < ^r < 1. (6.4.19) 
r — 1 

Equality holds on the left of (6.4.19) if and only if the design is balanced. 
Equality holds on the right if and only if r = 2 and then equality holds 
throughout (6.4.19). Thibaudeau & Styan [437] gave improved bounds for 
ipr in certain circumstances; see also Boothroyd [67, Section 3.5]. 

When the design is binary, i.e., when Uij = 0 or 1, then the design is 
balanced if and only if the C-matrix 

Tl — C 

Sr = T^r (6.4.20) 
r — 1 

and so all the nonzero eigenvalues of S^ are then equal to (n — c)/(r — 1). 
The proof is easy. We know that S^ = aCr for some scalar a. Taking traces 
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yields 

tr Sr - a{r - 1) - tr(D^ - ND-^N ' ) =n- tr N D ' ^ N ' . 

r e ^ c ^ r 

= ̂  - E E ̂ ^̂'—̂î  = ̂  - E—E 4 • 
c ^ r 

n — c 
• 1 ' ^ ' j • 1 

j = l J 2 = 1 

since nf̂  = n^ ,̂ the design being binary. Hence trS^ = n — c = a{r — 1) 
which establishes (6.4.20). 

6.4.4 The average efficiency factor and 
canonical efficiency factors 

With Xi , X2 and y defined as in 

E(y) = X i a + X2/3, (6.4.21) 

see (6.4.8) above, it follows that the vectors 

Xiy = {E^^i^J "" ŷ t ^^^ ^2y = (E^^J'^J "" ŷ '̂ (̂ •4-22) 

say, contain, respectively, the row (treatment) and column (block) totals 
of the observations. When cov(y) = cr^I, we see that the joint covariance 
matrix of the vectors of row and column totals of the observations 

Vyct/ V^2y/ V^2Xi x '^Xs/ V ^ ' D C / 

and so the canonical correlations p^, say, between yrt and yet are the posi­
tive square roots of the eigenvalues of D~^ND~^N', see, e.g., T. W. Ander­
son [9, ch. 12]. These canonical correlations p^ are equivalently the singular 
values of the r y. c matrix 

D - V 2 N D 7 i / 2 = | - ^ ^ ^ l - | , 

see Latour & Styan [274, p. 227]. The quantities \ — p\^ are called the 
canonical efficiency factors of the design, see James & Wilkinson [238], 
Johnfe Williams [242, § 2.3]. 
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Let m denote the number of nonzero canonical correlations ph or equiv-
alently the number of canonical efficiency factors 1 — p^ not equal to 1. 
Then m = rank(N) < min(r, c). 

Let u denote the number of canonical correlations ph equal to 1 or 
equivalently the number of canonical efficiency factors 1 — p^ equal to 0, 
and let t denote the number of positive canonical correlations ph not equal 
to 1, or equivalent ly the number of positive canonical efficiency factors 1—p̂  
equal to 1. Then 

1 < rank(N) = m - u + t < min(r, c). (6.4.23) 

It follows that 

^ - z / ( I - D - i N D - ^ N O 

= iy{n-H'Dr - ND-^NO) = iy{Sr) > 1 (6.4.24) 

from (6.4.7). It follows at once from (6.4.24) that the layout is connected 
if and only if u = 1. 

The vectors 

Zr = M2yrt and Zc = Miyct (6.4.25) 

are called, respectively, vectors of adjusted row (treatment) and column 
(block) totals. Latour & Styan [274] have shown that the canonical corre­
lations between Zr and Zc are precisely the t canonical correlations between 
Yrt and yet that are not equal to 1. Hence 

t = rank(X;M2MiX2) (6.4.26) 

and since m — u-\-1^ see (6.4.23) above, it follows that here 

rank(X;X2) = r-{-c- rank(Xi : X2) + rank(X;M2MiX2). 

Baksalary & Styan [28, Lemma 1] prove the more general rank equality 

rank(A*B) = rank(A) + rank(B) - rank(A : B) + rank(A*MBMAB), 

(6.4.27) 

where the complex matrices A and B have the same number of rows, and 
the residual matrices M A and M B are the orthogonal projectors on the 
orthocomplements of the column spaces of, respectively, A and B. 

Chakrabarti [111, p. 19] calls the design orthogonal whenever the vectors 
Zr and Zc are uncorrelated, i.e., whenever ^ = 0. It follows that a design 
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is connected and orthogonal if and only if m = 1, i.e., if and only if the 
incidence matrix N has rank equal to 1, and then the rxc incidence matrix 

N . („,,,. { - i i } . 

6.4.5 Proper, equireplicate and BIB designs 

When the numbers n.j of treatments per block j == 1 , . . . ,c in a binary 
design are all equal, say to (i, then the design is said to be proper and when 
the numbers n^. of blocks per treatment i = 1 , . . . , r are all equal, say to 5, 
then the design is said to equireplicate. Equivalently, the design is proper 
whenever Dc = die and equireplicate whenever D^ = sir. 

V. R. Rao [379] showed that a binary design which is both balanced and 
proper must be equireplicate, but that a binary design that is balanced and 
equireplicate need not be proper. 

When the design is equireplicate, the C-matrix 

Sr = sir - N D - ^ N ' (6.4.28) 

and its eigenvalues are 5(1—p|), i.e., s times the canonical efficiency factors. 

A binary design is said to be incomplete whenever n < rc^ i.e., at least 
one riij = 0. An incomplete binary design that is proper and equireplicate, 
and for which each pair of treatments occurs in the same positive number 
A, say, of blocks is said to be a balanced incomplete block (BIB) design. Here 
the adjective "balanced" may be interpreted as balance in that each pair 
of treatments occurs in the same positive number of blocks. In 1936 Yates 
[464] introduced BIB designs into statistics although the existence of such 
designs and their properties had been studied much earlier, e.g., almost 
a hundred years earlier in [260, 261] by the Reverend Thomas Penyngton 
Kirkman (1806-1895). 

It is straightforward to show that for a BIB design the C-matrix 

rX 
Sr = -f^r^ (6.4.29) 

and so a BIB design is also balanced in the sense defined above in §6.1.2. In 
(6.4.29) A is the common number of blocks in which each pair of treatments 
occurs and d = n.j, the common number of treatments per block j = 
1 , . . . , c. The matrix C^ is the centering matrix defined in (6.4.15). 
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6.5 Broyden's matrix problem 
and mark-scaling algorithm 

In the "Problems and Solutions" section of SI AM Review^ C. G. Broyden 
posed [96] and solved [98] the following problem: 

Let Z = {zij} he Sin r X c matrix with no null columns and 
with rii > 1 nonzero elements in its ith row, i = 1 , . . . , r. Let 
the r X r matrix D^ = diag{n^}, and let the c x c matrix D^ 
be the diagonal matrix whose diagonal elements are equal to 
the corresponding diagonal elements of Z'Z. Determine the 
conditions under which the matrix D^ — Z'D~^Z is (a) positive 
definite, (b) positive semidefinite. 

As Broyden noted in [96], this problem arose in connection with an al­
gorithm for scaling examination marks, which is described in [97] as an 
"algorithm designed to compensate for the varying difficulty of examina­
tion papers when options are permitted. The algorithm is non-iterative, 
and does not require a common paper to be taken by all students." 

Let the r x c binary incidence matrix N = {riij} be defined by 

i = l , . . . , r ; J = l , . . . , c . (6.5.1) 

Then rii = E^^^n^ -̂, i = 1 , . . . , r. 

In his solution, Broyden [98] established the nonnegative definiteness of 
the Broyden matrix 

B = D ^ - Z ' D - ^ Z (6.5.2) 

from the nonnegativity of the quadratic form 

r 

u 'Bu =: e'T>u(Dz - Z'D-iZ)D^e = ^ e^ZD^E^D^Z'e^, (6.5.3) 
i=l 

where the c x c matrix E^ = I — (l/ni)N'e^e^N is symmetric idempotent 
with rank equal to c — 1 (for alH = 1 , . . . , r ) . In (6.5.3) D^̂  = diag(u) is 
the c X c diagonal matrix formed from the c x 1 vector u, while e is the 
c X 1 vector with each element equal to 1; the vector ê  is the c x 1 vector 
with its ith element equal to 1 and the rest zero. 

In addition, Broyden [98] showed that B is positive semidefinite when 
there exist scalars a i , . . . , a^, u i , . . . , z/c, all nonzero, so that 

riij 

riij 

— 

= 

1 

0 

^ 

^ 

Zij 

Zij 

7^ 

= 

0 

0 
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ZijUj = aiUij for all i = 1 , . . . , r and for all j = 1 , . . . , c. (6.5.4) 

Broyden [98] also observed that B is positive definite unless there exist 
scalars a i , . . . , a^, t^ i , . . . , i/c, with at least one of the Uj nonzero, so that 
(6.5.4) holds. (At least one of the â  must then also be nonzero when (6.5.4) 
holds or Z would have to have a null column.) These conditions do not, 
however, completely characterize the singularity of the Broyden matrix B. 
Moreover, Broyden [96, 97, 98] did not consider the rank (or nullity) of B. 

Following Styan [432, Section 3], we solve Broyden's matrix problem 
by constructing an analysis-of-covariance linear statistical model in which 
the Broyden matrix B arises naturally as a Schur complement. This will 
enable us to completely characterize the rank of B from the structure of 
the matrix Z and its associated binary incidence matrix N. When Z = N 
our analysis-of-covariance model reduces to the usual two-way layout as in 
Section 6.4.2 above. 

6.5.1 An analysis-of-covariance model 

associated with the Broyden matr ix 

Consider the linear statistical model defined by 

E{yij) = aiUij -f- Zijjj (i = 1 , . . . , r; j = 1 , . . . , c), (6.5.5) 

where the Uij are, as above, (0, l)-indicators of the Zij, and so the riij and 
Zij are zero only simultaneously and then the corresponding observation yij 
has zero mean (we could just as well have replaced yij in (6.5.5) with riijyij 
and then the (i, j ) th cell of the r x c layout would be missing whenever 
'^ij =^ Zij = 0; such yij play no role in what follows). 

The observations yij in (6.5.5) may be arranged in a two-way layout 
with r rows and c columns. The ai may be taken to represent row effects, 
but the column effects in the usual two-way layout, §6.4.2 above, are here 
replaced by regression coefficients ji on each of c covariates on each of 
which we have (at most) r observations. This is the analysis-of-covariance 
model considered, for example, by Scheffe [399, p. 200]; in many analysis-
of-covariance models, however, the 7̂  are all taken to be equal. 

We may rewrite (6.5.5) as 

E(yi) -= QjOL + jjZj (j =: 1 , . . . , c), (6.5.6) 

where the r x 1 vectors a = {c^i}^ Yj = {Uij} and Zj = {zij}. The 
r X r diagonal matrix Qj = diag{n^j} = diag(ni^-,.. ..rirj) is symmetric 
idempotent with rank equal to tr(Qj) = Y^l^i riij {j = 1 , . . . , c). Moreover 
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QjZj = Zj (j = 1 , . . . , c) and Xl?=i Qj ~ diag{n^} = D^. And so we may 
combine (6.5.5) and (6.5.6) to write 

E(y) = X i a + X27 = X^ , 

where X = (Xi : X2), /3 = ( ^ | and a 

Xi = and X2 = 

h 

\ 

Z2 

Then 

X ' X 
^D^ Z \ 

and so the Broyden matrix 

B = X 'X/D^ = D^ - Z'D-^Z 

(6.5.7) 

(6.5.8) 

(6.5.9) 

(6.5.10) 

is the Schur complement of D^ in X'X. To see that (6.5.9) follows from 
(6.5.7), we note that X^Xi = Y.''j=i Q'jQj = E j = i Qj = ^r using Q̂ - -
Q̂ - == Q^. Moreover X'iX2 = (Qizi : ••• : Q^Zc) = Z, since Q^z^ =^ 
QjZj = Zj, while X2X2 = diagjz^Zj} = diag(Z'Z) = D^. 

6.5.2 Nonnegative definiteness 

Let u denote the nullity of the {r -{- c) x (r -{- c) matrix X 'X defined by 
(6.5.9). Then using the Haynsworth inertia additivity formula we see that 
the inertia 

InB = In(X'X/D^) = In(X'X) - InD^ 

= {r + c - w, 0, ix} - {r, 0,0} = {c - u, 0, u} (6.5.11) 

and so the Broyden matrix B is nonnegative definite with nullity 

u = i/(B) = z/(X'X) = z/(X), (6.5.12) 

the number of unit canonical correlations between the r x 1 vector yrt = 
X i y = {jyj=iyij} ^^ ^^w totals and the c x 1 vector ŷ ^̂  = X2y = 
{Si=i ^ijVij} o^ weighted column totals of the i/ij weighted by the Zij. 
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Let us now consider the other Schur complement 

S = X 'X/D^ = D^ - ZD^^Z', (6.5.13) 

which is, of course, also nonnegative definite. Moreover 

z/(S) = j/(X'X/D^) = z/(X'X/D^) = ^ = z/(B). (6.5.14) 

6.5.3 All cells filled 

When all the cells are filled, i.e., when Zij j^ 0 ̂  Uij = 1 for alH = 1 , . . . , r 
and all J == 1 , . . . , c then 

T>r=clr (6.5.15) 

and the model is equireplicate and the Schur complement 

S - X 'X/D^ = D^ - Z D ; ^ Z ' = clr - Z D ; ^ Z ' (6.5.16) 

and u — z/(S) is the number of unit eigenvalues of (l/c)ZD~^Z^ Since 
ZD~^Z >L 0, it follows at once that 

(6.5.17) 
u > 1 ^ u = 1 ^ rank(Z) = 1 | 

and u = 0 4^ rank(Z) > 2 J 

and so, when all the cells are filled, the Broyden matrix B is 

positive definite <=> rank(B) = c ̂  rank(Z) > 2 

positive semidefinite singular <^ rank(B) = c — 1 <^ rank(Z) = 1. 

6.5.4 At least one cell empty 

When at least one of the cells is empty, i.e., when Zij = 0 <^ n̂ ^ = 0 for at 
least one z = 1 , . . . , r and at least one j = 1 , . . . , c, then the characterization 
above of the positive (semi)definiteness of the Broyden matrix B is much 
more complicated that when all the cells are filled (6.5.17). We may write 

C -. C 

S = Z ' Z / D , = D , - ZDJ^Z' :^ ^ ( Q , - - - 7 - z , z ; . ) = ^ G,-, 
i = l ^J-^ '̂ ^ 3 = 1 

say. Here the matrix Gj is symmetric and idempotent with rank(Gj) — 
rank(Q^) -l^Uj-l (j = 1 , . . . , c). 
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When the r x r Schur complement S is positive definite, 
c c 

r = rank(S) = r a n k ( ^ G^) < ^ r a n k ( G ^ ) 
j=i j=i 

c 

= Y,{n.j-l) = n..-c, (6.5.18) 

where n.. is the number of filled cells. The inequality (6.5.18) then shows 
that a necessary condition for B to be positive definite is that there be at 
least r -\- c filled cells. We recall that z/(S) = z/(B), see (6.5.14). 

We will divide our presentation of necessary and sufficient conditions for 
the nullity of the Broyden matrix B to be a particular number u into the' 
two situations when the layout is either (a) connected or (b) not connected. 

We will first suppose that the layout is connected; this may be charac­
terized by the nullity 

iy{Sr) = iy(Dr - ND-^N ' ) = 1, (6.5.19) 

where T>c = diag{X][_j Uij}. 

THEOREM 6.6.1. When the layout is connected, the Broyden matrix B is 
positive semidefinite and singular if and only if it is possible to write the 
matrix 

Z = {zij} = {oibjUij} = DaNDfe (6.5.20) 

for some nonsingular diagonal matrices D^ and D^^ and then the nullity 
i.(B) = 1. 

We may interpret the condition (6.5.20) as follows: There exist non 
zero scalars â  and bj for each empty cell (i, j ) with Zij = riij = 0, so that 
the matrix Z*, say, formed from Z by replacing each empty cell (i^j) with 
Oibj has rank equal to 1. Conversely there exists a matrix Z*, say, with 
rank equal to 1, so that Z can be formed from Z* by changing some of the 
entries into 0. (We assume that neither Z nor Z* have any null rows or 
null columns.) When all the cells are filled, the condition (6.5.20) reduces 
to rank(Z) = 1. 

The formula (6.5.20) in Theorem 3.1 also yields the following sufficient 
condition for positive definiteness of Broyden's matrix B: If there exists in 
the matrix Z a 2 x 2 nonsingular submatrix with all four elements nonzero 
then the matrix B is positive definite (since then no matrix Z* of rank 1 
can be constructed from Z which has rank at least equal to 2). 

When (6.5.20) holds then rank(Z) = rank(N), but this equality of ranks 
is not sufficient to imply (6.5.20) when at least one of the cells is empty. 
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When all the cells are filled, however, rank(N) — 1 and so rank(Z) = 
rank(N) does imply (6.5.20) but when at least one of the cells is empty, 
e.g., when Z =^ (345) then rank(Z) = 2 = rank(N), but (6.5.20) does 
not hold since the leading 2 x 2 submatrix in Z is nonsingular with all 4 
elements nonzero. 

When the layout associated with the matrix Z is not connected, then 
the rows and columns of Z may be arranged so that 

(6.5.21) 

zj 
with q > 2, where the layout corresponding to each submatrix Z^ {h — 
1, . . .,c?) is connected [410, p. 320]. The Broyden matrix B will then be 
positive definite if and only if none of the submatrices Z/̂  in (6.5.21) can 
be expressed in the form (6.5.20), and positive semidefinite with nullity u 
{I <u <l)ii and only if precisely u of the submatrices Z/̂  can be expressed 
in the form (6.5.20). 



Chapter 7 

Schur Complements and 
Applications in Numerical Analysis 

7.0 Introduction 

In numerical analysis, the solution of a system of linear equations is often 
involved, sometimes in a hidden way, in many methods and algorithms. In 
particular, linear systems appear under the form of a ratio of determinants 
in interpolation and extrapolation, in formal orthogonal polynomials, in 
continued fractions and Pade approximation, and in various methods and 
techniques related to the solution of systems of linear equations. Since they 
are related to such ratios by the Schur formula (1.1.4), Schur complements 
are playing a role, sometimes fundamental, in these topics. They also have 
important applications in recent techniques used in iterative methods for 
the solution of large sparse systems of linear equations. Obviously, we did 
not intend to enter too many details in this chapter, but only to show 
why and how Schur's complements are useful, and often unavoidable, in 
various topics of numerical analysis. For topics which are too technical or 
too specialized, we will only give references for the interested reader. 

In order not to give too many references, we will not always cite the 
original source but mainly review papers and books. Of course, more recent 
references published after such reviews will be given. 

An important tool for our purpose is Sylvester ^s determinantal identity 
whose proof can be obtained directly (see, for example, [76]). However, it 
also follows immediately from the quotient property as proved in [88]. Let 
us consider the partitioned matrices 

,_( A B\ ,_( B E 
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and 

M = 

Assuming that D' /D is nonsingular, the quotient property is 

M/D' = {A'/D) - {B'/D){D'/D)-^{C'/D). (7.0.1) 

If ^ , E^ G and L are numbers, the Schur complements in this identity are 
numbers (and thus identical to the corresponding determinant) and Schur's 
determinantal formula (1.1.4) immediately leads to Sylvester's identity 

det M • det L> = det A' • det D' - det B' • det C. (7.0.2) 

7.1 Formal orthogonality 

Let c be a linear functional on the space of polynomials. It is entirely 
defined by the knowledge of its moments Q = c(< *̂), i = 0 , 1 , . . . 

Let {Pk} be a family of polynomials such that, for all A:, Pk has the 
degree k (for simplicity) and satisfies the orthogonality conditions 

c(f^fc(^)) = 0, i = 0 , . . . , A : - l . 

We say that {Pk} is the family of formal orthogonal polynomials with re­
spect to c (or to the sequence ( Q ) ) . If the functional c is represented by a 
definite integral on the real axis with respect to a positive measure, then 
the usual orthogonal polynomials are recovered. 

If we set Pk{C) = <̂o + «i<C + • • • + ciki^^ the orthogonality conditions 
write 

^{CPk{C)) = ô oQ + aiQ+i + h akCij^k = 0, i = 0 , . . . , /c - 1. 

This is a system of k equations in A: -f 1 which defines Pk apart a multiplying 
normalization factor. This factor is determined by an additional condition. 
For example, Pk could be monic, or such that P/c(0) = 1, or satisfying 
P/C(1) = 1- In the case where Pk is monic, we have 

aoQ + aiQ+i H h Ok-iCiJ^k-i = -Q+/c, i = 0 , . . . , A: ~ 1 



SEC. 7.1 FORMAL ORTHOGONALITY 229 

and Cramer's rule gives (assuming, of course, that the determinant of the 
system is different from zero) 

Pfc(0 = det 

/ Co 

Cl 

C/c-1 

^ 1 

ci • 
C2 • 

Ck ' • 

i •• 

Ck \ 

Cfc+1 

• C2k-1 1 

• e J 

det 

/ Co 
ci 

ci 
C2 

\ Cfc-l Ck 

C/c-l \ 

C/c 

C2A;-2 / 

So, we see that Pk is the Schur complement of the matrix of the denominator 
in the matrix of the numerator and that 

Pk{0 = ^'-{h^."^.i'-') 
Co 

C/c- l 

C/c-1 

C2/C-2 

- 1 
Ck 

C2k-1 

Formal orthogonal polynomials satisfy most of the algebraic proper­
ties of the usual orthogonal polynomials such as the three-term recurrence 
relationship, the Shohat-Favard theorem and its reciprocal, the Christoffel-
Darboux identity and its variants, and some of the properties on the zeros. 
See [72]. 

Let us now define the linear functionals ĉ ^̂  by c^^ (̂̂ *) = c^+z for 
i -: 0 , 1 , . . . . Obviously c(^)(f+i) = c(^+i)(f). Let P "̂"̂  be the family of 
monic formal orthogonal polynomials with respect to c^^\ that is such that 
c^''HCPt\0) = 0 ioT i = 0,...,k-l. The preceding functional c and 
the polynomials Pk correspond to n = 0. These families are called adjacent 
families. 

We denote by N^^^ the numerator of P^^^ and by Hj^^ its denominator 

r (n) 

Nrio 

H. 
(n) 

det 

= det 

Cn-^-k-l 

1 

C n + / c - l 

Cn+/c \ 

C n + 2 / c - l 

e J 
Cn-\-k-l 

Cn+2A;-2 

There exist many recurrence relationships between polynomials belong­
ing to two adjacent families. They can be obtained either by a direct in­
spection or by Sylvester's determinantal identity (7.0.2). We will not give 
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all these identities but we will only show, on two of them, how they can be 
obtained. Applying Sylvester's identity to Â "̂'̂  gives 

Let us put the last row 1 , . . . ,<̂ ^ of N^^'^ as the first one and again apply 
Sylvester's identity. It comes out 

Applying alternately these two relations, allows to compute a descending 
staircase in the table of these polynomials. 

Biorthogonal polynomials, as defined in [74], orthogonal polynomials on 
the circle, least-squares orthogonal polynomials [81], as well as other gen­
eralizations of orthogonal polynomials, can be similarly related to Schur 
complements. See [75]. Formal orthogonal polynomials and their general­
izations are fundamental in Fade approximation. 

7.2 Pade approximation 

Let us consider a formal power series 

f{z) = Co + CiZ + C2Z^ ^ 

We are looking for a rational function whose power series expansion 
agrees with that of / as far as possible. It means that its numerator P{z) = 
bo-\-biz-\-' • •-{-bpZ^ and its denominator Q{z) = ao + aizH haqZ^ must 
satisfy 

Piz) - Q{z)fiz) = 0{zP+i+'). (7.2.3) 

Such a rational function P{z)/Q{z) is called a Pade approximant and it is 
denoted by [p/q]f{z). 

From (7.2.3), it is easy to see, by identification of the coefficients and 
with Ci == 0 for i < 0, that 

degree 0 = > ao = boco 
degree 1 => ai = boci + bico 

degree p = ^ a^ = boCp H h bqCp^q 
degree p + 1 = > 0 = ^oCp+i H h bqCp-q^i 

degree p + q => 0 = boCp-^q-\ \-bqCpao. 

file:///-bqCpao
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Setting 60 = 1, the last q equations give the coefficients of the denominator 
(assuming tha t the system is nonsingular) and, then, those of the numerator 
can be directly computed. 

Moreover, we have the following formula due to Jacobi 

det 
Cp—g+l ^p—q-\-2 

[plQ\f{z) = 
\ <^P+1 

Cp-hl 

Cp-\-q I 
^q-1 

det 
Cr) — 

with 

fk{z) = < 

p—q-^l ^p—q-\-2 

Cp+l 

Y^Ciz' if A: > 0 

1 \ 

Cp+1 

C'p+q J 

2=0 
0 if A :<0 . 

Dividing the numerator and the denominator by Hq^ shows tha t 
[p/q]f{z) can be represented as a ratio of Schur complements. This formula 
can also be written as 

det W-\p/q]f{z) 

det 

where 

/ Z^2=0 ^*^ (^p-q+l 

I Z Cp—q-\-i Cp—q^i ZCp—q^2 

\ Z Cp Cp ZCp-\-\ 

^p—q+1 ZCp—qj^2 

Cp \ 

Cp ZCpj^x I 

^p+q—1 ZCpj^q J 

Cp ZCpj^\ 

w 
Cp ZCpj^x ^p+q—1 ZCp-\-q 

Let c = (cp_g_j_i,..., CpY. Taking the Schur complement of W in the 
numerator of [p/q]f{z) and applying Schur's formula (1.1-4) reveals 

b/^]/W = Ẑ ĉ ^̂  + z -̂̂ +^c^w-̂ c. 
2 = 0 
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This formula is known as NuttalVs compact formula. A similar formula 
can be obtained for the vector Pade approximants of van Iseghem which 
allow to approximate simultaneously several series by rational functions 
with the same denominator or for the partial Pade approximants introduced 
by Brezinski. On these topics, see, for example, [93]. 

Pade approximants are closely related to formal orthogonal polynomials. 
Let us consider, for simplicity, the case p = k — 1 and q = k and let c be the 
linear functional on the space of polynomials defined, as above, by c{^'^) — ci 
for i = 0 , 1 , . . . Then, the denominator of [k — l/k]f{z) is z^Pk{z~^). 

When the system of equations giving the coefficients of the denominator 
of [p/q]f{z) is singular, it means that there exists a common factor between 
the numerator and the denominator of the approximant which becomes 
identical to another approximant with lower degrees. Such a phenomenon 
is known as the block structure of the Pade table. Without entering into 
details, new recursive algorithms for computing Pade approximants have 
to be derived. As shown in [40], these new rules can be derived using Schur 
complements. 

There exists several generalizations of Pade approximants (for vector 
and matrix series, series of functions, Laurent series, multivariate series, 
etc.). They are based on some kind of formal orthogonality and they can 
also be connected to ratio of determinants and, thus, to Schur complements. 
See [74, 93]. 

7.3 Continued fractions 

A topic related to Pade approximation, but more general, concerns contin­
ued fractions. A continued fraction is an expression of the form 

C = bo + 
ai 

bi + 
a2 

02 + 
3̂ + 

\ oi 62 03 

The convergents of this continued fraction are the rational fractions 

Cn = ^o-l-r-7-^ -^'"^rr^ = ~B~^ n = 0 , 1 , . . . . 

Oi \ On t>n 
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It is well known that 

^ n det 

/ bo 
ai 

a2 

hi 

dn-l 

Bn = det 

« n - l 

v 

- 1 
hn J 

\ 

- 1 
hn J 

By Schur's determinantal formula (1.1.4), we have 

Arr = An-l[hn - (0, . . ., 0, a^)^-^^(O, . . . , 0, 

An-2^ 

-ir 
An-1 \hn-\- an 

An-^ 

and a similar formula for Bn- So, the usual recurrence formulae for the 
successive convergents of a continued fraction have been recovered. Con­
versely, using these recurrence relations and Schur's determinantal formula 
allows to express the convergents as a ratio of determinants Cn = An/Bn-

Generalized continued fractions and their extensions to a noncommuta-
tive algebra make an extensive implicit use of Schur complements. 

7.4 Extrapolation algorithms 

A domain of numerical analysis where Schur complements play a central 
role is the domain of extrapolation algorithms for scalar, vector and matrix 
sequences. So, we will consider this topic in details. 

When a sequence (Sn) converges slowly to a limit 5, it can be trans­
formed into a new sequence (T^) by a sequence transformation. Of course, 
it is hoped that (T^) will converge to S faster that {Sn), that is 

lim 
Tn-S 

oo Sn — S 
= 0. 

Since it has been proved that a sequence transformation for accelerat­
ing the convergence of all sequences cannot exist, many sequence transfor­
mations have been defined and studied, each of them being only able to 
accelerate a particular class of sequences. 

file:///hn-/-
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Building a sequence transformation could be based on the notion of 
kernel, that is the set of sequences which are transformed into a constant 
sequence \/n,Tn = 5 by the transformation. Although this property has 
never been proved, it has been noticed that if the sequence {Sn) to accelerate 
is not "too far away" from the kernel, its convergence is accelerated by the 
transformation. 

The kernel of a transformation is usually defined by a relation, depend­
ing on unknown parameters, that the successive terms of the sequence have 
to satisfy for all n. This relation is written for diff'erent values of n in order 
to obtain as many equations as parameters. So, each successive term T^ of 
the transformed sequence is given as the solution of a system of equations 
and, thus, Schur complements are involved. 

The E'-algorithm is the most general sequence transformation known 
so far. Its kernel is defined by the relation 

Sn = S -{- aigi{n) -\-akgk{n), n = 0,1, (7.4.4) 

where the {gi{n)) are known sequences whose terms can depend on the se­
quence {Sn) itself and the ai are unknown parameters. Writing this relation 
for the indexes n , . . . , n + A: and solving it for the unknown 5, we obtain, 
by Cramer's rule, a new sequence with terms denoted by E^^^ instead of 
Tn 

I S n • • • Sn+k \ 

^i(^) ••• gi{n-\-k) 
det 

^(n) \ 9k{n) 
^k =^ 

9k {n + k) I 

det 

/ 1 
9i{ri) 

\ 9k{n) 

1 \ 
gi{n + k) 

gk{n + k) j 

(7.4.5) 

The choice giin) — x\, where (x^) is an auxiliary known sequence, 
leads to Richardson extrapolation (and Romberg method in a particular 
case), the choice gi(n) — Sn-\-i — Sn-\-i-i corresponds to Shanks transfor­
mation (that is the e-algorithm). Levin's transformations and many other 
transformations can be put into this framework. 

For this transformation to be effective, it is necessary to find a recursive 
algorithm for its implementation. Let us first define the auxiliary quantities 
9k i ^y ^ ratio of determinants similar to (7.4.5) with the first row of the 
numerator replaced by ^^(n) , . . . , gi{n + k). Thus, g^^^ = 0 for i < k. 
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Applying Sylvester's determinantal identity (7.0.2) to the numerators 

and the denominators of Ej^^ and g)^^, we obtain the recursive rules 

in) _ E\ 

(n) 
9kA 

E in) 
7^(n+l) 

^ k - l in) 7. ^ _ A 1 

k-l (n+1) _ (n) 
9k-l,k 9k-l,k 

(n+1) _ (n) 
(n) _ 9k-l,i 9k-l,i (n) , 

9k-l,i (n+1) _ (n) ^/c-l,A;' ^ ' ^ ^ 
9k-l,k 9k-l,k 

0 , 1 , . . . ; i > A:, 

^ ( n ) _ W _ with, for n = 0 , 1 , . . . , £'o — ̂ n and ^Q ^̂  == gi{n)^ for i > 1. 

The 4""̂  
are usually displayed in a two dimensional table. The quan­

tities with the same lower index are placed in a column, while those with 
the same upper index are in a descending diagonal. So, E)^^ is computed 
from two quantities in the preceding column, one on the west and the other 
one on the north-west. Such a rule is called a triangular recursion scheme 
(see Section 7.9). A more economical scheme for the implementation of 
this transformation is given in [169]. It is an immediate consequence of the 
Sylvester's determinantal identity. 

The quantities in the {k -\- m ) t h column of this table can be computed 
directly from those on the /cth column. Indeed, we have 

'(") . 
k-\-m 

det 

An) A (n) 
9k,k+i ^9k,k-\-i 

\ 9k,k-\-m ^9k,k+m 

det 
1 A^a+i • • • 

\ ^9k,k-\-m ' ' ' 

... A4"+^-
. (n-\-m-

^9k,k-^l 

. (n-\-m-
^9k,k-\-m 

-1) X 

-1) 

(7.4.6) 

and a similar formula from g^^^^ .̂ From Schur formula, we get the recursive 
rule 

EtL = 4"̂  - [A î"\ ..., AEi^^^-'W^Y' 
' yfc,fc+i > 

\ 9k,k+m I 

, (7.4.7) 
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with 

\ ^yk,k-\-m ^9k,k+m I 

For m = 1, this relation reduces to the usual rule of the E'-algorithm given 
above. 

These rules can only be used if the denominator is different from zero. 
If not, a breakdown occurs in the algorithm. If the denominator is close to 
zero, a near-breakdown arises and a severe numerical instability can affect 
the algorithm. It is possible to jump over breakdowns or near-breakdowns 
by taking m > 1 in (7.4.7), thus leading to a more stable algorithm (see [73] 
for a numerical example). Breakdowns and near-breakdowns can be avoided 
by a similar technique in the computation of formal orthogonal polynomials 
[84] and in the implementation of other extrapolation methods [85]. Let us 
also mention that, taking A: = 0 in (7.4.7) gives a Nuttall-type formula for 
the £^-algorithm. 

Other interpretations of the £^-algorithm based on Schur complements 
are given in [88]. On extrapolation methods, see [83] and [458]. 

Let us now consider the vector case. Of course, for accelerating the 
convergence of a sequence of vectors, it is always possible to use a scalar 
procedure separately on each component. However, vector methods are 
preferable since, usually, the components of the vectors to be accelerated 
are not independent. 

Let us first define the vector Schur complement. We first need to define 
a vector determinant. Let 2/, xi , X2,... be elements of a vector space on /C, 
u G /C^, and A G IC^^^. We set x = [x i , . . . , Xn]- The vector determinant 
det M of the matrix 

\ u A 

denotes the linear combination of y^xi,.. .,Xk obtained by expanding this 
determinant with respect to its first (vector) row by the classical rule for 
expanding a determinant. The vector Schur identity is 

M/A =^y-xA-^u = det f ^ ^ ^ / d e t A 

From this relation, it can be proved that a vector Sylvester's identity for 
determinants having a first row consisting of elements of /C^ holds. 

Many vector sequence transformations are based on such generaliza­
tions of the Schur complement and determinantal identities. This is, for 



SEC. 7.4 EXTRAPOLATION ALGORITHMS 237 

example, the case of the vector £^-algorithm which is based on a kernel of 
the form (7.4.4) where 5n, S and the gi{n) are vectors and the â  unknown 
scalars. If we set a = ( a i , . . . , ak)^ and if Gk{n) is the matrix with columns 
^ i (n) , . . .^gk{n), this kernel can be written diS Sn — S + Gk(Ti)a. A vector 
formula similar to (7.4.5) holds and the rules of the vector E"-algorithm are 
exactly the same as the scalar ones. The case of a sum of terms Gk{n)a is 
studied in [89] by means of Schur complements. It is also possible to con­
sider a kernel of the form Sn — S -{- Aigi{n) H h AkQki'f^), where the Ai 
are unknown matrices. Schur complements are also involved in transforma­
tions for treating this case. Some of them used pseudo-Schur complements 
which are defined by replacing the inverse of a matrix by the pseudo-inverse 
[89]. Some of these transformations are also related to projection methods 
that will be discussed in Section 7.6. 

Matrix sequence transformations can be treated quite similarly. We 
consider a kernel of the form Sn = S -\- ADn-, where Sn^S^A G R^^^ and 
Dn G R^^^. To find a transformation with this kernel, the matrix A has to 
be eliminated by solving the system AS'^ = A/S^Dn- If ^D^ is nonsingular, 
the transformation Tn = Sn — ASn{^Dn)~^Dn will has the desired kernel. 

Vector and matrix sequence transformations are based on the solution 
of a system of linear equations in a noncommutative algebra. For such 
systems, it is the notion of designant, introduced in [221], which replaces 
the notion of determinant. We consider a 2 x 2 system in a noncommutative 
algebra 

xiaii 4- X2ai2 = bi 

Xia21 -\-X2a22 = ^2-

Assuming that an is nonsingular, we proceed as in Gaussian elimination. 
We multiply the first equation on the right by a^/, then by a2i, and subtract 
it from the second equation. We obtain 

X2{a22 - ai2a]^ia2i) = 62 - 6iaj"/a2i. 

The square matrix a22 — ai2a]~/a2i is called a (right) designant and it is 
denoted by 

an ai2 

where the subscript r stands for right. We see that this designant is the 
Schur complement of an in the matrix of the system. If this designant is 
nonsingular, then 

X2 = (̂ 2 - hanCi2i){ci22 - ai2a];^a2i)~'^ 
a n 
021 

h 
62 r 

an 
Ci21 

ai2 

«22 

~ i 

r 
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xi is given by a similar formula. 

Designants of higher order play the role of determinants in the solution 
of systems of higher dimension in a noncommutative algebra. They are 
defined recursively. We consider the designant of order n 

An = 
a n 

dnl 

air 

and let AY^^ ^ be the designants of order n — 1 obtained by keeping the 
rows 1 , . . . , n — 2, r and the columns 1 , . . . , n — 2, s of A^. By Sylvester's 
identity, we have 

A„, = 
An-2) An-2) 
^n—l,n—1 
Ain-2) 4(^-2) 

- A{n-2) __ /l('^-2) r 4 ( ^ - 2 ) 1-1 j i -I An-2) 

Left designants can be defined similarly. Designants, which are clearly 
related to Schur complements, are used in extrapolation methods for vec­
tor and matrix sequences and in Pade approximation of series with vector 
coefficients. In order not to enter into too technical details, we will only 
refer the interested readers to [77, 86, 89, 92, 188, 311, 389, 390, 391, 392, 
393, 394, 395]. 

Many other extrapolation algorithms can be based on Schur comple­
ments since their recursive rule is quite similar to the rule of the E-
algorithm (see, for example, [459, 458, 83]. Extrapolation methods will 
be again discussed in Section 7.9 in a more general setting. 

Schur complements also appear in fixed point iterations since they are 
strongly related to sequence transformations. A quasi-Newton method for 
solving f{x) = 0 , where / : W^ \—> W^ consists in the iterations 

Xk+i = Xk- J^V(^/c), A: = 0 , 1 , . . . 

where Jk is an approximation of the Jacobian matrix of / at the point Xk • 
By the vector Schur formula, we have 

Xk+i det Xk 

f{xk) Jk 
det Jk. 

Depending on the choice of J/c, the various quasi-Newton methods are 
obtained. Among them are those of Barnes, Broyden, Henrici, Davidon-
Fletcher-Powell, Broyden-Fletcher-Goldfarb-Shanno, Huang and Wolfe. 
Newton's method corresponds to Jk — f {xk)- On this topic, see [76, 80]. 
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7.5 The bordering method 

In some applications, one has to solve a sequence of systems of linear equa­
tions of increasing dimension obtained by adding new rows and columns 
to the previous matrix. As we saw above, this is the case in extrapolation 
methods such as the E'-algorithm, in formal orthogonal polynomials, in 
Lanczos method, etc. The block bordering method, based on Theorem 1.2, 
allows to solve these systems recursively. 

We consider the systems AkXk = bk and Ak-\.iXk-{-i = &fc+i with 

^ M f c «fc ^ and 6fc+i = ( ^'^ 
^ \ Vk ak J "^^ V Cfc 

where Ak G K"'=x"'=, uk € R"'=xp^ vk € EP-^^^S Ofc G RP ' - ^PS bk G M"N 
Cfe G W"'. By the block bordering method, it holds 

x,^, = ( "^J^ ] + (^ - V ^ / c ^ s^\ck-VkXk) 
0 

where Sk is the Schur complement of Ak in A^-^i, Sk = cik ~ VkA'j^^Uk-
It is possible to avoid the computation and the storage of the matrix A^ 
by solving recursively the system Aj^Qk = —Uk by the bordering method (a 
FORTRAN subroutine is given in [83]). 

The reverse bordering method consists in computing Xk from Xk+i • We 
set 

It is easy to check that 

Ak' = A^k-<Wk]-'vk 

Xk = 4-<[4]~^2//c. 

When solving a sequence of linear systems by the bordering method, 
some intermediate systems can be singular or nearly singular. It is possible 
to jump over these (near) singularities by the block bordering method and to 
compute directly the solution of the first non-nearly singular system. Then, 
the reverse bordering method can be used to obtain the solution of the 
intermediate systems which were skipped. Such a procedure improves the 
numerical stability. It has been described in [82] where numerical examples 
concerning Pade approximants show its eff"ectiveness. 
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7.6 Projections 

The notion of projection has many important applications in numerical 
analysis. Let us first give some general results. 

Let Ek and Fk be the subspaces of M^ spanned by ui,...^Uk and 
t ' l , . . . , t'/c, respectively. When it exists, the oblique 'projection Vk on Ek 
along F ^ , tha t is the projection on Ek orthogonal to Fk-, is represented by 
the matrix 

Pk = Uk{V^Uk)-'V^ 

where Uk — [ i ^ i , . . . , U]^ and Vk — \v\,.. .,V]^. X — Vk '^^ the oblique pro­
jection on F^ along Ek- These projections are orthogonal if ui — Vi^ for 
i = 1 , . . . , /t. Clearly, the matrices Pk and I — Pk are Schur complements. 
Thus, if 2/ eW, 

/ (vi.ui) ••• (vi.Uk) {vi,y) \ 

det 

Pky= — 

(Vk^Ul) {vk^uk) {vk,y) 

Uk 0 y 

det 

{vi.ui) 

{Vk.Ui) 

On projections, see [76]. 

More generally, let E" be a vector space on /C and E* its dual. We 
denote by < •, • > the bilinear form of the duality between E and £^*. Let 
xo, x i , . . . G £̂  and 2:1, 2:2,... G £"*. We consider the scalar determinants 

/ < Zi,Xn+l > 

Dt^ = det 
\ < Zk,Xn-^l > 

and the vector determinants 

/ 

det Ar(") - , 
< Zi,Xn> 

< Zk,Xn-j-k > J 

By Schur formula, it can be proved that the ratio Ek = N^ /^k can 
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be recursively computed by the Recursive Projection Algorithm (RPA) 

< Zk,Ek-l > 1 ^ n 
J^k = ^k-l gk-l,k, AC > U 

< zk,gk-i,k > 
< Zk,gk-l,i > ' ^ 1 ^ n 

9k,i = gk-i,i - gk-i,k, ^ > /c > 0 
< Zk,gk-i,k > 

with EQ = XQ and ^o,n = x^ for n > 1. The gk,i are given by a ratio of 
determinant similar to the ratio for Ek-

The Ek can be computed by a more compact algorithm with only one 

rule. We consider the ratios Cj^^ = Nj^^/D^^\ Obviously e^^^ = Ek- It 

holds 

with GQ = Xi. This algorithm is called the Compact Recursive Projection 

Algorithm (CRPA). A formula similar to (7.4.7) allows to compute the e^*|^ 

directly from the ê *̂  without computing the intermediate vectors. 

The RPA and the CRPA have applications in recursive interpolation 
and extrapolation for vector and matrix sequences, and in the solution 
of systems of linear equations. They also have connections with Fourier 
series, the Gram-Schmidt orthonormahzation process and Rosen's method 
for nonlinear programming. See [74, 239, 307, 308, 309, 310, 311]. 

Let us now turn to the solution of the system of linear equations Ax = b. 
Many projection methods for their solution use, explicitly or implicitly, 
Schur complements. 

Lanczos method for solving a system consists in constructing a sequence 
of vectors (xk) defined by the two conditions 

Xk -xo e JCk{A, ro) = Span(ro, Aro,.. •, A^~ V Q ) , 

rk = b~Axk± ICk{A^,y) = Span(^, A^y,..., {A^f'^y)^ 

where XQ is arbitrarily chosen, r^ = b — -AXQ, and ?/ / 0 is a given vec­
tor. A subspace of the form ICk is called a Krylov subspace and Lanczos 
method belongs to the class of Krylov subspace methods, a particular case 
of projection methods [76]. 

The vectors Xk are completely determined by the two preceding condi­
tions. Indeed, the first condition writes 

Xk- xo = -Ok-iro - ak-2Aro - •»• - ao-A^~ V Q . 
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Multiplying both sides by A, adding and subtracting 6, leads to 

rk = ro + ak-iAro H h aoA^ro = Pk{A)ro 

with Pk{£,) = 1 + cik-i£, + h ao<^̂ . The second condition gives 

{Tk, {A^yy) = {Pk{A)ro^ (Ayy) = (A^P^(A)ro, y) = 0, i = 0 , . . . , A: - 1, 

that is 

(AVo + ak-iA'-^'^ro -h • • • + ao^^'^^ro, 2/) - 0, i - 0 , . . . , A: - 1. 

Let c be the linear functional defined by 

c(e) = Q = (AVo,2/). 

Thus, since c is linear, c{p) — {y,p{A)ro) for any polynomial p, and the 
preceding conditions are equivalent to 

c ( m ( O ) = 0, i - 0 , . . . , A : - l , 

that is 
Q + ak-iCi-^i H h ttoQ+zc ==0, i == 0 , . . . , A: — 1. 

So, if it exists, Pk is the formal orthogonal polynomial of degree at most k 
with respect to c, normalized by the condition Pk{0) = 1 and it follows 

Tk = det 
Co Ci ••• 

\ Ck-1 Ck • • • C2/C-1 / 

where the determinant in the numerator is the linear combination of the 
vectors in its first row, obtained by the usual rules for expanding a deter­
minant. 

By Schur's formula (1.1.4), we see that rk is also a Schur complement 

Vk = ro- A{ro,Aro,-

-1 
Ck \ f Co 

• • • C2k-1 I \ Ck-1 

The vectors Xk can also be expressed as Schur complements. 

From the practical point of view, the residuals rk and the corresponding 
iterates Xk are not obtained from these determinantal formulae nor from 
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the system satisfied by the coefficients of the polynomials Pk- Since these 
polynomials are formal orthogonal polynomials, they can be recursively 
computed (and then the rk = Pk{A)ro and the Xk) by using the recurrence 
relations given in Section 7.2 for adjacent families of formal orthogonal 
polynomials. According to the relations used, several algorithms for the 
implementation of Lanczos method are obtained. Among them is the con­
jugate gradient algorithm when A is symmetric and positive definite, and 
the biconjugate gradient algorithm in the general case. See [312, 388, 445]. 

Since the various recursive algorithms for the implementation of Lanc­
zos method are based on formal orthogonal polynomials, breakdowns and 
near-breakdowns can occur as explained above. They can be treated by 
jumping over these flaws and using more complicated recurrences which 
can be derived from the block bordering method described in Section 7.5. 
A similar look-ahead strategy can be used for other Lanczos-based meth­
ods such as the CGS and the BiCGStab. On these topics, see [90, 91] where 
additional references could be found. 

Other projection methods fit into a similar framework. 

Let us now discuss block projection methods for the solution of systems 
of equations with several right hand sides. We first need an extension of the 
notion of determinant, where the first row is formed by n x 5 rectangular 
matrices and the other rows by 5 x 5 square matrices. Such determinants 
are n x s matrices defined as follows. We consider the matr ix 

M : 

Bi Bk \ 

\ Ck Dk^i Dk,k / 

where A^Bi,.. .,Bk are n x s matrices, and the Ci and the Dij are s x s 
matrices. Let D be the submatrix which consists of all the blocks Dij. 
It is 3, ks X ks matr ix and its determinant is the usual one. The Schur 
complement M/D is an n x 5 matrix. Let us now give a meaning to the 
determinant of the rectangular matr ix M , denoted by Det M (notice the 
capital D and Det ^ det) . It is the n x s matrix whose entries are 

(Det M)ij = det 

{Bi)i 

\ {CkV Dk,i 

{Bk)i \ 

Dk,k / 

where {Bj)i denotes the i th row of Bj, {CiY the jth column of d, and 
Aij is the corresponding term of the matrix A. Wi th this definition for 
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the determinant of a rectangular matrix, the Schur determinantal formula 
justifies the extension formula 

M/D = A- BD-^C = Det M/ det D. 

Finally, let us consider the matrix 

( A B E 
K= [ C D F 

\G H L 

We set 

We assume that D and D' are square and nonsingular. The following 
quotient property holds [131] 

K/D^ = {{K/D)/{D'/D)) 
= {M/D) - {B'/D){D'/D)-^{C'/D). ^^'^'^^ 

If A, E^ G and L are numbers, B and H row vectors, and C and F 
column vectors, then the Schur complements involved in (7.6.8) are num­
bers (obviously equal to ratios of determinants), and the quotient property 
reduces to Sylvester's determinantal identity. Thus (7.6.8) appears as a 
generalization of Sylvester's identity. 

We consider a system of n linear equations with s right hand sides 
AX =^ B where A eW'''' d^nd B,X eW"^. A block projection method 
for solving this system consists of generating, from an arbitrary nxs matrix 
Xo, a sequence {Xk) oi n x s matrices defined by the two conditions 

Xk-Xoe ICk. (7.6.9) 

Rk = B-AXkA-Ck (7.6.10) 

where Kk and Ck are subspaces of dimension k oi n x s matrices. 

Let t 'o , . . . , Vk-i {WQ, . . . , Wk-i^ resp.) be matrices of dimension nxs 
forming a basis of JCk {Ck resp.). Any matrix v G ICk can be written as 

k-i 

X]^i7i 
i=0 

where the 7̂  are 5 x 5 matrices. The definition of a matrix in Ck is similar. 
So, each column of a matrix in ICk {Ck resp.) is a linear combination of the 
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columns of all the matrices VQ^ - • - ^v^-i {WQ^ . . . ,Wk-i, resp.). We consider 
the n X ks matrices 

Vk = [vo,-.-,Vk-i], Wk = [wo,...,Wk-i]. 

So, the conditions (7.6.9) and (7.6.10) give 

Rk = {I-Pk)Ro (7.6.11) 

with 
Pk = AVk{W^AVk)-'W^. (7.6.12) 

The matrix Pk represents the oblique projection on AICk along >C ,̂ that 
is orthogonal to £fc, and I — Pk represents the projection on Cj^ along AICk-

Formula (7.6.11) shows that Rk is the Schur complement of WJ^AVk in 
the matrix 

Ro AVk 

Similarly, Xk is the Schur complement of WJ^AVk in 

Xo -Vk 
W^Ro Wj^AVk 

From the definition of the determinant of a rectangular matrix given 
above, we have 

/ Xo -Vk \ ^ . ( Ro AVk 
^^'^ ,̂ W^Ro W^AVk J ""^^ \ W;RO W^AVk 

det{W^AVk) ' detiW^AVk) 

Let us now express Pk+i in term of Pk- For simplicity, we set Ak = 
W^AVk. We have 

From the block bordering method, we have 

Rk^i = Rk- A{I - A-'PkA)vkS^'wlRk 

with Sk = wl{I - Pk)Avk = ^ ^ ^ ( ^ - A~^PkA)vk' Since Rk can be 
expressed as the Schur complement Rk — Mk/Ak-, it can be recursively 
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computed by the matrix recursive projection algorithm (MRPA) [307], an 
extension of the RPA discussed above. We have 

Ro AVk Avk 
A/4+1 = I W^Ro W^AVk W^Avk 

wlRo w^AVk w'^Avk 

We set 

^k - 1 TT.* A.r TT7* . . . I , n k - y ^ * ^ ^ ^ * ^ ^ ^ 
AVk Avk 

W^AVk W;;Avk 

It follows from the expression (7.6.13) of Afc+i and from the quotient prop­
erty (7.6.8) for the Schur complements 

Rk+i = Mk+i/Ak+i = {{Mk+i/Ak)/{Ak+i/Ak)) 

- {Mk/Ak) - {Gk/Ak){Ak+i/Ak)-\Hk/Ak). 

If we set 

r' = ( ^^i ^^k \ TTf _ ( K^o wlAVk 

^k,i ^ ^r^J^^. w^AVk ; ' ^^ !̂  w^Ro w^AVk 
and Gk,i = G'^^i/M, then H'^^/Ak = w^Rk and Ak+i/Ak = w^Gk^k and the 
preceding expression for Rk-\-i becomes 

Rk-i-i = Rk- Gk,k{wkGk,k)~^WkRk-

Since Gk,i has the same form as Rk after replacing RQ by Avi, a similar 
recurrence relationship holds for the auxiliary n x s matrices Gk-\-i,i, tha t 
is 

Gk-\-i,i = Gk,i - Gk,k('i^kGk,k)~^'^kGk,i, i = A: + 1, A; + 2 , . . . 

with Go,z = Avi. 

According to the choice of the subspaces ICk and Ck several particular 
block methods are recovered such as Lanczos, F O M and GMRES, see [87]. 

Block descent methods involving Schur complements can also be defined. 
They are described in [78] and are all related to the Schur complement. In 
such methods, the iterates are given by 

Xk-\-i = Xk + ZkAk, A: = 0 , 1 , . . . 

where Zk G R^^^ and where the 5 x 5 matrix A/c is chosen to minimize 
some expression. 
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In the block Richardson method, Ak is defined by the condition Rk-^-i — 
B — AXk+i = Rk — AZkAk = 0 in the least squares sense, which gives 

Ak = [{AZkrAZk]-\AZkrRk-

The matrix Ak also satisfies the orthogonality condition {AZkYRk-hi — 0-
It follows 

Rk^i = {I - Pk)Rk with Pk = AZk[{AZkrAZk]-\AZkr. 

We have Pk = Pk and Pk = Pk which shows that Pk and I — Pk are 
orthogonal projectors. Moreover 

Rk-\-i^k+i = Rki^ - Pk)Rk' 

In the block Barzilai-Borwein method, A^ is taken so that AX^-iA^^-j-
AZk-i = 0 in the least squares sense, that is 

A^ - -{AXl_^AZk-i)-^AXl_^AXk-i. 

We have 
AXfc_iA-i + AZk-i = {!- Pk)AZk-u 

with Pk = AXk-i{AX;^_^AXk-i)~^AX;^_-^. Thus Pk and I-Pk represent 
orthogonal projections and we have 

(AXit-iA^i + AZk-iTiAXk-iA^' -f AZk-i) = AZl_,{I - Pk)AZk-i. 

Moreover AX^_-^{AXk-iA'^^ -\- AZk-i) = 0. A second method of the same 
kind can be obtained by choosing Ak so that AX^-i -f AZk-iAk == 0 in 
the least squares sense. We obtain 

A^ - -{AZ^k-i^Zk-i)-'AZU^Xk-i. 

We have 
AXfc_i + AZk-iAk = (/ - Pk)AXk-u 

with Pk = AZk-i{AZ^_^AZk-i)~^AZ^_^. Thus Pk and I-Pk are or­
thogonal projectors. Moreover 

(AX^_i + AZA._iAfc)*(AXfc_i + AZk-iAk) = AX^*_i(/ - Pk)AXk-u 

and AZ^_^{AXk-i + AZk-iAk) = 0. 

Other block descent methods are described in [78]. 
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7.7 Precondit ioners 

Let us first discuss the block Gaussian elimination for solving a system of 
linear equations. We consider the system 

^11 A 12 

A-ml A m2 

Air, Xi \ hi 

where Aoj e 
•^j Xi e and bi G The idea of block Gaus­

sian elimination is first to eliminate xi from equations 2 to m. The first 
block equation is multiplied on the right by A^^, then by An^ and it is 
subtracted from the i-th equation. The, X2 is eliminated in the same way 
from equations 3 to m, and so on. We thus obtain a succession of systems 
j^(k)^ ^ (̂/c)̂  A: = 1 , . . . , m, with A^^^ - A and b^^^ - 6, where 

/ . ( 1 ) . ( 1 ) 
/ ^ 1 1 ^ 1 2 

j ( 2 ) 
^ 2 2 

^( fc ) 

. ( 1 ) 

j ( 2 ) 
^2fc 

4(fe) 
^ f c f c 

Ak) 
^m,k 

A(k) 
•^km 

A(k) 
^k+\,m 

Aik) 

tik) 

( b^i^ \ 
u(2) 

V b^r^^ J 

(k) 
The blocks A]-^ are given by 

A^^ + l) =: 4> ^(fe)r4(fc)i 
I4 fc j 

t'-Ai'M'^n 
i , j = /c + 1 , . . . , m 

= A: + 1 , . . . , m , 

the other blocks remaining unchanged. The last system A^'^^x — b^^^ is 
block upper triangular. 

It is easy to see tha t Schur complements are involved in this elimination 
procedure. It corresponds to a block factorization of A SLS A = LU^ where 
L is a block lower triangular matr ix with identity matrices on its diagonal 
and t / is a block upper triangular matrix. Let us mention tha t the block 
factorization and the Schur complement play a role in multifrontal meth­
ods for the solution of systems with sparse matrices on high-performance 
machines [150] and in fast algorithms for the treatment of dense structured 
matrices, such as Hankel and Toeplitz matrices which are involved in Pade 
and other approximation problems [59, 347]. 
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Thecondi t ionnumber of a m a t r i x ^ is the number /^(^) =: ||A||-||yl~^|| > 
1. If i^{A) is large with respect to 1, a small perturbation in the coefficients 
of A or in the components of b can induce a large perturbation in the exact 
solution of the system Ax = b. In tha t case, the system is ill-conditioned. 
Moreover, the convergence rate of some iterative methods for its solution 
(such as the conjugate gradient algorithm) is slower for large values of hi{A) 
and the propagation of rounding errors is more important . When a system 
is ill-conditioned, it can be replaced by another one with a smaller condition 
number. Since the condition number of the identity matr ix is 1, one can 
consider the system M~^Ax — M~^b where M is an approximation of A 
whose inverse is easy to compute (or, equivalently, a system with M as its 
matrix is easy to solve). This is called left preconditioning and the matrix 
M is called a preconditioner. We can also consider a right preconditioning 
of the form AM'y = b with x = M'y, or a double one M~^AM'y = M~^b 
with x = M'y. There is no universal preconditioner for all matrices and 
each case is a particular one, but preconditioning a system is, at least, 
as important as the numerical method used for the computation of its 
solution. In practice, one can construct approximations of A easy to invert 
or, directly, approximations of A~^. Preconditioners can be obtained by 
incomplete block LU decomposition. 

In many applications, mostly coming out from the discretization of par­
tial differential equations (see the next Section), one has to deal with block 
tridiagonal matrices of the form 

/ Ai Bi 

C2 A2 B2 
\ 

\ 

Cn-\ An-l Bn-1 

where all blocks are m x m. This matr ix can be decomposed as 

A = 

( D, 

C2 D2 

V 

D - 1 

Cn Dji J \ 

Dn-\ Bn-1 
Dn ) 

where D is the block diagonal matr ix formed by the blocks D i , . . . , D^. 
given by 

Dx - Ai 

Di = Ai-CiD~\Bi-i, i = 2,. 
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Thus the matrices Di can be interpreted as Schur complements. This de­
composition can be written as A = {L + D)D~^ {L + U) where L and U are 
the strictly lower and upper parts of A respectively. Once this factorization 
has been obtained, the solution of the system Ax — b can be obtained by 
two successive block triangular solves. 

For finite difference approximations of elliptic or parabolic partial dif­
ferential equations, the matrices Bi and Ci are diagonal and the matrices 
Ai are tridiagonal. However, the matrices Di can be dense. The idea for 
obtaining a preconditioner is to replace, in the preceding formulae, the ma­
trices Di by sparse approximations A^, thus leading to a matrix M which 
approximates A and is easy to invert. The matrices A^ are computed by 

Ai = Ar 

Ai = Ai- d approx (Ar_\) Bi^i, i == 2 , . . . , m, 

where approx ( A ^ \ ) is a sparse approximation of A ^ \ . There are many 
ways of defining these sparse approximations, one of the most efficient is 
to consider tridiagonal approximations of the inverses. Then we take M — 
{L + A)A~^{U -\- A) where A is the block diagonal matrix with blocks 
Ai,. . . ,Ayn- On this topic, see [312]. 

7.8 Domain decomposition methods 

The idea of domain decomposition methods comes out from the solution of 
large systems of linear equations issued from the discretization of partial 
differential equations. They consist in decomposing the domain of integra­
tion into smaller subdomains, thus replacing the system by smaller ones, 
then to solve them separately (possibly in parallel), and finally to paste 
the results together to obtain the global solution. Since these methods are 
closely related to the geometry of the domain, it is not always possible to 
present them on a purely algebraic basis. There are two types of methods 
according whether the subdomains overlap or not. 

We will only give the main ideas of domain decomposition methods in 
the case of two subdomains which do not overlap without entering into the 
details. For a general presentation of domain decomposition methods and 
for more details, see [312, 365, 388]. 

We denote by xi and X2 the vectors of unknowns in each subdomain and 
hy Xi2 the vector of unknowns on the interface between them. Ordering 
the unknowns in a certain quite technical way, the linear system Ax = b 
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can be written as 

0 El \ / xi \ f bi \ 
(7.8.14) 

The matrices Ai and A2 are block tridiagonal and they represent the cou­
pling of the unknowns in the first and the second subdomain respectively. 
A12 is tridiagonal and it is related to the unknowns on the interface. Ei 
and E2 are sparse matrices representing the coupling of the unknowns of 
each subdomain with those of the interface. 

The system (7.8.14) is solved by an iterative method which makes use 
of the solution in each subdomain. The subsystems with the matrices Ai 
and A2 can either be solved exactly or approximately, thus leading to two 
different procedures. We will discuss both of them. 

If exact solv<ers for the subdomains are used, we obtain the reduced 
system Sxi2 — 612 for the unknowns on the interface where 612 == &12 — 
EfAY^bi-EjA2% and 

S = Ai2- ElA^^Ei - E^A^^E2. 

The matrix S is the Schur complement of A12 in A. In practice, since 
the inverses of Ai and A2 are dense matrices, it is too costly to construct 
and to decompose 5, and the reduced system with the matrix S on the 
interface is solved by an iterative method. In order to choose the most 
appropriate iterative method for this purpose, it is necessary to know the 
properties of this Schur complement. In many iterative methods, such as 
the conjugate gradient algorithm, it is not necessary to know explicitly the 
matrix S but only to be able to compute the product of 5 by a vector. 
However, a good preconditioner is usually needed and, thus, one has to 
find an approximation of the Schur complement S. 

Let us now consider the case where the systems corresponding to the 
subdomains are not solved exactly. The system (7.8.14) is solved approxi­
mately by an iterative method. A preconditioner (that is an approximation 
of the matrix A) is needed. It has the form 

Ml 
0 

ET 

0 
M2 

El 

El 

E2 
M12 

where Mi, M2, and M12 approximate Ai, A2, and ^12 respectively. Since 
these matrices are block tridiagonal, the procedure described in the preced­
ing Section is appropriate. 
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7.9 Triangular recursion schemes 

In this Chapter, we saw several examples of a triangular recursion scheme. 
In numerical analysis, such schemes are not uncommon. They arise, for 
example, in interpolation (the Neville-Aitken scheme), divided differences, 
Romberg method, best approximation, Bernstein polynomials, and splines. 
We will now discuss them in their full generality, beginning by the theory 
and, then, giving some examples. Let us mention that a theory of extrap­
olation functionals leading to some of the results given below was propose 
by Schneider [400]. For more details, see [94, 450]. 

We first consider the sequence transformation 

n-{-k 

r f U ^ 4 " ' ^ ) 5 i , k,n = 0,1,... (7.9.15) 
i=n 

where the Si are given numbers, vectors or matrices and the a^'^ are 
numbers. On the other hand, we consider the triangular recursion scheme 

j.(n) ^ x^n)r^(n)^ _^ 4 " ^ ^ ^ " ! ' ^ A: = 1, 2 , . . . ; n - 0 , 1 , . . . (7.9.16) 

with T^""^ =Sn. 
A triangular recursion scheme (7.9.16) can always be interpreted as 

a succession of sequence transformations of the form (7.9.15) where the 
coefficients â "̂ ' are given by 

(n,n) _ ^{n) (n,n) 
% - \ ^k-1 

«fe = K %-i+n H-i ^ ^ = r ^ + l , . . . , r ^ + A ; - l 
(n,n-\-k) (n) (n-{-l,n-\-k) 

% = f'k %-l 

with GQ '""̂  = 1. If, for all values of k and n, Â ^ + fi^^^ = jk then 

^ '' 1 1, fc = 0 

Conversely, if the sum of the coefficients cij^ for i = n to n + A: is inde­

pendent of n, so is the sum Â ^̂  + ir^\ 

Now, let Z — {ZQ, 2:1,...} where the Zi are distinct real points and let 
E be the set of functions a defined on a certain subset of Z. The linear 
functional on E 

.̂̂ "̂ ('̂ ) = E4"'V(..) 
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is called the reference functional of the transformation (7.9.15) (or of the 

recursion (7.9.16)). Setting Si = a{zi), we obtain Tj^''\a) = T^''\ 

We will make use of the condensed notation 

/ fo{zo) '•' fo(zk) \ 

det ( -̂ ^ ^' " ' ^ M = det : : . (7.9.17) 
\ Zo Zi -•• Zk J I • • I 

V fk{zo) ••• fk{zk) / 

Assume that there exists a (/c + 1) dimensional subspace E^ — 
Span(cro,..., CFk) of E such that 

\ Zji ZYI-\.\ • • ' T̂̂ -f-Zc y 

and that 

where all numbers u^ are different from zero, then every linear functional 
C of the form 

i=n 

which satisfies (7.9.18) coincides with ^ • Moreover the transformation 
(7.9.15) has the representation 

d e t ' " ""' ••• "^ 

detf ^° cTi .. . a, \ 
\ Zji ^ n + l * • • Zn-{-k J 

Dividing the numerator and the denominator by 

det . 

and assuming that these determinants are different from zero for all k and n, 
shows that T^^\G)/uo^^^ can be expressed as a ratio of Schur complements. 
Moreover, using the quotient property (7.0.1) or, equivalently, Sylvester 
identity (7.0.2), we obtain the recursive scheme, for /c = 1, 2 , . . . and n — 
0 , 1 , . . . , 
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with TQ̂ ""̂  = a{zn). This scheme has the form (7.9.16) and (7.9.20) gives the 
expressions of Â ^̂  and Â^̂  . Moreover, a necessary and sufficient condition 
that, for all n, Tj^'/ujj^^ = 5 is that, for all n, Sn = SaQ{zn) + 010-1(2:̂ ) 4-
• • • + akCFki^n)- It can be shown that T^^\a) can also be represented as 
a complex contour integral. The scheme (7.9.20) is a generalization of the 
^'-algorithm which is recovered by setting E)^^ — Tj^^\a)/Tj^^\ao) and 
9k^i ~ ^k \^i)/'^k i^o)- As in the E-algorithm 7^^^ can be expressed 

in terms of 'T̂  , . . . , Tj^ ^ by a formula similar to (7.4.6). A formula of 
the Nuttall's type as (7.4.7) also holds. 

Of course, for a practical application, the main problem is to find the 
functions cr̂ . They are determined by the conditions 

r^W(ao) = 4 " ^ and T^^\ai) = 0, i - l , . . . , A : . 

These conditions lead to a (usually) nonlinear difference equations of order 
k with nonconstant coefficients which is difficult to solve. However, since 
the functions cr̂  are independent of k, only one new function has to be 
determined at each step of the algorithm. 

Let us now discuss some applications of this theory. As seen above, 
formal orthogonal polynomials enter into this framework and thus Pade 
approximation, extrapolation methods, and Krylov subspace methods. In 
particular, many extrapolation algorithms for accelerating scalar and vector 
sequences have the form of (7.9.20); see [459, 458]. Some of these algorithms 
are related to continued fractions. 

In what follows, some usual notations have been changed to be consis­
tent with the preceding ones. 

The first application concerns interpolation. Let go^gi,... be a set of 
functions such that, for any set of distinct points Z and any A:, the de­
terminants (7.9.17) are different from zero. We consider the interpolation 
problem which consists in constructing Pj^\z) — aogo{z) 4- h akgk{z) 

satisfying Pj^\zi) = f{zi) for i = n , . . . ,n -h /c. Obviously, such a func­
tion P^^^ can be written as a ratio of determinants and as a ratio of Schur 
complements. As in the case of the ^-algorithm, applying the quotient 
property (7.0.1), or Sylvester identity (7.0.2), to the numerators and the 
denominators leads to the following recursive rule, due to Miihlbach [326] 
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9k~i,k\^) ~ 9k-i,k\^) 
( n + l ) / \ _ (n) / N 

9k-i,ky ) 9k-i,k\^) 

with 

PtHz) = nZn)^^ and g(^)iz)^g,iz^)I^ g,iz). 
goKZn) 90[Xn) 

Polynomial interpolation corresponds to the choice gi{z) = z'^. In this 
case, the second rule provides g^Jiz) — Zn-'-Zn+k-i and the first one 
reduces to the classical Neville-Aitken scheme. The general interpolation 
problem, as described in [143], also fits into this framework. It is connected 
to projection and biorthogonality [74]. 

Interpolation is related to divided differences. Let us only discuss such 
a connection in the polynomial case. Divided differences are recursively 
defined by the scheme 

4") = ^ -̂̂  _ ' - \ fc = l,2,...;n = 0,l,... 
Zn-\-k Zji 

with DQ = f{zn) for n = 0,1, This scheme has the form (7.9.16) and 

it corresponds to the reference functional defined by Tj^^^ (a) := 1 if cr = z^ 
and 0 if cr is a polynomial of degree at most k — 1. So, the representation 
(7.9.19) holds with ai == z*~^ for i = 1,.. . ,/;: and ao = z^. The general 
interpolation problem can be treated similarly, see [74]. 

Our second application deals with jB-splines. To simplify, we restrict 
ourselves to the equidistant case and take, without any loss of generality, 
Xn = n. 5-splines are defined by the recursive scheme 

B^^\x) = {x-n)B^^]^{x) + {n+k-x)B^^_\^\x), A: = 1, 2 , . . . ; n - 0 , 1 , . . . 

with 

Br(x) = ,x-„,;. = { »;_„,.. If I 
We have ai(z) = {z — x)"'^ and the corresponding reference functional 

satisfies 
^in), ._( k\, i = 0, 
^k {<^r)-\ 0, i = l,...,k. 
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Moreover, from the theory of triangular recursion schemes, we obtain 

det a a\ • • • (7/c 

det (70 cTi • • • (yk 

n n 4-1 • • • n-\- k 

with cr(z) = (2: — x);f;^ 

Similar results hold for Chebyshevian 5-splines [293]. 

Let us now consider the Bernstein polynomials defined by 

^ ^ ^ n!(A:-n)! ^ ^ 

on [0,1] and 0 elsewhere. We set PJ^^^ = 0 for n < 0 ov n > k. These 
polynomials satisfy the recurrence 

p(^\x) - (1 - x)P^'l\{x) + xPi:!t '^(^) ' fc - 1, 2 , . . . ; n = 0 , 1 , . . . 

with Po^° (̂̂ ) = 1 and Po '̂'̂ (x) = 0 forn > 0. The coefficients 4""''^ of the 
reference functional are given in [94] where the case of Bernstein polyno­
mials with noninteger exponents is also treated. 

Other topics connected to splines enter into the framework of triangular 
recursion schemes. Let us mention the algorithms of de Casteljau and de 
Boor [163] and blossoming [303]. In particular, de Casteljau's algorithm 
can be interpreted as an extrapolation method [110]. See also [35]. 

Another application concerns the problem of best uniform approxima­
tion by functions from the Haar subspace I4 ~ Span((Jo,... ,(JA;-I) C 

C[a^b]. We set Mk^n — {-̂ n̂, • • • 5 ^n+/c} where a < Z{) < z\ < - - - < h. 
We consider the linear functional D^' on C\a^h\ defined by 

n-{-k 

^t\^) = ^^Ciaizi), 
i=n 

where the coefficients c ,̂ which depend on n and /c, are such that c^ > 0, 
Q 7̂  0 for i = n , . . . , n H- A:, sgn Q = (—1)*"^ and satisfy the conditions 

n+k 

J2^c,\ = 1, 
i=n 
n+k 

^CiGj{Zi) = 0, j = 0, . . . , /C - 1. 
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The existence and uniqueness of such a functional is well known and it 
holds 

l 4 " ) ( a ) | = inf max Hx) - fix)\. 
feVk xeMk.,r,. 

By using Gaussian elimination for solving the system of linear equations 

k-i 

i=0 

Meinardus and Taylor [305] proved that the functionals C^^^ can be recur­
sively computed by the following scheme 

^ri'^) = 4-T'(^fc)-4-\K) 
with C^ia) — a{zn), n = 0 , 1 , . . . This scheme is a particular case of 
(7.9.20). It is related to generalized divided differences and, thus, to Schur 
complements. 

7.10 Linear control 

Although it is not the main topic of this Chapter, we will say a few words 
about linear control theory and related subjects since Schur complements 
are often involved in its computational aspects. Consult [79]. 

A system is an interconnected set of devices which has to provide a de­
sired function. It has input and output variables. If its behavior changes 
over time, we speak of a dynamical system. The input variables, called the 
control^ influence the output variables which can be measured. Indepen­
dently of the input and output variables, a system may have non-accessible 
internal variables, called state variables. To control a system consists in 
acting on the input variables so that the output variables possess a de­
sired property. A system is governed by a system of ordinary or partial 
differential, functional, functional-differential or integral equations. In this 
Section, we will only be interested by the case where these equations are 
ordinary linear differential equations with constant coefficients 

x\t) = Ax(t)-\~Bu{t), x{to) = xo (7.10.21) 

y{t) = Cx{t) (7.10.22) 

where x eW,u eW^.y e W and A e R^^'",5 G M^><^,C G W"". 
Usually, in practice, m < n and p < n. The integer n is called the dimension 
of the system and the variable t is the time. 
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The state-space approach consists of studying the differential equations 
(7.10.21-7.10.22) in the time domain. The control problem consists of act­
ing on the input vector u{t) so that the output vector y{t) has a desirable 
time trajectory. Modifying the input u{t) according to the output y{t) 
which is observed or to the state vector x{t) is called feedback. 

The frequency domain approach consists of an equivalent representation 
of the state-space system. Assuming that x(0) = 0 (which does not restrict 
the generality since the differential system is autonomous) and taking the 
Laplace transform of (7.10.21) gives 

sx{s) = Ax{s) 4- Bu{s) 

that is 
x{s)=^{sI-A)-^Bu{s). 

Taking the Laplace transform of (7.10.22) and using the preceding expres­
sion of X yields 

y{s) = Cx{s) = C{sl - A)-^Bu{s) 
= G{s)u{s) 

G{s) = C{sI-A)-^B. 
with 

It holds 

^ oo 

G{s) = C{sI-A)-^B=-YCiS-\ with d^CA'BeW'^. 

The matrix G, called the transfer function matrix oi the system (7.10.21-
7.10.22), has dimension p x m and it relates the Laplace transform of the 
output vector to that of the input vector in the frequency domain. Clearly, 
G can be interpreted as a Schur complement. 

In linear control theory, many problems are related to the properties 
of the transfer function matrix and its approximation: realization, model 
reduction, stability analysis, poles and zeros, decoupling, and state estima­
tion. Some of them involve the singular value decomposition (SVD) of a 
matrix which can also be interpreted as a Schur complement and Krylov 
subspace techniques as well. 
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Notation 

R the real numbers 
R^ column vectors of n real components 
C the complex numbers 
C^ column vectors of n complex components 
E"^^"" mx n real matrices 
C"^^"" m X n complex matrices 
Hn n X n Hermitian matrices 
TP totally positive matrices 
dim V dimension of vector space V 
{u, v) inner product of vectors u and v 
a^ complement of index set a in N = {1, 2 , . . . , n} , i.e., N \a 
\a\ cardinality of index set a 
\\x\\ norm or length of vector x 

\\x\\p Ip norm of vector x, i.e., \\x\\ip = ( Z l i k i D ^ 
In identity matrix of order n 
I identity matrix when the order is implicit in the context 
A = (aij) matrix A with entries aij 
rank (A) rank of matrix A 
tr A trace of matrix A 
det A determinant of matrix A 
A~^ inverse of matrix A 
A^ transpose of matrix A 
A conjugate of matrix A 

—T 

A* conjugate transpose of matrix A^ i.e.. A* = A 
or adjoint of operator A 

\A\ absolute value of matrix A, that is, \A\ = {A*Ay^'^ 
A^''^ square root of positive semidefinite A 
A~ a generalized inverse of matrix A^ i.e., AA~A — A 
J^ Moore-Penrose generalized inverse of matrix A 
adj A classical adjoint matrix of A 
A\a^0\ submatrix of matrix A determined by index sets a,/3 
A{oL^P) submatrix of matrix A determined by index sets 0L^^f5^ 
A\a\ principal submatrix of matrix A indexed by a 
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A{a) 
A/A[a,l3\ 
A/a or yl/yl[Q] 
M/A 
n{A) 
C{A) 
M{A) 
Ker(^) or ker{A) 
lm{A) or r&n{A) 
\n{A) 

or Xi{A) 
O^max(A) o r (Jl{A) 

A m i n ( ^ ) o r An ( A ) 

d{A) 
X{A) 
cj{A) 
s{A) 
A>{) 
A>0 
A>:0 
A>B 
diag(Ai,A2,. ..,Xn) 
diagyl 
A^B 
A:B 
AoB 
A<S>B 
n 

PM 

AAB 
A/M^ 
[M]A 

principal submatrix of matrix A indexed by a^ 
Schur complement of ^[a,/3] in A 
Schur complement of A[a] in A 
Schur complement of submatrix A in partitioned matrix M 
row space of matrix A 
column space of matrix A 
null of A, i.e., Af{A) = {x : Ax =: 0} 
kernel of A, that is, {x : Ax = 0} 
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inertia of matrix A, i.e., In(74) — {p{A)^ Q{^)^ ^{^)) 
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vector of the main diagonal entries of matrix A 
vector of the eigenvalues of matrix A 
vector of the singular values of matrix A 
spectrum of A, i.e., the set of all eigenvalues of A 
A is positive semidefinite 
A is positive definite 
A is nonnegative entrywise; that IS, Ciij > 0 
A — Bis positive semidefinite 
diagonal matrix with Ai, A2,. . . , An on the main diagonal 
diagonal matrix formed by the main diagonal entries of A 
direct sum of vector spaces or matrices A and B 
parallel sum of A and B 
Hadamard product of matrices A and B 
Kronecker product of matrices A and B 
Hilbert space 
orthocomplement of M. 
orthoprojection to the space A4 
Tan{A) n ran{B) is the empty set 
Schur complement 
shorted operator, Schur complement 



Index 

a hereditary class, 111 
a SC-closed class, 111 
*-congruent, 17 

Abelin, Susan, 9 
Abelin-Schur, Hilda, 8, 9 
adjacent families, 229 
aeronautical engineers, 12 
Aitken 1937 [3], 10 
Aitken 1939 [4], 12 
Aitken block-diagonalization 

formula, 2, 14 
Aitken, Alexander Craig 

(1895-1967), 10 
Albert nonnegative definiteness 

conditions, 169 
Albert positive definiteness 

conditions, 170 
astronomy, spherical, 11 

backward identity, 117 
Banachiewicz 1937 [29], 10 
Banachiewicz inversion formula, 1, 

10, 11 
Banachiewicz, Tadeusz 

(1882-1954), 10 
best linear predictor, 190 
best prediction, 191 
biconjugate gradient algorithm, 243 
black letter script, 10 
block bordering method, 239 
block descent method, 246 
block design, 213 
block projection method, 243 
Bodewig, Ewald Konrad, 11 
Boltz 1923 [m], 10 

Boltz, Hans (1883-1947), 1, 11 
Brauer, Alfred Theodor 

(1894-1985), 2, 8, 16 

canonical efficiency factors, 218 
capacitance matrix, 13 
Cassini class, 126 
Cauchy eigenvalue interlacing 

theorem, 47 
Cauchy-Schwarz inequality, 87 
Cholesky factorization, 24, 96 
Collar, Arthur Roderick 

(1908-1986), 12 
Compact Recursive Projection 

Algorithm (CRPA), 241 
conjugate gradient algorithm, 243 
continued fraction, 232 
control system, 257 
convergent, 232 
correlation coefficient, 188, 189 
Courland, 6 
Crabtree-Haynsworth quotient 

property, 171 
Cracovians, 11 
Cramer-Rao inequality, 172, 174 
Crelle's Journal^ 4 
Crelle, August Leopold 

(1780-1855), 4 

Davis, Philip J. (b. 1923), 16 
deletion statistics, 211 
designant, 237 
diagonal dominance class, 123 
diagonally derived class, 114 
dimension of a system, 257 
domain decomposition method, 250 



292 T H E SCHUR COMPLEMENT AND ITS APPLICATIONS 

dominance based class, 123 
Duncan inversion formula, 2, 12, 13 
Duncan, William Jolly 

(1894-1960), 2, 12, 13 
Duncan-Guttman inverse, 13 
dynamical system, 257 

eigenvalue inequalities, 9 
embedding, 85 
equireplicate design, 220 
Erdos, Paul (1913-1996), 9 
estimator, 191 

feedback of a system, 258 
field of values, 122 
Fischer's Inequality, 34 
Fisher information, 172 
Fisher information matrix, 172 
formal orthogonal polynomial, 228 
formula 

Aitken block-diagonalization, 
164 

Aitken block-diagonalization 
generalized, 168 

Banachiewicz inversion, 165 
Bartlett inversion, 166 
Duncan inversion, 165 
Guttman rank additivity, 164 
Haynsworth inertia additivity, 

168 
Hemes inversion, 165 
inverse matrix modification, 

165 
Schur determinant, 164 
Sherman-Morrison, 167 
Sherman-Morrison inversion, 

167 
Sherman-Morrison rank-one 

update, 167 
Sherman-Morrison-Woodbury 

inversion, 167 
Woodbury, 166 
Woodbury inversion, 165 

formula of Schur, 19 
Frechet's Inequality, 172 

Frechet-Cramer-Rao inequality, 
172 

Fraktur script, 10 
Frazer, Robert Alexander 

(1891-1959), 2, 12 
Frisch-Waugh-Lovell Theorem, 

207, 209 
Frobenius, Ferdinand Georg 

(1849-1917), 6, 8, 11 

generalized inverse, 41 
generalized normal equations, 193 
generalized quotient property, 171 
generalized Schur complement, 168 
geodesy, 11 
geodetic matrix, 11 
German, styles of writing, 10 
Gothic script, 10 
group representations, 7 
group theory, 7 
Guttman rank additivity formula, 

2, 14 
Guttman, Louis (1916-1987), 14 

Hadamard product, 37 
Hadamard product of matrices, 9 
Hadamard's determinant theorem, 

189 
Hadamard's Inequality, 35, 189 
Hausdorff, Fehx (1868-1942), 7 
Haynsworth inertia additivity 

formula, 2, 15 
Haynsworth, Emilie Virginia 

(1916-1985), 1, 15, 16 
Haynsworth, Emilie, portrait, 16 
Hemes inversion formula, 13 
Henderson's mixed model 

equations, 212 
Herglotz, Gustav (1881-1953), 5 
Hermitian part, 122 

inertia, 27 
inertia triple, 15, 167 
infimum, 157 
information inequality, 172 
inner product, 89 



INDEX 293 

input system, 257 
integral operators, 9 
inverse matrix modification 

formula, 13 
inverse-closed class, 121 

Jacobi's identity. 111 

kernel, 138, 234 
Krylov subspace, 241 
Krylov subspace method, 241 
Kurland, 6 
Ky Fan, 92 
Ky Fan /c-norm, 92 

Lowner partial order, 17 
Lanczos method, 241 
Laplace, Pierre Simon Marquis de 

(1749-1827), 1, 3 
Law of Eponymy, Stigler's, 169 
Ledermann, Walter (b. 1911), 7, 9 
Libau, 6 
Liebian function, 105 
linear algebra, Schur methods in, 9 
Lohan 1933 [290], 10 
Lohan, Ralf, 1, 12 

majorization, 85 
Markov estimator, 173 
matrix 

Lk-, 125 
H - , 124 
M - , 125 
P - , 121 
Z - , 125 
P N - , 121 
/c,/-banded, 120 
C-, 214 
admittance, 214 
bisymmetric, 117 
Broyden, 221 
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