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The Internal Model Principle of Control 
Theory* 

B. A. F R A N C I S t  and W. M. WONHAM~ 

In multivariable servomechanisms designed to accommodate parameter uncer- 
tainty, the controller must have special qualitative structural features which may 
be derived for linear and weakly nonlinear systems. 

Summary--The classical regulator problem is posed in the 
context of linear, time-invarinnt, finlte.dimensional systems 
with deterministic disturbance and reference sillnals. Control 
nction is Imurated by a compensator which is required to 
provide closed loop stability and output regulation in the face 
of small variations in certain system parm~tzTs. It is shown, 

the pometric approach, that such a stngttwally stable 
synthesis must u "td/ze feedback of the regulated variable, and 
incorporate in the feedlmck path a suitably reduplicated 
model of the dynamic structure of the distmbuce and 
reference sismis. The necessity of this control structure 
constitutes the Internal Model Principle. It is shown that, in 
the frequency domain, the purpose of the internal model is to 
supply closed loop transmission zeros which cancel the 
unstable poles of the disturbance and reference sijnals. 
Finally, the Internal Model Principle is extended to weakly 
nonlinear systems subjected to step d i s ~ c e s  and 
reference sismds. 

I. INTRODUCTION 

A CLASSICAL problem of  control  theory is that of 
synthesizing controllers which regulate systems 
despite uncertainty in plant and controller 
parameters.  In general terms, we are concerned 
in this paper with the regulator problem illus- 
trated schematically in Fig. 1. A plant subjected 
to external  disturbances is controlled by a 
compensa tor  processing certain plant measure-  
ments,  a re ference  command signal r, and 
possibly the feedforward  disturbance signal. 

The  purpose of  the compensator  is twofold. 
First, it is to provide closed loop stability. 
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Second,  it is to regulate a variable z which is a 
given function of  the plant output  c and the 
reference  signal r ;  typically z may  be the 
tracking error  r - c. A plant-compensator  combi- 
nation with these two properties is termed a 
synthesis, and a synthesis is called structurally 
stable if these two propert ies are preserved when 
certain system parameters  are perturbed. 

In the context  of  linear multivariable systems, 
synthesis procedures  for  designing controllers 
providing structural stability have been given by 
Davison[2], [3], Staats and Pearson[4],  and 
Wonham[l ] .  In [5] we considered the converse 
problem by asking: What controller structure is 
necessary for  structural stability? The results of  
[5] were interpreted in [6] in terms of  closed loop 
transmission zeros. The purpose of  this paper is 
to summarize and amplify the results of  [5] and 
[6], and then to extend some of  them to weakly 
nonlinear systems with constant  reference and 
disturbance signals. 

Notation 
R (resp. C) denotes the field of  real (resp. 

complex) numbers.  C-  (resp. C ÷) is the open 
left-half (resp. closed right-half) complex plane. 
H'~ is the Euclidean norm on R'. 

If  A:  ~ - , ~ '  is a I/near map and ~" C ~' a 
subspace, Im A (resp. Ker  A )  is the image (resp. 
kernel) of  A, ~ ( A )  is its complex spectrum, d ( Y )  
is the dimension of  Y, and (A IT') is the subspace 

~A"ff. If C: ~F-,~J is a map, C I ~  is the 

restriction of  C to ~. 
Le t  L be the space of  linear maps R" ~ R "  

endowed with its usual norm topology. If f :  
I g ' ~ R =  is a differentiable function,  let f ' :  
R ' ~  L denote  the differential of  f :  f ' (x)  is 
represented,  in the standard basis, by the 
Jacobian matrix of  f at x E R'.  We say f is of 
class C t if f '  is continuous. 
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FIG. I. The system considered in the regulator problem. 
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If n ~ 1 is an integer, n is the set {1 . . . . .  n}. 
Equality by definition is denoted by :=. 

2. THE INTERNAL MODEL PRINCIPLE FOR 
LINEAR MULTIVARIABLE SYSTEMS 

We begin by posing the above classical 
regulator problem in the context of linear, 
time-invariant, finite-dimensional, multivariable 
systems with deterministic exogenous signals. 
Consider the system described by the equations 

Yc, = A , x ,  + A3xz + B ,u  (la) 

~2 = A2x2 (lb) 

z = D,x,  + D2x2  ( I t )  

y = Cixl + C2x2 (ld) 

~¢ = A~c  + Bey (2a) 

u = F..xc + Fy. (2b) 

FIG. 2. Overall system signal flow graph. 

and the closed loop state vector is 

[ x ' ]  E ~t.. 
XL : = Xc 

By combining (la),  (Id), and (2), and by defining 

AL---[  A~+B'FC'B~C, B,F.],A~ J B=[A'+B*FC2]'L BoCa J 

we see that the closed loop is described by 

~. = AL.~. + BLx2. (4) 

In addition define 

DL = [D,  O] : ~ , ( ~  -~Z 

Here x, is the state vector of the plant and u is 
the vector of control inputs, x, represents both 
disturbance and reference signals, z is the output 
to he regulated, y the output available for 
measurement, and x, is the state vector of the 
compensator. Equation (lb) defines the class of 
exogenous signals to he processed (e.g. steps, 
ramps), and equation (2) describes the operation 
of the compensator. 

The vectors u, x ,  x2, x~, y, z belong to fixed 
real finite-dimensional linear spaces 

q/, if,, if,, ~'., ~,  ff  (3) 

respectively. The time-invariant linear maps A,, 
A, . . . .  in (I) and (2) are defined on the 
appropriate spaces. The vector spaces in (3) are 
assumed to have fixed bases. The maps A ,  
As . . . .  then have matrix representations referred 
to these bases; these matrices will be denoted by 
the same letter as the corresponding maps. The 
signal flow graph of the system is shown in Fig. 2. 

The state space of the closed loop is 

~'L := ~', $ ~',, 

so that the output to be regulated is 

z = DLXL + D2x2. (5) 

The composite system is now described by (Ib), 
(4), and (5). 

As stated earlier, the purpose of the compen- 
sator is to stabilize the closed loop and regulate 
the output. Closed loop stability means that AL 
is stable; that is 

c,(AL) c C-. 

Output regulation means that z ( t ) - ,  0 as t -* 
for all xL (0) and x2(0). Without loss of  generality 
we make the following standing assumptions: 

~,(A~) c c ÷ 

Im C ~ + I m  C2= ~,  

Im  D ,  = ~. 

See [5] for justification of these assumptions. 
Now let ~' be a data point in R" ; that is, ~' is a 

list of n real numbers selected from among the 
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elements of the matrices in (1) and (2). For 
example • :ffi(A,,B,) is a data point in R" 
where n := d(~,)a+d(~,)×d(O~). Let II be a 
property of points in R', and assign to R" the 
usual topology. Then we say that H is stable at 
if rl holds throughout some open neighborhood 
(nbhd) of ~,  we say that the synthesis is 
structurally stable at g~. If A,  is stable and its 
elements are perturbed a little, then of course the 
resulting matrix is still stable: closed loop 
stability is a stable property. Hence structural 
stability at ~ is equivalent to the two conditions: 

(i) closed loop stability holds at 
(ii) output regulation is a property which is 

stable at ~. 
As stated in the Introduction, our object is to 

describe the controller structure which is neces- 
sary for structural stability. To this end, we 
introduce the concepts readability and internal 
model. 

We say that z is readable from y if there exists 
a map Q: ~ --, ~ such that z = Qy, which is to 
say 

• ~ := ~'~/gt. incorporates an internal model of 
A2. 

Now assume that, in addition to (i), 

(ii)KerF¢ n K e r ( A , - A ) = 0 ,  A Ecr(A,). 

Then we say that the internal model is observable 
by u. In view of Lemma 8.1 of [1], (ii) says that 
the A=-modes of A~ are observable by F¢. 

Finally, suppose z is readable from y and (i) 
holds. Adopt the representations in (8), and let 
Pc :~c --* ~ be the canonical projection. We say 
that the internal model is controllable by z if  

(iii) Im B~w C ..,~ 
and 

(iv) ~,  = Im (A~ - A ) + Im J~,, A E ¢(A2) 

where J~, := P,B,,. Condition (iv) says that the 
At---modes of ,A., are controllable by J~,. 

To see what these concepts mean in terms of 
signal flow, assume (i) holds, and write 

D, = QC,, D2 = QC2.  

If this is the case, then ~ can be embedded in ~J: 
write 

9V = l t ' ~ '  (6) 

for  a suitable linear space I¢'. Then 

C, LDIJ D2 (7) 

for suitable maps E, : ~, --, I¢" (i = 1, 2). Defining 
w = E,x, + E=x2, we have 

Finally, corresponding to (6) the maps F and Be 
have the representations 

F = [ F w  F,], B, =[B~, B,,]. (8) 

for any complement ~2.  Corresponding to this 
decomposition write 

[AO'I A*'I. rn..,l A, = A,=J B~ = (9a) LB~,~J 

LB..zj F~ = [F.,  F,2]. (9b) 

Then (i) implies that A~= incorporates an internal 
model of A=, (iii) is equivalent to B,,= = 0, and 
(iv) is equivalent to 

• , 2 = I m ( A ~ = - A ) + I m B , 2 ,  A E or(A=). 

Applying (7)-(9) to Fig. 2 yields Fig. 3. 
Briefly, the main result of [5] is that a synthesis 

is structurally stable only if z is readable from y, 
and the compensator incorporates an internal 
model of A2 which is controllable by z and 
observable by u. This result is established by the 
following two propositions and two theorems. 

Define z, := D,xl and y, := C,x,. 

We say that a map A : ~" ~ ~ incorporates an 
internal model of A, if the minimal polynomial 
(m.p.) of A2 divides at least d(Z)  invariant 
factors (i.f.) of A. Thus an internal model is an 
C-fold reduplication in A of the maximal cyclic 
component of A2, where / ~ d(Z)  = the number 
of independent outputs to be regulated. 

To say that the compensator incorporates an 
internal model of  A2 means the following: 

(i) There is an A,-invariant subspace 9t, C ~,  
such that the map ,A~ induced by A~ in 

Proposition 1 
The synthesis is structurally stable at A3 only if 

z, is readable from y,. (Proof: See [5], Proposi- 
tion 2). Considering structural stability at A3, we 
may assume, by Proposition 1, that there exists 
Q: ~ - , ~  such that D , =  QC,. Hence d ( ~ ) ; ,  
d(~) ,  and so ~ can be embedded in ~J: write 

= ~ , ~ '  

for any complement ~, .  
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l~a. 3. The camnk~ tynthem: z is readable from y, the 
com~nsator iacetTmates an intental model of A, which is 

comtrehble by z and observable by L 

Theorem I (Necessity of  readability) 
The synthesis is structurally stable at (A3, 

Bc ISt) only if z is readable from y. (Proof: See [5], 
Theorem 1). We suppose now that z is readable 
from y, and hence adopt the representations (7) 
and (8). For the main result on the internal model 
we shall assume that 

Im B,,, C (A~ ]B~E, Ker DI). (10) 

Intuitively, this technical condition says that 
information sent from w and processed by the 
compensator pertains only to the plant and is 
unavailable from z. That (10) is necessary for 
structural stability is established by: 

Proposition 2 
Assume that z is readable from y. I f  (10) does 

not hold then the synthesis is not structurally 
stable at (A3, B~,). (Proof: See [5], Proposition 
3). 

Theorem 2 (Necessity of  the internal model) 
Suppose z is readable from y and (10) ho/ds. 

The synthesis is structurally stable at A ,  only if 
the compensator incorporates an internal model 
of  A= which is controllable by z and observable 
by u.  (Proof: See [5], Theorem 2). In drawing 
conclusions from Theorem 2, it is important to 
note that if some of the elements of A3 are not 
subject to variation then it m y  be that a full 
internal model is not required: a smaller class of 
parameter variations in general requires less 
reduplication in the internal model. 

Intuitively, on the basis of information about z, 
the internal model'injects into the closed loop 
signals which asymptotically counterbalance the 
exogenous signals. We remark that plausibility 
arguments in support of an 'internal model' idea 

have been presented by Kelley[7] and Conant 
and Ashby[8]. In addition internal models have 
played a r01e in theories of visual perception 
(Gregory [9]) and brain functioning (Oatley [10]). 

We can see the function of the internal model 
more concretely in the frequency domain. For 
this we assume for simplicity that y ~ z; that is 

~/=$~, C ,=D, ,  C==D2. 

Let OL(s) be the closed loop transfer matrix, 

OL(S) := Dc(s - AL)-IBL +D2, 

and let its McMillan form be 

0 

o 

where r : :  rank Go, ~ ( s )  and h,(s) are corn- 
prime polynomials (i E r), ~ divides 44+i, and 
~,+, divides ~,. 

The complex roots, countin8 multiplicities, of 
the polynomials ~ ( s )  (i ~ r) are the closed loop 
transmission zeros. The roots of the m.p. of A2 
are the poles of the exogenous signal. The 
purpose of the internal model is to supply right 
half-plane closed loop transmission zeros to 
cancel the unstable poles of the exogenous 
signal. This fact is contained in: 

Theorem 3 
Assume that y = z and the closed loop is 

stable, and let ~ = (A,, A3, BI). The following are 
equivalent. (a) Output regulation is a property 
which is stable at ~; (b) Ac incorporates an 
internal model of  A2; (c) The m.p. of  A ,  divides h, 
(aft i G r), and this property is stable at ~. 
(Proof: See [6], Theorem 2.) 

Our major conclusion of this section can be 
summarized as: The Internal Model Principle: A 
relpdator synthesis is structurally stable only if 
the controller utilizes feedback of the regulated 
variable, and incorporates in the feedback path a 
suitably reduplicated model of the dynamic 
strncmre of the exogenous signals which the 
reilulator is required to process. 

3. ON THE SUFFICIENCY OF READABILITY 
AND TIIE ~ A L  MODEL 

Theorem 2 conside~d parameter vm'lations 
only in A,, but in fact a synthesis in which the 
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compensator incorporates an internal model of 
A2 can accommodate a much larger class of 
parameter variations. We have: 

Theorem 4 
Suppose z is readable from y, the closed loop is 

stable, and the compensator incorporates an 
internal model of  A2 which is controllable by z 
and observable by u. Then the synthesis is 
structurally stable at the data point. 

= (A,,  A,,  B,, F~,, F~=, F.,, F., A~,, Ac,, B~,,,, 
B.,, B.O. 

/ I 
s T I 

• ! .... 
I s÷l  - I  

o U XI 

I 3 

02 
0, , , 

S ÷ q l  S ' t '4~ 

(Proof: See Appendix). 
The only part of the compensator not included 

in the data point ~ is A~2, that part containing the 
internal model of As. We shall now discuss what 
happens when A~= is allowed to vary. 

Suppose first that the exogenous signals are 
step functions of time; that is, assume A= = 0. 
From (lb), (4), and (5) the system equations are 

~L = AcxL + B~x= (11a) 

~2 = 0 (1 lb) 

z=  D~L + + D=x=. (11c) 

Since A, = 0, Ac= incorporates an internal model 
of A2 if and only if 

d(Ker A=2) ~ d(Z) .  (12) 

Under the hypotheses of Theorem 4, AL is 
stable, and the steady state solution of (11) is 

z.  := lim z(t) = (-DcAL-'BL + D=)xs(0). 
t--~B 

(13) 

For the nominal data and any x=(0), z.  = 0; i.e. 
output regulation holds. 

Now fix xs(0) # 0 and a nbhd of A== throughout 
which AL remains stable. From (13) we see that, 
for Ao in this nbhd, z. is a rational function of 
the elements of Ac=. Thus, defined on this nbhd, 
z .  is a continuous function of the elements of A,=. 
Hence if A,= is perturbed slightly so that (12) no 
longer holds, then (generally) z .  is perturbed 
slightly from 0; that is, there results a small steady 
state offset error. 

We next consider the case, illustrated by the 
following example, where the exogenous signals 
are not bounded time functions. 

Fu3. 4. I l lustrative example .  

ramp reference signal. The system equations are 

Xt = - - X t  + M 

,~ ,=0 

y =  Z ---- ~ / t - -  X, 

O, = - e , 8 ,  + 8= 

O= = - ( = 8 2  + z 

u =  O, + 30= .  

Here 

[~:]  = r°, l ,  A,:= [%(' 1 ] x2= , x,~ Lo~J - (2 "  

For (t = e2 -- 0 AL is stable and A( incorporates 
an internal model of 

hence output regulation holds, ff (i = 0 and e= is 
small, then 

z(t)-,es~2(0) as t--,®. 

If e= = 0 and e, is small, then 

( t  
z ( t ) - , 3 e - - ~ ( 0 )  as t - , ® .  

But if (,, (2, and 112(0) are all nonzero, then 

k(t) l-~® as t - , ® .  

Example 
In Fig. 4 is shown a synthesis in which the 

output of a first order plant is required to track a 

It is apparent from these two examples that the 
accuracy of regulation depends on the fidelity of 
the internal model. 
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4. EXTENSION TO WEAKLY NONLINEAR 
SYSTEMS 

In this section we treat the case where the 
plant equation is weakly nonlinear, the exogen- 
ous signals are constant, and y = z. We extend 
Theorems 2 and 4 to this case. 

The plant is assumed to be described by the 
equation 

Yc,=A1x1+f,(x,)+Asx2+B1u, (14) 

where x, E R',, x2 E R "~, and u E R" have the 
same meaning as in Section 2. The function 
f I :R"- - ,R"  is assumed of class C' with f,(x,)= 
o(ItxllD as xl-*0. The real matrices A,, A3, and BI 
are of appropriate dimensions. In writing (14) we 
have in mind the following situation. The plant is 
initially described by the equation 

Yc, = f (xO + Asx: + B ,u  ; (14a) 

then (14) is obtained from (14a) by expanding f in 
a Taylor's series about x, = 0. 

We consider only constant exogenous signals 

~2 = 0. (15) 

The output to be regulated, z ~ R ¢, is given by 

Z =DIxI+D2x2.  (16) 

is asymptotically stable. Recall (see [ 12]) that this 
means that the following two conditions hold. 

(i) For any • > 0 there exists B > 0 such that if 
llx=(O)ll<a and llx,(o)ll<a then llz(t)ll<• 
(t ~>0). 

(ii) There exists b > 0  such that z(t)--*O as 
t --, = whenever IIxL(O)ll < b and IIx=(0)N < b. 
Thus output regulation is a local condition. We 
adopt this definition, of course, so that during the 
time evolution of the system, the linear part of 
the system is dominant. With closed loop 
stability and output regulation as just defined, 
structural stability has the same meaning as in 
Section 2. 
Theorem 5 (Necessity of the internal model). 

Suppose f,  is a C'-function with 

IIx,II -- 0. (19) 

Then the synthesis is structurally stable at A3 
only if A¢ incorporates an internal model of  
A2 = 0 which is controllable by z and observable 
by u. Condition (19) says that near the origin of 
r , ,  IIf(xl)ll is dominated by kllx,II for some k > O. 
This condition holds for example if/1 is derived, 
as described earlier, from Tayior's series expan- 
sion of a sufficiently smooth function/ .  

The proof requires two lemmas. Let S, be the 
open ball in R ' :  

For simplicity we assume a compensator proces- 
sing z directly 

Ycc = A¢xc + B¢z (17a) 

u = F~xc + Fz. (17b) 

s .  : = {x: x n ' ,  Ilxll < e}.  

L em m a  1 

Suppose f: R" --,R" is a function of  class C'  
with 

Here xc E R',. 
Define 

Ix , ]  = [ A , +  BIFDI B,Fc] 
XL == Xc " A L  L B~D, A~ J 

[ A ,  + B , F D , ] ,  
BL = L BeD= J DL = [D, 0] 

Then (14), (16), and (17) become 

Yq. = ALXL + fL(XL) + BLX2 (18a) 

z = Dz~XL + D2x2. (18b) 

Closed loop stability here means, as in Section 
2, that AL is stable; that is, the linear part of the 
closed loop is stable. We revise the definition of 
output regulation to be: the solution z -- 0 of (18) 

lim I[f(x)[I 
Ilxll = 0 ,  (20) 

and A is a stable n × n matrix. Then there exist 
• > 0  and B > 0  such that for each a E S, the 
equation 

Yc = A x  + f ( x  ) + a (21) 

has a constant solution x ( t ;  a ) =  ~(a)  which is 
the unique constant  solution in Sa. Moreover this 
solution is asymptotically stable and ~(0)= O. 
Proof: 

Define g ( x ) = A x + f ( x ) .  Then from (20) 
g(0)=0.  Now by the continuity of f '  (the 
differential of f )  there exists 8, > 0 such that 

g ' ( x ) = A  + f ' ( x ) i s s t a b l e  (x ESa,). (22) 

Thus det g'(0)O0, and so by the Inverse 
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Function Theorem there exist e > 0 and 3 > 0 
such that  the function 

Lebesgue  measure  zero. This contradicts the fact  
that I m f  contains a nonempty  open set. []  

g: S~- ,  S, 

has a differentiable inverse 

Proof  ,9[ Theorem 5 
Notice  that, since A2 = 0, A~ incorporates an 

internal model of A: if and only if 

g - ' : S ,  ~ S~. d(Ker Ac) 1> q. 

Clearly we may assume that  8 ~< 6~. Then for 
each a G S, there is a unique ~ ~ S~ such that 

g(g)  + a = 0. (23) 

Moreover ,  since g ( 0 ) =  0, • = 0 if a = 0. 
Fix a ~ S,. Then ~, defined by (23), is a 

solution to (21) and is the unique constant  
solution in S,. I t  remains to show it is asymptot i -  
cally stable. 

Le t  4~(t) = ~ + ~b(t) be a solution of (21). Then 

Suppose AL is stable and output  regulation holds 
throughout  a nbhd of A3. Applying L e m m a  1 
with A := AL, f := fL, and a := BLx2, we find 
that there exists ~ > 0 such that throughout  a 
nbhd of A~, if IlxL(0)tl < ~ and llx2(0)lt < ~ then in 
(18) x~(t) tends to a constant  and z ( t )  tends to 
zero as t ~ oo. 

Fix x~(0) ¢ 0 with [[x2(0)[[ < ~, and set x~ (0) = 0. 
By taking the limit as t ~ oo in (18) we conclude 
that  throughout  a nbhd of A~ there exists a 
vector  xr such that 

(~= A~b + f (~ b )+  a = g(~b)+ a ;  

SO 

= g($ + 0)  + a. (24) 

By the Mean Value Theorem 

g($  + ~)  = g(X) + g'($)~O + h(~b) 

for  some continuous function h: R " ~ R "  with 

IIh(x)ll_ 
lim - 0 .  

Thus f rom (23) and (24) 

~b = g'($)~b + h (~0). (25) 

Now in view of (22) the zero solution of (25) is 
asymptot ical ly  stable ([12], Theorem 1.1, p. 314). 
Thus $ is asymptot ical ly  stable. [] 

L e m m a  2 
Suppose f: R" ~ R  p is a function of  class C" 

and the interior of  Im f is nonempty. Then n >1 p. 
For the proof  of this l emma we shall need the 
following terminology f rom [13]. A point x ~ R" 
is a critical point of f if f ' ( x ) :  R" ~ R  p is not 
surjective. A critical value of f is a point y E R ~ 
such that y = f ( x )  for  some critical point x. 

Proof  o f  L e m m a  2 
Suppose n < p. Then every  point x E R" is a 

critical point of  f. Thus Im f equals the set of  
critical values of f. By Sard 's  Theorem[13]  the 
set of critical values,  and hence I m f ,  has 

0 = ALXL + fL (XL) + BLx2(O) (26a) 

0 = D~xL + D2x2(0). (26b) 

This is equivalent to 

0 = (A~ + BIFD1)x~ + BlFcxc + f~(xO 
+ (A 3 + B ~FD2)xz(O) 

0 = B~D,xt + Acxc + BcD2x=(O) 

0 = Dlxl + D2x2(O), 

which implies 

0 = A~x~ + BtF~xc + fL(x,)+ A3xz(O) (27a) 

0 = Acxc (27b) 

0 = D,x,  + D2x2(O). (27c) 

Le t  ~ ,  be an arbitrary complement  of Ker  91 
in R% There  is a unique x ,  E ~ ,  such that 
D~x.  + D2x2(O) = 0. Then (27c) is equivalent  to 
the condition that x ~ = x , + g ~  for some 
£t ~ Ker  D~. Hence  (27a) becomes  

-A3x2(O) - A~x~ = A~2~ + B,Fcx~ -b f l (Xl j  q- 3¢1), 
(28) 

where,  f rom (27b), x~ E Ker  A~. Define 

g~: KerD~ O KerA~ ~ R " ,  

g~(~l, xc) = A~Yc, + B~F~x~ + f t(x~ + Y¢~). 

From (28), Im g, contains a nonempty  open set, 
namely 

{-  A3x2(O) - A,x,~: A3 is in a nbhd of A3}. 
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Hence  by Lemma 2 

d(Ker  D, ~ Ker  Ac) ~ n,, 

where XL :ffi lim xL(t) .  Thus in particular 
t ~  

0 = B¢D,xt + Aox¢ + BoD,x=(0), 

which implies that and hence 

d(Ker  A~) ~ q. 0 ffi B~z + A~x .  (30) 

Closed loop stability implies that AL is 
invertible. Hence  in particular 

Ker  (B,F¢) N Ker  A¢ = 0 

where z : = lim z( t ) .  
t - 4m*  

Now closed loop stability implies that, as in 
(29), 

and Im A¢ + Im B~ = R"% 

Im A¢ + Im (B~DI) ffi R" .  

These conditions imply respect ively that 

Ker  F~ N Ker  A¢ = 0 

and 

ImAc + I m B ~  = R ' ¢ ;  (29) 

that is, the internal model is observable by u and 
controllable by z. I-1 

Now assume that A¢ incorporates an internal 
model of  A2 = 0. Decompose  R "¢ as 

where ~ , = l m A ~  and ~ 2  is an arbitrary 
complement.  Corresponding to this decomposi-  
tion write 

Let  P be the data point 

(At ,  A3, BI, F¢, F, A~,, A ~ ,  Bc). 

Theorem 6 
Suppose fl is a C' function satisfying (19). 

Suppose also that the closed loop is stable and 
that A~ incorporates an internal model  o f  A2 = O. 
Then the synthesis is structurally stable at ~ .  

Proof 
Choose a nbhd of  @ throughout  which closed 

loop stability holds, and fix an arbitrary point, 
again denoted by  @, in this nbhd. From Lemm a  1 
there exists e > 0  such that if IIxL(0)ll< • and 
Hxz(0)~ < ! then in (18) xL(t )  tends to a constant  
as t--,  0o. Fix such xL (0), x2(0). Then taking the 
limit as t--,0o in (18a), we find that 

0 = A~xL + fL (xL) + BLx,(O), 

which implies, since Be: R q--,R "~ and 
d(Ker  Ac) ; .  q, 

Im Ac N Im Bc = 0 and Bc is monic .  

Hence  f rom (30) z = 0. O 
The significance of  Theorem 6 is the following: 

If the plant is described by 

Ycl = f ( x , )  + A3x2 + B~u, 

and if the compensator  is designed on the basis 
of a first order  linear approximation of  f and it 
incorporates an internal model,  then, subject  to 
mild smoothness  assumptions on f, the synthesis 
is locally structurally stable for  the nonlinear 
plant. 

5. CONCLUSION 

The regulator problem which we have con- 
sidered is somewhat  idealized: for  example,  we 
have demanded perfec t  asymptot ic  disturbance 
rejection. In practice the regulator problem is 
posed in fuzzy  terms; thus, one may require 
attenuation of disturbances only to a certain 
degree. Nonetheless ,  our  idealization has al- 
lowed a precise formulat ion of the problem 
which in turn has permit ted a rigorous treatment.  
The result is a rational foundat ion for,  and 
qualitative insight into, the practical design of  
multivariabie regulators. 
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APPENDIX: OUTLINE OF PROOF OF THEOREM 4 

A complete proof  of Theorem 4 is given in [11, 
Theorem 6.1]. As this reference  is not widely 
accessible we here present  a sketch of the proof.  

We suppose the hypotheses  of Theorem 4 
hold. Since z is readable f rom y we may adopt 
the representat ions (7), (8) and (9). Correspond- 

= I .,1 Nowby ing to the partition (9) write x~ Lx~2J" 

[ X J ] a n d x ~ t o b e x c 2 i t m a y  redefining x, to be x~ 

readily be seen that we may assume at the outset  
that y = z. With this assumption the appropriate 
data point • is ( A , ,  A3, B , ,  F ,  F. B~). 

Choose a nbhd of ~ small enough so that 
closed loop stability is maintained throughout  
this nbhd, and choose any point (again denoted by  
~ )  in this nbhd. We shall show that output  
regulation holds at this point. 

From (1 b), (4) and (5) the system equations are 

D ,  f D ,  V (33) 

where we have written 

It follows f ro m  (32) that 

or 

B , D j V  + A c W  - W A 2  = B~D2 

B~Z + A c W  - W A 2  = 0 (34) 

where Z ffi D, V - D2. According to (33) we must 
show that Z = 0. 

By considering a Jordan decomposit ion of ~ ,  
relative to A2 and by restricting the maps in (34) 
to any cyclic subspace in this decomposit ion,  we 
may as well assume that A2 is a k × k Jordan 
matrix 

AO AI AIO] 

Taking matrix representat ions for  Z and W we 
write 

Z = [ z ,  . . . . .  z~] ,  W = [ w ,  . . . . .  w~] 

with z, E ~  and w, E ~c(i E k ) .  Then (34) 
implies 

Bcz, + (A ,  - A )w,  = 0 

Bcz2 + (A~ - A ) w 2 -  w ,  = 0 ( 3 5 )  

~/L = A ~ L  + Bt~,  (31a) 

22 = A2x2 (31b) 

z = D ~ L  + D2x2. (31c) 

If AL is stable the equation 

A L X  - X A ~  ffi BL (32) 

B~zt + (Ac - A )w, - w~-, ffi 0. 

From the fact that the closed loop is stable and 
Ac incorporates an internal model of  A,  it can be 
deduced that 

Ker  B~ -- 0 (36a) 

Im B~ N Im (A~ - A) = 0 (36b) 

has a unique solution X. Define ~L ffi x ,  + Xx2. 

Then (31) is t ransformed into 

Yc : A2x2 

z ffi D ~ L  + (D2 - D L X ) x , .  

Thus output  regulation will be guaranteed once 
we show that D2 = DtX,  or equivalently 

and 

Ker  (Ac - A )*-' C Im (Ac - A). (37) 

Now (36) and the first equation in (35) show that 
z, = 0 and w, E Ker  (A~ - A); hence from 0 7 )  
w, E I m ( A ~ - A ) .  Then (36) and the second 
equation in (35) show that z, = 0 and w2 E Ker  
(A~ - A)'. Continuing in this fashion we find that 
Zf f i0 .  1"3 




