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Basis of the Presentation

The Presentation is based on the premise that

�Delays (time and transport)

�Repetition (periodicity/reprocessing) and 

� Iteration (improvement by repetition)

have a place in applied Engineering Control 
and present there own challenges and 
problems to analysis and design.

They have  much in common!
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Why?

� Delays mean action at time t is based on “out 
of date” data I.e. stability and performance 
problems

� Repetition such as reprocessing a work-piece 
as in metal rolling has to cope with stability 
and performance implications of physical 
interactions between repetitions

� Iteration in the sense of repeating an action to 
improve the control performance is a special 
case of repetition.
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Introduction – “Classical Control”

� Classical control theory considers the plant 
model (assumed discrete for simplicity) in Rn
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with an initial condition 0)0( xx = [ )∞∈ ,0t

� The control design objective is to drive the state 
x(t) to zero (regulation) or make the output of the 
system y(t) to track a given reference r(t) 
(tracking problem) with a feedback controller.
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Introduction

� The exists several well-known techniques to solve 
the control design problem:

1. PID Control (the practical approach)/compensator 
design (frequency domain) 

2. Classical state-feedback control, u(t)=-Kx(t)
3. Optimal Control (Riccati-equation)
4. Stochastic methods (Kalman filters)
5. Robust Control (frequency domain)
6. Adaptive Control
7. Polynomial methods (pole placement)
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Introduction

� Extensions to nonlinear systems:
1. Geometric approach, i.e. Lie Algebras, Output 

Linearization etc.
2. Sliding Mode Control
3. Back-Stepping methods
4. “Intelligent methods”: Neural networks, Fuzzy 

Control, Genetic Algorithms, …….

Note: The inclusion of delays makes all these theories 
more complex mathematically and more difficult to 
implement. More seriously, delays causes severe 
deterioration in closed loop performance.
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Firstly

DELAYS ARE 
BAD FOR 

PERFORMANCE
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Feedback System With Delay

� A typical feedback system has a series delay 
as illustrated below
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Nyquist Analysis

� Nyquist analysis indicates that stability is affected 
(dependent on both delay & gain)
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Effect on Performance

Increasing 
the delay 
causes 
poorer 
performance 
and ultimate 
instability
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Note that

DELAYS, REPETITION 
AND ITERATION ARE 

SIMILAR 
MATHEMATICALLY BUT 

DIFFERENT 
PHYSICALLY
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Differences and Similarities

Delay Systems:

Repetitive Systems:

Iterative Systems
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In what way are they similar?

� The delay system is repetitive with the choice 
of D0=0 and xk+1(0)=f(xk(.))=xk(T)

� The repetitive system is iterative with B0=0
and D0=0

� This similiarity leads to similar problems in 
analysis although there are some differences!
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Part of the Similarity is that they are all

� Two-dimensional systems!!!
� Note causality structure.

Time t axis

Index k
axis
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k=2

k=3

Plant dynamics
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Dynamic 
evolution
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And now

ITERATIVE 
LEARNING 
CONTROL
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Iterative Learning Control – An 
Introduction
� Consider the following standard linear time-invariant 

state-space equation
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defined over a finite time-interval ],0[ Tt ∈

� The system is supposed to track a reference signal 
r(t) for                  by manipulating the input variable 
u(t) (a classical tracking problem over a finite time-
interval).

],0[ Tt ∈
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ILC-Introduction

� After the system has reached the final time 
point t=T, the state x(T) is reset to xo and the 
system is required to track the same 
reference signal r(t) again. 

� Real-life applications:
1. Robotics
2. Chemical batch processing
3. Start-up and shutdown of general industrial 

systems (for example a gas-turbine)
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ILC-Introduction

� In the past this problem was solved by picking 
up a fixed controller (e.g. PID-controller) and 
this control is applied during each repetition.

� The problem: if u(t) does not give perfect 
tracking, then the same non-zero tracking 
error e(t) ):=r(t)-y(t) is repeated during every 
repetition. There is no improvement!
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ILC-Introduction/Simulation example

� Consider a simple illustrative plant
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� The plant is defined over time-interval [0,6]  
and it is required to track a reference signal

)6/2sin()( ttr π=

� The plant is controlled with a classical PI-
controller
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ILC-Introduction/Simulation example

Gain changes and 
phase shifts produce 
substantial tracking 
errors!
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ILC-Introduction

� In order to improve this 
situation, at the beginning of 
1980’s Japanese researchers 
suggested that one should 
use information from previous 
trials to come up with a new
input function u(t) that gives 
better tracking.

� Repetition makes this possible
� Repetition is the mother of 

learning?

Seeing the 
light!
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ILC-General Problem definition

� Control Design is the choice of a control law
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so that (1) learning convergence is achieved i.e.
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(2) rate and form of convergence is acceptable!
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ILC-Problem definition

� Again a two-dimensional system!!!

Time t axis

Iteration k 
axis
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by the Control Law

t=T

Direction defining stability
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Arimoto-law: A First Attempt

� One of the first algorithms proposed for ILC 
was

)1()()(1 ++=+ tetutu kkk γ

for discrete systems having a relative degree 1.

� Convergence/stability condition is

11 <− CBγ and )0()0( yr =

� Little information is needed about the 
dynamics of the plant (i.e. A matrix). Is this too 
good to be true? Of Course It Is!!!!!!
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Arimoto-law – Example of Poor Performance

Asymptotic convergence but poor performance!!! 

Note the Substantial 
increase in the error 
norm during early 
iterations

But 
convergence 
of the tracking 
error to zero
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Can this problem be removed?

� Is is possible to construct an algorithm with 
guaranteed monotonicity properties?

� That is the tracking error gets smaller each 
iteration …….
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Norm-Optimal ILC (Amann et al)

� Idea: use quadratic optimisation in a general 
Hilbert-space setting by solving the Minimisation 
problem
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Subject to constraint equation defined by the model
Of systems dynamics)

11 ++ = kk Guy 21: HHG →,

and H1 and H2 are suitable Hilbert-spaces

G linear and bounded,

Note: For notational convenience, define the model via
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Norm-Optimal ILC    (NOILC)

� Abstract solution of the optimisation problem is 
given by

1
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where 12
* : HHG → is the adjoint operator of G

� This gives formal error evolution equation
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DOES THIS IMPLY MONOTONIC ERROR 
CONVERGENCE TO ZERO?
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NOILC – Convergence Rates

� Suppose now that (which true in the d.t. LTI case)

0,, 2

2* >∈∀>≥< σσ HvvvGGv

where >⋅⋅< , is the inner product in H2

then ||||
1

1
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i.e. Convergence is monotonic and geometric to zero!!!!

� Note: In the continuous-time LTI case the result is 
almost geometric monotonic convergence
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NOILC/Implementation Issues

� In the dynamical system context the control law

1
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is non-causal, and cannot be used directly in practice

� Fortunately it can be shown that an equivalent causal 
representation exists for LTI state space systems of 
the general form

[ ])())()()(()()( 111 ttxtxtKBtutu kkk
T

kk +++ −−−= ξ

� K(t) is a solution of a Riccati equation and k+1(t) 
is a “predictive term” that has to be computed 
between trials from past error and input data
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Norm-Optimal ILC/Simulation 
example - revisited
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Norm-Optimal ILC/Simulation 
example

Close tracking after 20 
iterations with guaranteed 
further improvement
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Norm-Optimal ILC/Further results

� Improved Convergence rates can be obtained by appropriate 
choice of weight matrices in the performance criterion

� A predictive formulation also adds  convergence benefits using 
the following criterion and a receding horizon principle

( )�
=

−+++
−

+ −+=
N

i
ikikik

i
k uueuJ

1

2

1

21
1 ),( λλ

� Gives considerably faster convergence with monotonic 
convergence as fast as –k if the “horizon” N is large

� However, implementation is far more complex
� The ideas do however show the potential implicit in the 

paradigm
� Parameter Optimization Approaches offer the potential for 

good performance with simpler computations ……
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Parameter Optimal ILC (POILC)

� How to select in the Arimoto algorithm?

� Let the gain vary from iteration to iteration and 
minimize the criterion
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� The solution of this optimisation problem is
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The resultant algorithm is monotonically convergent to 
zero tracking error if the plant is positive-real
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NOILC/Current Applications Studies

� Currently a project between Soton and Sheffield to 
further develop the theory of ILC but also to 
undertake a serious application of Norm-Optimal ILC 
on a conveyor-belt “robot” in food industry.

� The goal is to be able to fill in two tuna cans in one 
second – a massive improvement in production rate 
with a computational technique (low investment –
massive improvement in production rate?)

� New applications are also being sought from Finnish 
and other European (incl. UK) companies.
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And now ….

REPETITIVE 
CONTROL
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RC - Introduction

� Consider the following standard linear time-invariant 
state-space equation
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defined over a time-interval ),0[ ∞∈t

� The system is supposed to track a reference signal 
a T-periodic reference signal r(t) (i.e. r(t)=r(t+T)) by 
manipulating the input variable u(t).

� Note that the only information available is 
periodicity, but the actual shape of r(t) is arbitrary.
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RC-Internal Model Principle

� Let the control law be

)]([)]([ tNetMu =

� The internal model principle says that the 
operator M has to include a model P of the 
reference signal where [Pr](t)=0

� Because the reference signal is T-periodic, 
the internal model is P=1-z-T, where z-1 is 
the standard backward-shift operator, i.e.

0)()()()()]()1[( =−=−−=− − trtrTtrtrtrz T
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RC/A polynomial approach

� Let the process model be

)()()()( 11 tuzBtyzA −− =

� Using the internal model 1-z-T the process 
model can be written as
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RC/A polynomial approach

� This a standard tracking problem, can be solved by 
a lot of different techniques (pole-placement, 
adaptive control robust control)

� Receding Horizon Optimal control, solve
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� The model has an equivalent state-space 
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RC/A polynomial approach

� The optimal control law is Riccati feedback

)()()( tKxTtutu m+−=

� Furthermore, the state xm(t) can be estimated with a 
state-observer (Kalman-filtering approach -> 
increases robustness

� Note also that the dimension is n+T, where n is the 
dimension of the plant and T is the number of time-
points inside a period = high-order control.

� The approach works also for T-periodic load 
disturbances and multi-periodic signals.

Compare with  NOILC
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RC/Simulation example

� Consider again the process model 

65
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and the plant is supposed to track a reference 
signal r(t) where r(t)=r(t+10).

� The process is sampled with sampling time 
Ts=0.1 seconds.
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RC/Simulation Example

(Steady State) Results with a PID-controller

Difficult reference 
signal due to “corner”

Steady state 
output with 
PID control
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RC/Simulation Example

Results with a RC controller

Rapid decay to zero tracking error
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RC/Applications

� Reported applications include:
1. Control of rotating machines
2. Control of PWM-inverters
3. Casting
4. Rolling processes

� Several international patents especially in 
the metal industry
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Generalisations

� ILC/RC systems are a special case of more general 
2-D systems
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where ],0[ Tt ∈

� This classes of processing can be found for 
example in mining and sanding.

� The stability properties of this system depends only 
on the D matrix!!!
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Conclusions 

� Delays, Repetitive Control and Iterative Learning 
Control are aspects of similar theories

� All are subject to the “delay effect” of destabilization 
or performance deterioration

� Effective optimal control laws produces monotonic 
convergence using similar control structure

� There are great possibilities for the use of these 
(more sophisticated) control laws

� Investment need not be great and could lead to 
increased production rate scenarios

� The price you pay is the need to think in a non-
classical way during control design


